Logo Passei Direto
Buscar
As integrais são um dos principais objetos matemáticos utilizados pelo cálculo. É por meio delas que se tem uma mensuração mais precisa de áreas, volumes e comprimento de arcos de funções. De acordo com seu conhecimento acerca das integrais definidas, analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s). I. ( ) As integrais definidas de interesse para o cálculo de áreas entre curvas podem ser definidas em termos de subtrações ou soma de outras integrais. II. ( ) A fórmula representa o cálculo do volume de um sólido de revolução construído com eixo de rotação em x. III. ( ) representa a fórmula para o cálculo do comprimento do arco de uma função. IV. ( ) pode ser utilizada para o cálculo do volume de um sólido de revolução construído com eixo de rotação y. Agora, assinale a alternativa que apresenta a sequência correta:
1. V, V, F, F
2. V, F, V, V.
3. Correta: V, V, V, F.
4. F, F, V, F.
5. V, V, F, V.
User badge image
Exercícios Para o Conhecimento

há 4 semanas

Respostas

User badge image

Ed Verified user icon

há 4 semanas

Vamos analisar cada uma das afirmativas sobre integrais definidas: I. ( ) As integrais definidas de interesse para o cálculo de áreas entre curvas podem ser definidas em termos de subtrações ou soma de outras integrais. É verdadeira (V). As integrais definidas podem ser usadas para calcular áreas entre curvas, frequentemente utilizando subtrações de integrais para encontrar a área entre duas funções. II. ( ) A fórmula representa o cálculo do volume de um sólido de revolução construído com eixo de rotação em x. É verdadeira (V). A fórmula para o volume de um sólido de revolução em torno do eixo x é dada pela integral definida que envolve a função que descreve a forma do sólido. III. ( ) Representa a fórmula para o cálculo do comprimento do arco de uma função. É falsa (F). A fórmula para o comprimento do arco de uma função envolve a integral de uma expressão que inclui a derivada da função, mas não é simplesmente representada como uma integral definida sem mais informações. IV. ( ) Pode ser utilizada para o cálculo do volume de um sólido de revolução construído com eixo de rotação y. É verdadeira (V). Existe uma fórmula específica para calcular o volume de sólidos de revolução em torno do eixo y, que também utiliza integrais definidas. Portanto, a sequência correta é: V, V, F, V. A alternativa que apresenta essa sequência é a 5. V, V, F, V.

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

O método da integração trigonométrica possui fundamental importância no que diz respeito à integração de funções mais complexas do que as habituais, que aparecem em tabelas de integração. Esse método consiste em substituir um dos termos por uma função trigonométrica, para que se encontre alguma identidade que simplifica a expressão, possibilitando a sua integração. Considerando essas informações e seus conhecimentos sobre a técnica de integração por substituições trigonométricas, analise as asserções a seguir e a relação proposta entre elas. I. A integral de 1/[x²√(x²+4)] é igual a √(x²+4)/4x+C, e pode ser calculada pelo método da substituição trigonométrica, por meio da substituição x=2sec(w). Porque: II. Consideramos a regra da integração por substituição trigonométrica e com x=2sec(w), temos que √(x²+4)=√[4sec²(w)+4]=√[4(sec²(w)+1)], e como sec²(w)+1=tg²(w), √(x²+4)=2tg(w). Substituindo na fórmula inicial e integrando, encontramos a expressão dada. Agora, assinale a alternativa correta:
1. As asserções I e II são proposições falsas.
2. As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I
3. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
4. Incorreta: A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
5. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.

O método da integração por partes possui fundamental importância no que diz respeito à integração de funções mais complexas em relação às habituais, que aparecem em tabelas de integração. Esse método consiste em separar a função em duas partes, de preferência de forma que uma das expressões seja mais fácil de se derivar, e a outra, mais fácil de se integrar. Considerando essas informações e seus conhecimentos sobre a técnica de integração por partes, analise as asserções a seguir e a relação proposta entre elas. I. A integral indefinida da função f(x)=(e^x)cos(x) é igual a (e^x)[sen(x)+cos(x)]/2+C. Porque: II. Consideramos a regra da integração por partes e tomando inicialmente u=e^x e dv=cos(x)dx, de forma que du=(e^x)dx e v=sen(x), ao integrar a função dada por partes, obtém-se outra expressão com uma integral parecida, e novamente é realizada a técnica de integração por partes. Após isso, se isola a integral cujo cálculo é desejado para encontrar a primitiva F(x) da função f(x). Agora, assinale a alternativa correta:
1. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
2. As asserções I e II são proposições falsas.
3. A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
4. Correta: As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.
5. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.

Mais conteúdos dessa disciplina