Ed
semana passada
Para resolver a questão, vamos usar as propriedades dos logaritmos. Sabemos que: - \( \log_b x = -2 \) implica que \( x = b^{-2} \) - \( \log_b y = 3 \) implica que \( y = b^3 \) Agora, queremos calcular \( \log_b \left( \frac{x}{y} \right) \). Substituindo \( x \) e \( y \): \[ \frac{x}{y} = \frac{b^{-2}}{b^3} = b^{-2 - 3} = b^{-5} \] Portanto: \[ \log_b \left( \frac{x}{y} \right) = \log_b (b^{-5}) = -5 \] Assim, a resposta correta é: e) -5.