Logo Passei Direto
Buscar
As técnicas de integração servem para possibilitar a resolução do cálculo de uma integral indefinida, onde muitas vezes não há um passo direto para encontrarmos a primitiva F(x) de uma certa função f(x). Dessa forma, dependendo do arranjo algébrico dos termos de f(x), decidimos por diferentes técnicas de integração, como o método da substituição, o da integração por partes, o das frações parciais, e etc.
De acordo com as definições e propriedades do cálculo da integral indefinida e definida pelo método de integração por partes e com seus conhecimentos sobre funções trigonométricas, analise as afirmativas a seguir e assinale V para a(s) verdadeiras e F para a(s) falsa(s).
I. ( ) A integral da função f(x) = (x+1)³(x-1) só pode ser calculada pela regra da integração por partes, por se tratar do produto de duas funções.
II. ( ) A técnica de integração por partes é dada pela seguinte fórmula:
III. ( ) A primitiva de g(x) = ln(x) é G(x) = xln(x) - x + C.
IV. ( ) A integral definida no intervalo [-pi,pi] de h(x) = xsen(x) é aproximadamente igual a 6,28.
1. Incorreta:V, V, F, F.
2. F, V, V, V.
3. F, V, V, V. Resposta correta
4. F, F, V, F.
5. V, F, F, V.
User badge image
Questões para Estudantes

há 3 meses

Respostas

User badge image

Ed Verified user icon

há 3 meses

Vamos analisar cada uma das afirmativas: I. ( ) A integral da função f(x) = (x+1)³(x-1) só pode ser calculada pela regra da integração por partes, por se tratar do produto de duas funções. É falsa. Embora a integração por partes possa ser utilizada, essa integral pode ser resolvida mais facilmente utilizando a técnica de expansão algébrica e, em seguida, a integração direta. II. ( ) A técnica de integração por partes é dada pela seguinte fórmula: É verdadeira. A fórmula da integração por partes é dada por ∫u dv = uv - ∫v du, onde u e dv são partes da função a ser integrada. III. ( ) A primitiva de g(x) = ln(x) é G(x) = xln(x) - x + C. É verdadeira. A primitiva de ln(x) é realmente xln(x) - x + C, conforme a regra de integração por partes. IV. ( ) A integral definida no intervalo [-π, π] de h(x) = xsen(x) é aproximadamente igual a 6,28. É falsa. A integral de uma função ímpar (como xsen(x)) em um intervalo simétrico em torno da origem é zero, portanto, essa afirmação é incorreta. Agora, vamos classificar as afirmativas: I - F II - V III - V IV - F A sequência correta é: F, V, V, F. Portanto, a alternativa correta é a 4: F, V, V, F.

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

O método da integração por partes possui fundamental importância no que diz respeito à integração de funções mais complexas em relação às habituais, que aparecem em tabelas de integração. Esse método consiste em separar a função em duas partes, de preferência de forma que uma das expressões seja mais fácil de se derivar, e a outra, mais fácil de se integrar.
Considerando essas informações e seus conhecimentos sobre a técnica de integração por partes, analise as asserções a seguir e a relação proposta entre elas.
I. A integral indefinida da função f(x) = (e^x)cos(x) é igual a (e^x)[sen(x)+cos(x)]/2 + C.
II. Consideramos a regra da integração por partes e tomando inicialmente u = e^x e dv = cos(x)dx, de forma que du = (e^x)dx e v = sen(x), ao integrar a função dada por partes, obtém-se outra expressão com uma integral parecida, e novamente é realizada a técnica de integração por partes. Após isso, se isola a integral cujo cálculo é desejado para encontrar a primitiva F(x) da função f(x).
1. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
2. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
3. A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
4. Correta: As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. Resposta correta
5. As asserções I e II são proposições falsas.

O método da integração trigonométrica possui fundamental importância no que diz respeito à integração de funções mais complexas do que as habituais, que aparecem em tabelas de integração. Esse método consiste em substituir um dos termos por uma função trigonométrica, para que se encontre alguma identidade que simplifica a expressão, possibilitando a sua integração.
Considerando essas informações e seus conhecimentos sobre a técnica de integração por substituições trigonométricas, analise as asserções a seguir e a relação proposta entre elas.
I. A integral de 1/[x²√(x²+4)] é igual a √(x²+4)/4x + C, e pode ser calculada pelo método da substituição trigonométrica, por meio da substituição x = 2sec(w).
II. Consideramos a regra da integração por substituição trigonométrica e com x = 2sec(w), temos que √(x²+4) = √[4sec²(w)+4] = √[4(sec²(w)+1), e como sec²(w) + 1 = tg²(w), √(x²+4) = 2tg(w). Substituindo na fórmula inicial e integrando, encontramos a expressão dada.
1. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
2. As asserções I e II são proposições falsas. Resposta correta
3. Incorreta: As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I
4. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
5. A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.

Mais conteúdos dessa disciplina