Ed
há 11 meses
Para responder à questão sobre as integrais imediatas, vamos analisar cada afirmação: 1. ( ) A integral de uma constante \( c \) em relação a \( x \) é \( cx + C \). É verdadeira (V). A integral de uma constante é a constante multiplicada pela variável de integração, mais a constante de integração \( C \). 2. ( ) A integral de \( x^n \) (onde \( n \neq -1 \)) é \( \frac{x^{n+1}}{n+1} + C \). É verdadeira (V). Esta é uma das regras básicas de integração. 3. ( ) A integral de \( e^x \) é \( e^{x^2} + C \). É falsa (F). A integral de \( e^x \) é \( e^x + C \), não \( e^{x^2} + C \). 4. ( ) A integral de \( \sin(x) \) é \( -\cos(x) + C \). É verdadeira (V). A integral de \( \sin(x) \) resulta em \( -\cos(x) + C \). Agora, organizando as respostas: 1. V 2. V 3. F 4. V Portanto, a sequência correta é: D) V - V - F - V.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material