Prévia do material em texto
Curso GRA1569 CÁLCULO APLICADO UMA VARIÁVEL GR0550-212-9 - 202120.ead-17339.01 Teste ATIVIDADE 2 (A2) Iniciado 02/12/21 19:29 Enviado 02/12/21 20:03 Status Completada Resultado da tentativa 8 em 10 pontos Tempo decorrido 34 minutos Resultados exibidos Respostas enviadas, Respostas corretas, Comentários Pergunta 1 Resposta Selecionada: Resposta Correta: Comentário da resposta: Ao calcular limites, pode ocorrer uma indeterminação matemática do tipo 0/0. Nesse caso, para determinar o limite, devemos utilizar artifícios matemáticos para simplificar a função. Para funções racionais polinomiais de grau 2, é recomendável utilizar a fatoração do polinômio, através da regra prática em que . Assim, basta encontrar as raízes do polinômio por Bhaskara. Isso facilita bastante os cálculos. Nesse sentido, encontre o limite e assinale a alternativa que indique qual é o resultado obtido para o limite. -2. -2. Resposta correta. O valor correto para o limite é igual a -2 . Para fatorar o polinômio , utiliza-se o quadrado da diferença, portanto: . Para fatorar o polinômio de grau 2, por Bhaskara, as raízes são -1 e -2, portanto . Assim, . Pergunta 2 Seja a função espaço tempo , em que t representa o tempo. A velocidade média em um intervalo de tempo inicial ( e tempo final é dada por . A derivada de uma função aplicada a um ponto pode ser vista como uma taxa de variação instantânea. Na cinemática, dizemos que a função velocidade é a derivada da função espaço em relação ao tempo , enquanto que a aceleração é a derivada da função velocidade em relação ao tempo . Com essas informações, considere a seguinte situação-problema: uma bola é atirada no ar com uma velocidade inicial de 40 m/s e sua altura (em metros), após t segundos, é dada por Nesse contexto, analise as afirmativas a seguir: 1 em 1 pontos 0 em 1 pontos Resposta Selecionada: Resposta Correta: Comentário da resposta: I. A velocidade média para o período de tempo que começa quando e dura é igual a -25,6 m/s. II. A velocidade instantânea quando é igual a . III. O instante em que a velocidade é nula é . IV. A altura máxima atingida pela bola é de 25 metros. Está correto o que se afirma em: I, II e IV, apenas. I, III e IV, apenas. Sua resposta está incorreta. A afirmativa I é correta, visto que a velocidade média para o período de tempo que começa quando e dura é igual a -25,6 m/s. De fato: . A afirmativa II é incorreta, uma vez que a velocidade instantânea quando é igual a . A velocidade instantânea é dada por: A afirmativa III é correta, porque o instante em que a velocidade é nula é . De fato: Por fim, a afirmativa IV é incorreta, dado que a altura máxima atingida pela bola é de 25 metros. De fato, nesse caso, o tempo para atingir a altura máxima é de e . Portanto, a altura de máxima é de . Pergunta 3 Resposta Selecionada: Resposta Correta: Comentário da resposta: O estudante de uma universidade, para ter acesso ao seu armário, precisa de um código com 4 dígitos. O professor disponibilizou o código da seguinte forma: 1º dígito: , em que , 2º dígito: , em que , 3º dígito: , em que , 4º dígito: , em que Para descobrir qual é o código, encontre o valor das derivadas. Nesse sentido, assinale a alternativa que indique o código do armário do estudante. 2, 1, 1, 4. 2, 1, 1, 4. Resposta incorreta. De acordo com os cálculos a seguir, obteve-se o código igual a 2114. Cálculos: 1º dígito: , em que . 2º dígito: , em que 3º dígito: , em que 1 em 1 pontos 4º dígito: , em que Pergunta 4 Resposta Selecionada: Resposta Correta: Comentário da resposta: Uma função, definida por várias sentenças pode ser derivada, respeitando-se a limitação do domínio para cada sentença e atendendo a condição para que a derivada de uma função exista num ponto : as derivadas laterais a direita, , e a derivada lateral à esquerda, , existem e são iguais. Segundo Fleming (2006) nem toda função contínua num ponto é derivável, no entanto, foi comprovado por teorema que toda função derivável num ponto é contínua. Considere a função f(x) a seguir, definida por várias sentenças: FLEMING, D. M. Cálculo A. São Paulo: Pearson Prentice Hall, 2006. Nesse contexto, analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s). I. ( ) A função é derivável em . II. ( ) A derivada de existe, pois as derivadas laterais são: . III. ( ) A função não é derivável em porque não é contínua em . IV. ( ) A função é derivável em , porque é contínua em . Assinale a alternativa que apresenta a sequência correta. F, F, V, F. F, F, V, F. Resposta correta. A afirmativa I é falsa, sendo que é derivável em , logo, . De fato: . A afirmativa II é falsa, visto que a derivada de existe, pois , pois, . De fato: . A afirmativa III é verdadeira, dado que não é derivável em , porque não é contínua em . De fato, , portanto, f não é derivável em x=2. Já a afirmativa IV é falsa, uma vez que é derivável em porque é 1 em 1 pontos contínua em . O fato de uma função ser contínua não garante a sua derivabilidade. Pergunta 5 Resposta Selecionada: Resposta Correta: Comentário da resposta: As derivadas das funções elementares podem ser obtidas através dos resultados tabelados. Os resultados da tabela foram obtidos através do limite por definição da derivada. Assim, é importante conhecer as derivadas das funções elementares para derivar funções com maior facilidade. A respeito das derivadas de funções elementares, considere e analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s). I. ( ) Se , então . II. ( ) Se , então III. ( ) Se , então . IV. ( ) Se então . Assinale a alternativa que apresenta a sequência correta. V, F, V, F. V, F, V, F. Resposta correta. A afirmativa I é verdadeira, se , então , por regra de derivação. A afirmativa II é falsa, visto que se , então , pois a derivada de uma constante é igual a zero. A afirmativa III é verdadeira, porque se , então , como consta na tabela de derivadas. E, finalmente, a afirmativa IV é falsa, dado que se então . Verifique que a função é uma função composta e, portanto, através da regra da cadeia Pergunta 6 Seja a função espaço tempo , em que t representa o tempo. A velocidade média em um intervalo de tempo inicial ( e tempo final é dada por . A derivada de uma função aplicada em um ponto pode ser vista como uma taxa de variação instantânea. Na cinemática, dizemos que a função velocidade é a derivada da função espaço em relação ao tempo , enquanto que a aceleração é a derivada da função velocidade em relação ao tempo . Com essas informações, considere a seguinte situação problema: o deslocamento (em metros) de uma partícula, movendo-se ao longo de uma reta, é dado pela equação do movimento , em que t é medido em segundos. Neste contexto, analise as afirmativas a seguir: I. A velocidade média para o período de tempo que começa quando e 1 em 1 pontos 1 em 1 pontos Resposta Selecionada: Resposta Correta: Comentário da resposta: é igual a 40,0 m/s. II. A velocidade instantânea quando é igual a . III. A aceleração é sempre constante. IV. A aceleração quando o tempo é é igual a . Assinale a alternativa que apresenta a(s) afirmativa(s) correta(s). II e IV, apenas. II e IV, apenas. Resposta incorreta. A afirmativa I é incorreta, dado que a velocidade média para o período de tempo que começa quando e é igual a 40,0 m/s. De fato: . A afirmativa II é correta, uma vez que a velocidade instantânea quando é igual a . De fato: A afirmativa III é incorreta, porque a aceleração é sempre constante. De fato: Por fim, a afirmativa IV é correta, já que a aceleração quando o tempo é é igual a . De fato: Pergunta 7 Resposta Selecionada: [Sem Resposta] Resposta Correta: Comentárioda resposta: Para derivar a função , é necessário conhecer a derivada da função tangente e a regra da cadeia, pois essa função é uma composição da função tangente, polinomial e potência. Assim, inicialmente, deve-se aplicar a derivada da função potência, depois da função tangente e, por fim, a função polinomial. Nesse sentido, assinale a alternativa que indique qual o valor de Sua resposta está incorreta. Aplicando-se os passos evidenciados, a derivada da função potência, depois a derivada da tangente e, em seguida, a derivada da função polinomial, o seguinte cálculo mostra que . Pergunta 8 As funções trigonométricas possuem características próprias, tornando-as funções de grande complexidade. Portanto, derivar essas funções a partir da definição de derivadas por limites, torna-se um trabalho árduo. Assim, a tabela de derivadas inclui fórmulas para derivar, também, as funções trigonométricas. 0 em 1 pontos 1 em 1 pontos Resposta Selecionada: Resposta Correta: Comentário da resposta: A respeito das derivadas de funções trigonométricas, analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e F para a(s) falsa(s). I. ( ) . II. ( ) . III. ( ) . IV. ( ) Assinale a alternativa que apresenta a sequência correta. V, F, F, V. V, F, F, V. Resposta correta. A afirmativa das alternativas I e IV é verdadeira, pois as derivadas estão de acordo com a tabela de derivadas. Já a afirmativa II é falsa, pois a derivada da função cossecante é dada por Por fim, a afirmativa III também é falsa desde quando a derivada da cotangete é Pergunta 9 Resposta Selecionada: Resposta Correta: Comentário da resposta: Para derivar a função , é necessário conhecer a derivada da função polinomial e regras operatórias da derivada. No entanto, inicialmente, deve-se simplificar a função, utilizando as regras operatórias da potência: soma, produto e quociente. Nesse sentido, assinale a alternativa que indica qual o valor de Resposta correta. Os seguintes cálculos mostram que inicialmente foram aplicadas as propriedades de potência para simplificar a função e depois derivou-se a função adequadamente, obtendo o resultado de . Pergunta 10 Para derivar funções, é necessário conhecer e saber utilizar as suas regras operatórias: deriva da soma entre duas funções, derivada do produto entre duas ou mais funções, derivada do quociente entre duas funções, derivada da cadeia, 1 em 1 pontos 1 em 1 pontos Resposta Selecionada: Resposta Correta: Comentário da resposta: para derivar as funções constantes. Neste contexto, associe tais regras com suas fórmulas: 1 - Derivada do Produto. 2 - Derivada do Quociente. 3 - Derivada da Soma. 4 - Derivada da Cadeia. ( ) ( ) ( ) ( ) A partir das relações feitas anteriormente, assinale a alternativa que apresenta a sequência correta. 2, 3, 1, 4. 2, 3, 1, 4. Resposta correta. De acordo com as regras estudadas, temos que = Derivada do Quociente. = Derivada da Soma. = Derivada do Produto. = Derivada da Cadeia.