Logo Passei Direto
Buscar
O conhecimento acerca dos métodos de integração é essencial, de forma que a integração por substituições trigonométricas possui diversas aplicações no escopo do cálculo e da física, já que, muitas vezes, essas substituições são as únicas saídas para resolver uma integral definida cujo valor numérico equivale, por exemplo, à área sob uma curva, a um volume de rotação ou translação, ao comprimento de um arco, etc.
De acordo essas informações e com seus conhecimentos sobre as técnicas de integração, analise as afirmativas a seguir:
I. O cálculo da área de elipses, da forma x²/a² + y²/b² = 1, pode ser feito substituições trigonométricas em integrais, pois isolando y encontramos a raiz de a² – x².
II. Expressões que envolvem a raiz quadrada de a² - x² podem ser integradas fazendo a substituição x = asen(w), devido ao fato de recorrerem na identidade 1-sen²w = cos²w.
III. As substituições trigonométricas consistem na aplicação da regra da substituição para integração em casos específicos, nos quais pode-se recorrer a certas substituições, baseando-se nas identidades trigonométricas, para chegar a expressões integráveis.
IV. Ao realizar o cálculo da integral indefinida de uma função por meio de substituições trigonométricas, nem sempre é preciso retornar à variável x original.
1. II e III.
2. II e IV.
3. I, II e IV.
4. Correta: I, II e III. Resposta correta
5. I e III.
User badge image
Questões para Estudantes

há 4 dias

Respostas

User badge image

Ed Verified user icon

há 4 dias

Vamos analisar cada afirmativa: I. O cálculo da área de elipses, da forma x²/a² + y²/b² = 1, pode ser feito por substituições trigonométricas em integrais, pois isolando y encontramos a raiz de a² – x². Essa afirmativa é verdadeira, pois a substituição trigonométrica pode ser utilizada para resolver integrais que envolvem a equação da elipse. II. Expressões que envolvem a raiz quadrada de a² - x² podem ser integradas fazendo a substituição x = a sen(w), devido ao fato de recorrerem à identidade 1 - sen²(w) = cos²(w). Essa afirmativa é verdadeira, pois essa substituição é uma técnica comum para lidar com integrais que envolvem essa forma. III. As substituições trigonométricas consistem na aplicação da regra da substituição para integração em casos específicos, nos quais pode-se recorrer a certas substituições, baseando-se nas identidades trigonométricas, para chegar a expressões integráveis. Essa afirmativa é verdadeira, pois descreve corretamente o propósito das substituições trigonométricas. IV. Ao realizar o cálculo da integral indefinida de uma função por meio de substituições trigonométricas, nem sempre é preciso retornar à variável x original. Essa afirmativa é verdadeira em alguns contextos, especialmente se o resultado final for uma expressão em termos da nova variável. Agora, vamos verificar as alternativas: 1. II e III. (Verdadeiro, mas não inclui I) 2. II e IV. (Verdadeiro, mas não inclui I e III) 3. I, II e IV. (Verdadeiro, mas não inclui III) 4. Correta: I, II e III. (Verdadeiro, inclui todos os itens verdadeiros) 5. I e III. (Verdadeiro, mas não inclui II e IV) A alternativa que contém todos os itens verdadeiros é a 4: Corretta: I, II e III.

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

O método da integração por partes possui fundamental importância no que diz respeito à integração de funções mais complexas em relação às habituais, que aparecem em tabelas de integração. Esse método consiste em separar a função em duas partes, de preferência de forma que uma das expressões seja mais fácil de se derivar, e a outra, mais fácil de se integrar.
Considerando essas informações e seus conhecimentos sobre a técnica de integração por partes, analise as asserções a seguir e a relação proposta entre elas.
I. A integral indefinida da função f(x) = (e^x)cos(x) é igual a (e^x)[sen(x)+cos(x)]/2 + C.
II. Consideramos a regra da integração por partes e tomando inicialmente u = e^x e dv = cos(x)dx, de forma que du = (e^x)dx e v = sen(x), ao integrar a função dada por partes, obtém-se outra expressão com uma integral parecida, e novamente é realizada a técnica de integração por partes. Após isso, se isola a integral cujo cálculo é desejado para encontrar a primitiva F(x) da função f(x).
1. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
2. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
3. A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
4. Correta: As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. Resposta correta
5. As asserções I e II são proposições falsas.

O método da integração trigonométrica possui fundamental importância no que diz respeito à integração de funções mais complexas do que as habituais, que aparecem em tabelas de integração. Esse método consiste em substituir um dos termos por uma função trigonométrica, para que se encontre alguma identidade que simplifica a expressão, possibilitando a sua integração.
Considerando essas informações e seus conhecimentos sobre a técnica de integração por substituições trigonométricas, analise as asserções a seguir e a relação proposta entre elas.
I. A integral de 1/[x²√(x²+4)] é igual a √(x²+4)/4x + C, e pode ser calculada pelo método da substituição trigonométrica, por meio da substituição x = 2sec(w).
II. Consideramos a regra da integração por substituição trigonométrica e com x = 2sec(w), temos que √(x²+4) = √[4sec²(w)+4] = √[4(sec²(w)+1), e como sec²(w) + 1 = tg²(w), √(x²+4) = 2tg(w). Substituindo na fórmula inicial e integrando, encontramos a expressão dada.
1. As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
2. As asserções I e II são proposições falsas. Resposta correta
3. Incorreta: As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I
4. A asserção I é uma proposição verdadeira, e a II é uma proposição falsa.
5. A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.

Mais conteúdos dessa disciplina