Buscar

Tratamento nutricional dos desequilíbrios orgânicos

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 88 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 88 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 88 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
Estudo da microbiota intestinal e sua relação com doenças.
PROPÓSITO
Compreender o conceito de microbiota intestinal, seu desequilíbrio e suas implicações para a saúde,
assim como a modulação dietética apropriada para a manutenção saudável dessa microbiota.
OBJETIVOS
MÓDULO 1
Reconhecer a importância do tratamento e o manejo nutricional funcional na disbiose intestinal
MÓDULO 2
Descrever a nutrição funcional no tratamento das alergias alimentares e da síndrome bacteriana/fúngica
MÓDULO 3
Descrever a detoxificação hepática
INTRODUÇÃO
O intestino humano abriga trilhões de células microbianas como parte essencial de nosso ecossistema
fisiológico saudável. Esse contingente inclui comunidades de bactérias, fungos, arqueas e vírus
frequentemente referidos coletivamente como “microbiota”, enquanto seu genoma é conhecido como
“microbioma”.
Veremos neste conteúdo que compreender ou definir o que constitui um “microbioma normal” é
desafiador, podendo abranger considerações sobre o núcleo funcional, a ecologia da comunidade
saudável e as perspectivas de resistência, resiliência e estabilidade da ecologia microbiana e
metabólitos relacionados.
O táxon/taxa nesses filos é relativamente estável ao longo do tempo em um indivíduo e consistente em
termos relativos entre os membros da família, embora varie amplamente entre indivíduos não
aparentados que vivem em diferentes domicílios. No entanto, as comunidades microbianas em uma
família podem ser substancialmente alteradas – principalmente naquelas com mais contatos
extrafamiliares.
O quanto uma microbiota é alterada ao longo do tempo em um indivíduo ainda precisa ser determinado.
Desde o parto, influências ambientais substanciais em três aspectos (composição, função e
metabolismo) microbianos intestinais de um indivíduo podem impactar direta ou indiretamente no
metabolismo do hospedeiro.
Em condições fisiológicas, a microbiota intestinal continua a estimular o sistema imunológico,
especialmente por meio dos tecidos linfoides associados ao intestino. Além disso, ela está envolvida na
ativação e na diferenciação de uma ampla gama de linfócitos T e B, bem como na modulação da
produção mucosa de imunoglobulinas (especialmente a imunoglobulina A).
MÓDULO 1
 Reconhecer a importância do tratamento e o manejo nutricional funcional na disbiose
intestinal
MICROBIOTA INTESTINAL
CONCEITOS E CARACTERÍSTICAS
A microbiota intestinal pode ser vista como um órgão do corpo real que contribui para o bem-estar do
organismo hospedeiro. Os trilhões de micro-organismos que colonizam o trato gastrointestinal (GI)
influenciam processos locais e sistêmicos, como transformação de nutrientes, fornecimento de
vitaminas, maturação da imunidade mucosa, comunicação intestino-cerebral e até progressão de tumor.
Como outros órgãos, o funcionamento adequado da microbiota intestinal depende de uma composição
celular estável, que, no caso da microbiota humana, consiste principalmente em bactérias dos filos
Bacteroidetes, Firmicutes, Actinobacteria e, em menor extensão, Proteobacteria.
 
Imagem: Shutterstock.com
Grandes mudanças na proporção entre esses filos ou na expansão de novos grupos de bactérias levam
a um desequilíbrio conhecido como disbiose. A redução da diversidade microbiana e o crescimento de
Proteobacteria são características da disbiose. Um número crescente de doenças está associado à
disbiose intestinal, que, em alguns casos, contribui para o desenvolvimento ou a gravidade da doença.
A disbiose é uma característica marcante das doenças inflamatórias intestinais (DII), como colite
ulcerativa e doença de Crohn, assim como de distúrbios metabólicos, doenças autoimunes e distúrbios
neurológicos. Ela pode desencadear a doença nas primeiras semanas de vida, conforme observado na
enterocolite necrosante; durante a idade adulta, por meio da promoção de câncer colorretal; ou em
pessoas já idosas, como a diarreia associada a Clostridium difficile.
 
Imagem: Shutterstock.com
Ao contrário dos micro-organismos infecciosos, não é possível estabelecer a patogenicidade de
bactérias intestinais específicas por meio da aplicação dos postulados de Koch, uma vez que uma
grande fração da microbiota não pode ser isolada como cultura pura. A implicação patogênica de micro-
organismos específicos em uma doença depende principalmente da identificação de populações
bacterianas deslocadas com base no sequenciamento de DNA de alto rendimento de genes 16S rRNA
conservados.
A replicação de uma doença por meio do transplante da microbiota intestinal de um animal doente
para um saudável é frequentemente usada em uma segunda etapa para confirmar a contribuição da
disbiose intestinal para a doença. Esse transplante demonstrou a contribuição de micro-organismos
intestinais, entre outros, para a obesidade e a aterosclerose em camundongos.
No entanto, apesar das fortes evidências obtidas com o sequenciamento do rRNA 16S e o transplante
de microbiota, a responsabilidade de grupos bacterianos específicos enriquecidos em um estado de
doença frequentemente permanece circunstancial. Alguns patógenos reais permanecem até abaixo do
limite das técnicas de detecção atuais.
Bactérias que produzem uma ampla gama de enzimas digestivas se alimentam com frequência de
outras com capacidade limitada de forrageamento. O aumento da liberação de nutrientes pode promover
o crescimento paralelo de bactérias inofensivas e prejudiciais.
Além disso, a fronteira entre o bem e o mal é frequentemente confusa, já que algumas bactérias
simbióticas podem se tornar patogênicas quando presentes em grande número no intestino. Chamadas
javascript:void(0)
de patobiontes, elas podem ser difíceis de se reconhecer quando sua expansão ocorre simultaneamente
a outras mudanças na composição microbiana do intestino.
Além da atribuição de responsabilidade por associação, a descoberta dos mecanismos subjacentes às
mudanças de grupos microbianos é fundamental para a compreensão dos processos que levam à
disbiose. Consequentemente, a identificação de fatores que causam fortes alterações na microbiota
intestinal constitui um fator indispensável para o desenvolvimento de estratégias destinadas a prevenir a
disbiose intestinal.
Vários fatores exógenos e endógenos afetam a composição microbiana do intestino. Os efeitos
resultantes variam de transitórios a duradouros, assim como de inofensivos até prejudiciais.
Frequentemente, um único fator não é suficiente para induzir disbiose, pois a microbiota intestinal tem
uma resiliência intrínseca, ou seja, uma capacidade de se adaptar às variações na disponibilidade de
nutrientes e às mudanças nas condições ambientais. Em contraste, as ações combinadas de vários
fatores podem levar grupos microbianos a um ponto de inflexão que eventualmente acarreta grandes
mudanças de significado patológico.
Os principais fatores que influenciam a composição da microbiota intestinal são:
DIETA
VÁRIOS MEDICAMENTOS
MUCOSA INTESTINAL
SISTEMA IMUNOLÓGICO
A PRÓPRIA MICROBIOTA
POSTULADOS DE KOCH
Procedimentos realizados em sequência para estabelecer a relação causal entre um
microrganismo e uma doença.
Mudanças moderadas na composição microbiana podem, portanto, fornecer uma janela de oportunidade
para outros fatores agravantes a fim de amplificar mudanças em grupos bacterianos específicos a ponto
de causar desequilíbrio. Estresse oxidativo, bacteriófagos e bacteriocinas constituem fatores típicos que
exacerbam as mudanças da microbiota a ponto de promover a disbiose.
A microbiota desempenha um papel vital na formação do sistema imunológico do hospedeiro. Pode-se
dizer que existe um verdadeiro cruzamento entre ambos, o que permite o desenvolvimento da tolerância
do hospedeiro aos antígenos inofensivos da microbiota.
Estudos em animais livres de germes (GF) mostraram que a falta da microbiota intestinal leva a uma
deficiência significativa no funcionamento do sistema imunológico.
 SAIBA MAIS
Até poucos anos atrás, eraopinião comum que o feto se desenvolvia em ambiente uterino totalmente estéril e
que a primeira colonização intestinal ocorria desde o nascimento. No entanto, estudos recentes refutaram
essa concepção e demonstraram a presença de micro-organismos na placenta, no líquido amniótico e no
cordão umbilical. Foi levantada então a hipótese de que o feto começa a colonizar o próprio GI em
desenvolvimento ao engolir o líquido amniótico e as bactérias que ele contém no útero. Além disso, o
mecônio fetal contém micro-organismos.
De todo modo, é apenas no parto que os bebês ficam expostos à maioria dos micro-organismos
responsáveis pela colonização intestinal e pelo desenvolvimento da microbiota. Ademais, o tipo de parto
é muito importante, pois a microbiota intestinal inicial do bebê pode se assemelhar, em termos de
composição, aos micro-organismos com os quais ele entrou em contato durante o parto.
 SAIBA MAIS
Após um parto vaginal, o bebê entra em contato com a microbiota vaginal, mas, se for feita uma cesariana,
ele entrará em contato com a microbiota epidérmica. Estudos demonstram que bebês nascidos de um parto
natural podem desenvolver uma microbiota mais variada do que aqueles advindos de uma cesariana.
O padrão de colonização inicial é considerado caótico. Vários estudos sugerem que os fatores
ambientais e a dieta são responsáveis por grandes mudanças na composição. Em uma criança, durante
a primeira fase da colonização intestinal, os micro-organismos presentes são predominantemente
aeróbios – muitos deles com potencial patogênico como Enterobactérias, Estafilococos e Estreptococos.
Em uma etapa posterior, os micro-organismos tornam-se predominantemente anaeróbios. A composição
da comunidade intestinal continua a mudar durante o primeiro ano de vida e, posteriormente, em
resposta a fatores externos, como dieta e uso de antibióticos.
Existe uma diferença significativa na composição da microbiota intestinal do bebê em relação a:
Tipo de leite que bebe.
Tipo de desmame que realiza.
Diferentes tipos de alimentos que consome.
 
Foto: Shutterstock.com
O aleitamento materno (AM) é o alimento idealizado pela natureza para recém-nascidos e lactentes,
embora, nas últimas décadas, ele seja muito frequentemente substituído por diversas formulações
lácteas (FL). De maneira geral, pode-se dizer que o AM tem se mostrado um fator protetor para muitas
doenças inflamatórias intestinais e até para o neurodesenvolvimento, enquanto o uso dos diversos tipos
de leite formulado para crianças tem demonstrado um aumento do risco de doenças intestinais por
induzir a formação incorreta da microbiota intestinal.
Bebês amamentados têm uma população microbiana intestinal mais uniforme do que aqueles nutridos
por FL. Esse aspecto tem implicações muito importantes para o futuro da criança.
O estudo da microbiota intestinal de um recém-nascido amamentado pode fornecer informações
fundamentais sobre:
O correto desenvolvimento do sistema imunitário
A resposta e a tolerância imunológica
A tendência ao desenvolvimento
Com esses dados, diminuem-se os riscos de patologias alérgicas, inflamatórias e autoimunes. A
composição do leite materno, afinal, inclui:
Proteínas
Gorduras
Carboidratos
Imunoglobulinas
Endocanabinóides
Polissacarídeos indigeríveis
Alguns desses polissacarídeos atuam como verdadeiros prebióticos capazes de estimular seletivamente
o crescimento de bactérias benéficas. A maioria deles é formada por bifidobactérias indispensáveis para
o fortalecimento da proteção da mucosa intestinal graças à sua atividade específica contra patógenos e
ao aumento da imunoglobulina A (relacionada à modulação do sistema imunológico intestinal).
Após o desmame, a composição da microbiota intestinal ainda varia em relação ao tipo de alimentação.
Contudo, após os três anos de vida, na ausência de distúrbios, como mudanças alimentares em longo
prazo ou o uso repetido de antibióticos e medicamentos, a composição bacteriana da microbiota
intestinal permanece relativamente estável até a velhice. Em geral, ao longo da vida, as bifidobactérias
diminuem, enquanto Bacteroidetes e Firmicutes aumentam.
MICROBIOTA INTESTINAL E O CÉREBRO
A existência de uma correlação próxima entre a microbiota intestinal e o cérebro tornou-se cada vez
mais evidente, embora os mecanismos envolvidos não sejam completamente claros: a existência de um
eixo intestino-cérebro tornou-se, assim, o principal foco da neurociência.
A evidência de que a disfunção da microbiota pode desempenhar um papel fundamental no
desenvolvimento de certas doenças neurológicas é fornecida pela descoberta de que a intervenção a
restaurar a saúde e a integridade da microbiota pode ter uma influência positiva no curso, nos sintomas
e nas condições clínicas dessas doenças. Essa é a principal razão pela qual o intestino é chamado de
"segundo cérebro".
 ATENÇÃO
Seria interessante considerar distúrbios neurológicos e patologias relacionadas à neurodegeneração não
como um fenômeno de “origem neural”, e sim como algo ligado a outros fatores externos – e a saúde da
microbiota intestinal pode ser um desses fatores.
O limite necessário para desencadear a disbiose depende muito dos grupos bacterianos afetados.
Mudanças amplas nos principais filos Bacteroidetes e Firmicutes podem permanecer sem
consequências patológicas, ao passo que quantidades aumentadas de grupos marginais têm o potencial
de causar grandes alterações na microbiota intestinal e na saúde dos indivíduos.
 
Imagem: Shutterstock.com
Enterobacteriaceae normalmente representam uma fração menor da microbiota intestinal.
As bactérias da família das Enterobacteriaceae podem se expandir rápido e consecutivamente em
relação às alterações nas condições oxidativas do intestino, como ocorre, por exemplo, durante uma
inflamação. Devido à pirogenicidade do lipopolissacarídeo (LPS) de Enterobacteriaceae, o crescimento
dessa família de bactérias geralmente intensifica uma resposta inflamatória contínua.
Além dos principais fatores introduzidos acima, parâmetros adicionais, como temperatura, pressão
atmosférica e pressão parcial de oxigênio, também influenciam a composição microbiana do intestino.
 EXEMPLO
A exposição de camundongos a uma temperatura baixa de 6°C aumentou os níveis de firmicutes intestinais
às custas de Bacteroidetes, enquanto a microbiota adaptada ao frio resultante aumentou o gasto de energia.
A abundância relativa de Firmicutes também foi aumentada em seres humanos que vivem em grandes
altitudes, embora o impacto da altitude sobre a microbiota possa ser difícil de distinguir dos efeitos
advindos de temperaturas ambientes mais baixas e diferentes hábitos alimentares.
 SAIBA MAIS
Um grupo de ratos embarcou em um voo espacial de 13 dias no ônibus espacial Atlantis, o que rendeu os
primeiros dados sobre a microbiota intestinal em microgravidade. A análise da composição microbiana
revelou apenas pequenas mudanças no nível do filo, embora tenha havido algumas variações em
Clostridiales e Lactobacillales no nível de ordem. O voo espacial também causou perda de peso corporal e
diminuição da ingestão de água. Isso significa que essas modificações também podem ser responsáveis
pelas alterações relatadas na microbiota intestinal.
NUTRIÇÃO
A dieta é o principal elemento que afeta a microbiota intestinal. Variações naturais na ingestão de
alimentos causam mudanças transitórias na composição microbiana, embora componentes
predominantes, como carne, peixe e fibras, tenham efeitos duradouros sobre a microbiota e deixem
assinaturas típicas caracterizadas por mudanças em grupos bacterianos específicos.
 
Foto: Shutterstock.com
A alteração da composição dos alimentos, bem como a escassez ou o excesso de oferta, afetam a
microbiota intestinal. A ausência de nutrientes no intestino durante a alimentação parenteral aumenta os
níveis de Proteobacteria, promovendo uma inflamação na parede da mucosa e eventualmente causando
uma quebra da barreira epitelial.O fornecimento excessivo de nutrientes leva à obesidade, que está associada à disbiose e aos
distúrbios metabólicos inflamatórios.
A OBESIDADE É CARACTERIZADA PELA
DIMINUIÇÃO DA DIVERSIDADE MICROBIANA E POR
UMA SOBRERREPRESENTAÇÃO DE FIRMICUTES EM
SERES HUMANOS OBESOS.
Uma proporção mais baixa de Bacteroidetes para Firmicutes resulta em uma maior liberação de LPS na
circulação. Já níveis mais altos de LPS contribuem para um estado de inflamação crônica de baixo grau
(o que ocorre na obesidade).
LPS
Fragmentos da membrana externa de bactérias Gram-negativas.
 EXEMPLO
Em camundongos, níveis elevados de LPS circulante iniciam o ganho de peso e aumentam os marcadores
de inflamação deles em uma extensão semelhante à de uma dieta rica em gordura.
A endotoxemia metabólica ainda é melhorada pelo aumento da permeabilidade da parede intestinal.
Ela tem como causa uma dieta rica em gordura/açúcar por meio dos níveis crescentes da Escherichia
coli invasiva aderente que se infiltra no epitélio intestinal, diminuindo, assim, a espessura do muco.
A dieta geralmente é uma combinação de proteínas, gorduras e carboidratos; portanto, o efeito isolado
de cada macronutriente na microbiota in vivo não é facilmente determinado. Contudo, como veremos
adiante, as dietas ricas em um ou dois desses tipos de alimentos fornecem pistas valiosas sobre suas
respectivas influências.
PROTEÍNAS
Em longo prazo, a alta absorção de proteínas animais, aminoácidos e gorduras aumenta as quantidades
relativas de Bacteroides, enquanto a baixa ingestão de proteínas e a elevada de carboidratos aumentam
os níveis de Prevotella. No entanto, surtos de ingestão de alta proteína em curto prazo não produzem
necessariamente os mesmos efeitos.
javascript:void(0)
javascript:void(0)
ENDOTOXEMIA METABÓLICA
é ocasionada pela alteração na permeabilidade da parede intestinal pela ação da LPS.
 
Foto: Shutterstock.com
 EXEMPLO
Em homens obesos, o consumo de uma dieta rica em proteínas não afetou a abundância de Bacteroides,
mas o grupo de bactérias Roseburia/Eubacterium rectale foi reduzido provavelmente devido à menor
ingestão de carboidratos. Em ratos, a alimentação com uma dieta proteica está associada a menores teores
de Clostridium e Faecalibacterium prausnitzii, enquanto os Bacteroides não aumentam paralelamente.
Enquanto as mudanças microbianas induzidas pelo alto consumo de proteínas são moderadas, as que
ocorrem nos produtos de fermentação são mais evidentes. Uma dieta rica em proteínas aumenta a
produção de:
Ácidos graxos de cadeia ramificada
Substâncias potencialmente tóxicas, como sulfeto, amônia e compostos N-nitrosos
Com uma ingestão alimentar excessiva de proteínas e aminoácidos, também é registrado um aumento
da síntese de óxido nítrico (NO). Esse produto antimicrobiano influencia fortemente a microbiota
intestinal, enquanto os níveis aumentados de NO medidos em pacientes obesos provavelmente
contribuem para o desenvolvimento de uma microbiota associada à obesidade.
GORDURAS
Uma alta ingestão de gordura induz mudanças notáveis na composição da microbiota intestinal. A
diversidade geral diminui com a abundância relativa de Bacteroidetes, enquanto a relativa de Firmicutes
aumenta. Mesmo certas características estruturais, como o grau de saturação de ácidos graxos, marcam
a microbiota.
 EXEMPLO
Alimentar ratos com gorduras insaturadas aumentou o contingente de Actinobactérias, bactérias do ácido
láctico e Akkermansia muciniphila, criando uma composição microbiana que protegia do ganho de peso e da
inflamação do tecido adiposo branco. Curiosamente, alimentá-los com gordura saturada resultou em uma
maior produção de LPS e mais ativação do TLR4 e TLR2 do que com gordura insaturada.
 
Foto: Shutterstock.com
A dieta rica em gordura também exerce indiretamente uma influência na microbiota intestinal,
aumentando o pool de ácidos biliares. Após a emulsificação dos lipídios da dieta, a maioria dos ácidos
biliares é reabsorvida no íleo distal.
Os ácidos biliares não absorvidos influenciam fortemente o crescimento microbiano, criando um
ambiente de baixo pH e de forte atividade antimicrobiana. Considerando o efeito estimulador da dieta
rica em gordura sobre esses ácidos no intestino grosso em camundongos, pode-se dizer que eles
provavelmente contribuem para o impacto da alta ingestão de gordura na disbiose relacionada à
obesidade.
Os ácidos biliares são moléculas sinalizadoras de ligação a dois receptores:
FARNESOIDE X DO HORMÔNIO NUCLEAR (FXR)
A ligação com o FXR não apenas regula a síntese de ácidos biliares, mas também influencia a
homeostase de lipídios, glicose e energia. No fígado, o FXR inibe a indução da proteína de ligação ao
elemento regulador de esterol SREBP1c, inibindo, assim, a lipogênese e diminuindo o risco de
esteatose.
DE ÁCIDO BILIAR ACOPLADO À PROTEÍNA G (TGR5)
A sinalização de TGR5 induz a produção de peptídeo semelhante ao GLP-1 no intestino, o que melhora
a sensibilidade à insulina. Ao aumentar a atividade mitocondrial no tecido adiposo marrom e a
fosforilação oxidativa no músculo, a ativação do TGR5 também eleva o gasto de energia.
As bactérias intestinais regulam a sinalização do receptor do ácido biliar, convertendo os ácidos biliares
primários em secundários com diferentes afinidades de ligação. As bactérias do filo Firmicutes se
destacam pela atividade de 7α-desidroxilação para transformar o ácido cólico e quenodeoxicólico em
ácidos desoxicólico e litocólico (ambos têm uma afinidade de ligação inferior para FXR e uma maior para
TGR5).
FIBRAS
As fibras têm efeito direto sobre a microbiota, atingindo o cólon devido à sua indigestibilidade e
alimentando a fermentação microbiana. Uma dieta rica em polissacarídeos vegetais promove o
crescimento de Bacteroidetes sobre Firmicutes.
Curiosamente, uma microbiota intestinal com uma proporção aumentada de Firmicutes para
Bacteroidetes tem uma maior capacidade de extrair energia da dieta. Ao fornecer mais enzimas para a
quebra dos polissacarídeos dietéticos, ela aumenta a absorção de monossacarídeos e ácidos graxos de
cadeia curta (AGCC) pela mucosa intestinal. Esse processo maximiza a utilização de nutrientes, mas, no
caso de um excesso de fornecimento de alimentos, também faz isso com o armazenamento de energia.
 
Foto: Shutterstock.com
Monossacarídeos liberados por micro-organismos são transferidos para o fígado através da veia porta e
ativam a proteína de ligação do elemento de resposta a carboidratos. Isso leva ao aumento da
transcrição de vários genes envolvidos na lipogênese hepática de novo e, com isso, da transferência de
lipídeos para os depósitos de gordura em tecidos periféricos.
O aumento da absorção intestinal de butirato, acetato e propionato de SCFA fornece energia adicional
para diversos tecidos. Usado principalmente pelos colonócitos, o butirato estimula sua proliferação e
diferenciação. Já o acetato alimenta a lipogênese nos tecidos periféricos, especialmente nos músculos,
enquanto o propionato entra na gliconeogênese pelo fígado.
Uma maior produção de SCFA pela microbiota associada à obesidade pode ser um fator que contribui
para a maior deposição de triglicerídeos nos tecidos adiposos, bem como no fígado. Além de sua
contribuição calórica, os SCFA ativam as vias metabólicas, agindo como ligantes para os seguintes
receptores acoplados à proteína G (GPCRs): GPR41 e GPR43 (também conhecidos como receptores
de ácidos graxos livres 3 e 2).
A ativação de GPR41 e GPR43 está associada à expansão do tecido adiposo e aos processos
inflamatórios, embora o resultado dessa ativação como protetor ou causador permaneça obscuro. Essa
ativação também eleva os níveis de leptina nos adipócitos, o que resulta no aumento da sensibilidade à
insulina e em uma maior saciedade.
A sinalização GPR43 nas células L intestinais aumenta a produção de GLP-1, que melhora a tolerância
à glicose. Acetato e propionato são os principais ligantes que ativam a GPR43 no tecido adiposo enas
células imunes, pois o butirato serve principalmente como fonte de energia para os colonócitos,
enquanto quantidades relativamente pequenas atingem a periferia.
Na disbiose relacionada à obesidade, os perfis de AGCC mudam de forma consecutiva quanto à
diminuição da proporção entre Bacteroidetes, produzindo grandes quantidades de acetato e propionato,
e Firmicutes, que produz principalmente butirato. Portanto, a diminuição da produção de acetato e
propionato pela microbiota provavelmente reduz a sinalização de GPR43.
Resta a seguinte questão: uma microbiota equilibrada pode ser restaurada por meio da
suplementação de prebióticos e probióticos?
PREBIÓTICOS
Os prebióticos a modulam diretamente, o que acarreta a redução da permeabilidade intestinal e a
endotoxemia, reduzindo, assim, a inflamação.
Essas mudanças estão associadas a níveis mais elevados de GLP-2, o que reduz a permeabilidade
intestinal. Uma ingestão da oligofrutose (prebiótico) desloca a composição da flora intestinal para um
padrão não obeso, aumentando Bacteroides e reduzindo Firmicutes tanto em ratos ob/ob quanto
naqueles geneticamente propensos ao desenvolvimento de obesidade e resistência à insulina.
PROBIÓTICOS
Os probióticos que induzem a secreção ou diminuem a supressão do fator IV semelhante à
angiopoietina (ANGPTL4, também conhecido como fator adiposo induzido pelo jejum) têm um efeito
benéfico no metabolismo lipídico dos adipócitos. A ANGPTL4 inibe a lipase de lipoproteína (LPL), que é
responsável por hidrolisar triglicerídeos de LPLs para a absorção de ácidos graxos na célula.
Camundongos livres de germes deficientes em ANGPTL4 perdem sua proteção contra a obesidade
induzida por dieta. A suplementação deles com o probiótico Lactobacillus paracasei aumenta os níveis
circulantes de ANGPTL4 e reduz sua gordura corporal.
A Akkermansia muciniphila é outra espécie que provou ser capaz de reduzir a obesidade quando
suplementada em camundongos. Embora essa espécie possa causar um aumento da gravidade em
modelos de colite, ela tem um efeito protetor em camundongos obesos ao engrossar sua camada de
muco, diminuindo, com isso, a permeabilidade intestinal e a endotoxemia, além de prevenir uma
inflamação.
CARBOIDRATOS
O processamento de polissacarídeos vegetais complexos, como pectinas, xilanos e frutanos, requer
uma bateria de endo e exoglicosidases com atividades capazes de liberar monossacarídeos como a
Ramnose, ácido galacturônico, arabinose, xilose, frutose e glicose.
Em contraste, a utilização de glicanos da mucina intestinal requer diferentes atividades. Elas consistem
em:
GALACTOSIDASES
N-ACETILGLUCOSAMINIDASES
N-ACETILGALACTOSAMINIDASES
FUCOSIDASES
SIALIDASES
As diferenças estruturais entre os carboidratos dietéticos e os glicanos intestinais, além da
correspondente necessidade de diferentes mecanismos de processamento, levaram as bactérias a se
especializarem na utilização de subconjuntos limitados de carboidratos.
O processamento de carboidratos complexos frequentemente depende de ações cooperativas entre
táxons bacterianos distintos. Além de permitirem interações mutualísticas, a clivagem desses
carboidratos e a liberação de monossacarídeos no lúmen intestinal também geram oportunidades para
as bactérias, já que elas carecem de enzimas de processamento de carboidratos.
 
Imagem: Shutterstock.com
A E. coli não expressa nenhuma glicosidase capaz de degradar carboidratos complexos, mas é uma
consumidora ávida dos monossacarídeos N-acetilglucosamina, ácido N-acetilneuramínico (Neu5Ac) e
fucose. Consequentemente, a E. coli intestinal e outras Enterobacteriaceae respondem à presença de
monossacarídeos específicos, aumentando a proliferação e alterando a expressão de fatores de
virulência.
A capacidade de clivar o ácido siálico, como o Neu5Ac e o ácido N-glicolilneuramínico (Neu5Gc), é
restrita a um número limitado de taxa bacteriana. Os agrupamentos de genes NAN codifica sialidases,
enquanto os transportadores e as enzimas catabólicas permitem a liberação de ácido siálico de glicanos
intestinais e sua utilização como fonte de carbono.
Algumas espécies de Bacteroides, como Bacteroides fragilis, expressam agrupamentos NAN totalmente
operacionais. Já outras, como Bacteroides thetaiotaomicron, expressam apenas sialidases, mas
carecem de transportadores que possam mediar a captação de ácido siálico livre.
 
Imagem: Shutterstock.com
 Bacteroides fragilis
O ácido siálico liberado dessa forma é acessado por outras bactérias que expressam transportadores
possibilitando a captação do açúcar. Esse tipo de alimentação cruzada se trata de um mecanismo
comum que prevalece no ambiente intestinal.
Monossacarídeos liberados de glicanos intestinais podem, portanto, ser utilizados por bactérias
desprovidas de glicosidases e mediar uma forte resposta de proliferação, levando, assim, à disbiose. O
tratamento com antibióticos demonstrou perturbar a microbiota e levar ao aumento da liberação de ácido
siálico, que é responsável por alimentar a expansão dos patógenos Salmonella enterica sorovar,
Typhimurium e Clostridium difficile em um modelo de camundongo.
Da mesma forma, o crescimento de E. coli e a exacerbação da inflamação intestinal que ocorre após a
ingestão de sulfato de dextrana de sódio dependem da liberação de ácido siálico de glicanos sialilados
ligados a α2,3 intestinais.
 
Imagem: Adaptada de WEISS, 2017 p. 2959.
 Consequências do desequilíbrio nutricionalmente induzido entre Firmicutes e Bacteroidetes.
A obesidade, a alta ingestão de gordura e açúcar na dieta e um aumento do pool de ácidos biliares
diminuem a proporção de Bacteroidetes para Firmicutes. Mudanças nessa proporção afetam a
inflamação crônica e as mudanças metabólicas relacionadas:
Ao suprimento de energia aos colonócitos
À lipogênese
À gliconeogênese
À sensibilidade à insulina
À tolerância à glicose
São mediadores-chave de tais adaptações metabólicas:
LPS bacteriano (a)
Ácido graxo de cadeia curta (SCFA) (b)
Aumento da captação de monossacarídeo (c)
Metabolismo biliar secundário (d)
Como já destacamos, o que comemos também fornece nutrientes para o metabolismo microbiano
intestinal. Desse modo, uma visão mais global do metabolismo vem evoluindo. Ela combina os seguintes
aspectos:
Microbiota intestinal.
Transformações metabólicas do hospedeiro que contribuem para o nosso metabolismo geral.
Variações interindividuais nos perfis metabólicos.
A MICROBIOTA INTESTINAL SERVE COMO UM
FILTRO DE NOSSA MAIOR EXPOSIÇÃO AMBIENTAL,
OU SEJA, O QUE COMEMOS.
Em virtude do fato de que numerosos metabólitos gerados pela microbiota intestinal são biologicamente
ativos e afetam os fenótipos do hospedeiro, o microbioma intestinal também funciona como um órgão
endócrino importante que responde à ingestão alimentar.
Esse microbioma se comunica com órgãos distais no hospedeiro por intermédio de vias complexas,
como a via dos metabólitos gerados pela microbiota intestinal. Ele tem mostrado um impacto em
fenótipos relevantes para doenças cardiovasculares (DCV), variando de inflamação.
Imagem: Extraída de MORAES et al., 2014, p. 317.
 Mecanismos envolvidos na relação entre microbiota intestinal e doenças metabólicas.
MECANISMOS DA RELAÇÃO MICROBIOTA
INTESTINAL E DOENÇAS METABÓLICAS
FATOR ADIPOSO INDUZIDO POR JEJUM (FIAF)
O fasting induced adipose factor (FIAF) é um inibidor da LPL produzido pelo intestino, fígado e tecido
adiposo. Quando suprimido pela ação da microbiota intestinal, ocorre um aumento da atividade da LPL
que determina então a maior absorção de ácidos graxos e o acúmulo de triglicerídeos nos adipócitos.
 COMENTÁRIO
As investigações em animais de FIAF-deficientes mostraram que, quando alimentados com dieta ocidental,
eles ganharam mais peso corporal que os FIAF+/+ wild-type, apresentando ainda maiores concentrações de
leptina e insulina.
MONOFOSFATO-ADENOSINA PROTEÍNA QUINASE ATIVADA
(AMP-Q)
O segundo mecanismo proposto envolve a inibição da via da 5’-monofosfato-adenosinaproteína
quinase, uma enzima ativada pela adenosina monofosfato (AMP), a qual, por sua vez, regula o
metabolismo energético celular. Quando inibida, essa enzima ativa processos anabólicos e bloqueia
catabólicos.
Há evidências de que a AMP-Q desempenha um importante papel na regulação do metabolismo de
ácidos graxos e da glicose, assim como na regulação do apetite.
 EXEMPLO
Observou-se que camundongos germ-free, mesmo com uma dieta hipercalórica, mantiveram peso. Esse fato
foi atribuído à elevação da atividade da AMP-Q no fígado e no músculo esquelético e à maior oxidação de
ácidos graxos, melhorando a sensibilidade à insulina.
Esses pontos sugerem que a presença da microbiota pode suprimir a oxidação de ácidos graxos
muscular graças a mecanismos que envolvem a inibição da AMP-Q, favorecendo, portanto, a
adiposidade corporal e reação de resistência insulínica.
EIXO CÉREBRO-INTESTINAL
Esse mecanismo diz respeito à sensibilidade do epitélio intestinal a produtos bacterianos. A literatura
atual refere-se ao impacto que a microbiota intestinal pode exercer no comportamento alimentar e no
sistema nervoso central (SNC), influenciando a regulação central da saciedade.
 
Imagem: Shutterstock.com
O intestino humano é capaz de digerir fibras dietéticas devido, em grande parte, à síntese de enzimas
ocorrida pela microbiota, o que permite a metabolização de polissacarídeos não digeríveis em
monossacarídeos e AGCC – principalmente acetato, propionato e butirato.
Esses AGCC representam uma importante fonte de energia, favorecendo, assim, a adiposidade
corporal. Eles ainda se difundem pelas células de forma passiva ou por transportadores da via do ácido
monocarboxílico, podendo atuar como sinalizadores celulares.
Também existem outros efeitos indiretos que podem influenciar a motilidade intestinal e a produção de
hormônios intestinais, apresentando um papel na regulação da saciedade. Os AGCC possuem a
capacidade de se ligar a estes dois GPCRs:
GPR41
GPR43
Atualmente chamados de receptores de ácidos graxos livres (FFAR), esses receptores –
especificamente FFAR2 e FFAR3 – são expressos pelas células do epitélio intestinal em células
enteroendócrinas (EEC) L.
As EEC L são produtoras do peptídeo YY (PYY). Esse hormônio age ao:
Inibir a secreção gástrica, o esvaziamento gástrico e a contração da vesícula biliar.
Reduzir o tempo de trânsito gastrointestinal.
Dessa forma, ao serem ativados, esses receptores aumentam a produção de PYY, fato que favorece a
redução da motilidade intestinal e propicia uma maior absorção de nutrientes do lúmen intestinal – em
especial dos AGCC, que são substratos para a lipogênese no fígado. Da mesma maneira, o PYY realiza
suas funções hormonais no SNC ao inibir neurônios orexígenos do núcleo arqueado, induzindo, assim, a
saciedade.
Nesse contexto, camundongos Gpr41-/-, com ou sem flora intestinal, apresentaram menor peso que
camundongos Gpr41+/+, apesar do mesmo consumo alimentar. Sugere-se que a Gpr41-/- esteja
associada com a menor produção de PYY e a maior velocidade de trânsito intestinal, o que reduz a
absorção de nutrientes (AGCC). A expressão de GPR43 parece não estar envolvida na diferenciação do
tecido adiposo, mas está possivelmente relacionada a processos inflamatórios associados ao TNF-α.
 SAIBA MAIS
Estudos realizados com prebióticos indicaram uma maior produção intestinal de AGCC sendo associada ao
aumento da saciedade e à consequente redução da ingestão alimentar. Esses efeitos, em parte, relacionam-
se ao aumento de GLP-1 (melhora da resposta glicêmica e insulinêmica), GLP-2 (redução da inflamação) e
PYY, os quais, em conjunto com a redução da grelina, ocasionam efeitos hipotalâmicos relacionados ao
mecanismo de recompensa.
O sistema endocanabinoide está envolvido em vários processos fisiológicos, como apetite, motilidade
intestinal, homeostase da glicose, função da barreira intestinal e modulação da resposta inflamatória.
Essa interação entre os peptídeos estimulados pela microbiota intestinal e o sistema endocanabinoide
pode estar envolvida no controle da permeabilidade intestinal e da endotoxemia metabólica na
obesidade.
LIPOPOLISSACARÍDEOS
As concentrações plasmáticas de LPS sofrem uma significativa influência da microbiota intestinal –
especialmente as bactérias Gram-negativas. Afinal, elas apresentam em sua superfície celular os LPS;
funcionando como antígenos, eles estimulam a resposta imune do hospedeiro.
A microbiota intestinal representa, assim, um grande depósito dessa endotoxina – principalmente em
indivíduos cuja dieta tem um alto teor de gorduras. Esse padrão dietético pode afetar a permeabilidade
intestinal por meio da secreção de mediadores, como o fator de necrose tumoral alfa (TNF-a), IL-1β, IL-4
e IL-13, bem como por intermédio de PAR-2 (receptor ativado por protease-2), que favorece a
translocação de LPS para circulação.
A identificação dos TLRs permite o entendimento sobre como nosso organismo reconhece antígenos
(como o LPS) e de que maneira ocorrem as reações pró-inflamatórias e os distúrbios metabólicos.
Essas anormalidades não estão presentes em animais knockout para esse tipo de receptor.
Vários TRLs (TRL 1, 3, 5, 6, 7, 9 e 10) têm sido descritos como mecanismos para gerar inflamação e
resistência à insulina, destacando-se especialmente as descobertas relativas a TRL2, TRL4 e TLR5.
Muitas evidências mostram que os LPS induzem inflamação e resistência à insulina.
Essas anormalidades são desencadeadas, em parte, pela ligação dos LPS ao complexo CD14 e ao
TLR4 das células imunes inatas, funcionando como gatilho para a síntese de citocinas pró-inflamatórias
não apenas pelas células do sistema imune, mas também pelo tecido adiposo, promovendo, com isso,
uma endotoxemia metabólica.
Associadas à ingestão de dietas ricas em gorduras, grandes concentrações circulantes de LPS podem
desencadear uma inflamação subclínica crônica, que participa na gênese da obesidade, do DM2 e de
outras doenças. Vários TLRs respondem às estruturas bacterianas; uma vez ativados, eles podem
induzir ou atenuar a resistência à insulina.
 ATENÇÃO
Tomadas em conjunto, as descobertas sobre os mecanismos de ação da microbiota sugerem que esse
ecossistema pode contribuir diretamente para o metabolismo do hospedeiro, afetando a homeostase
energética, modificando as atividades enteroendócrinas e contribuindo ainda para a inflamação crônica
subclínica via sinalizações celulares pró-inflamatórias.
No entanto, outros mecanismos moleculares devem estar envolvidos na modulação da microbiota
intestinal. De todos os fatores exógenos capazes de alterar a composição dela, nenhum é mais severo
do que os causados pelos antibióticos.
Esses fármacos têm sido empregados até em investigações experimentais sobre o papel da microbiota
na geração de inflamação e resistência à insulina, além de defeitos básicos em doenças, como a
obesidade e o Diabetes mellitus tipo 2 (DM2). Contudo, a modulação da microbiota por meio da dieta
talvez seja a forma mais simples, fisiológica, eficaz e de maior adesão para se obter modificações no
perfil de risco cardiometabólico.
COMUNICAÇÃO MICROBIOTA-CÉREBRO
A literatura científica recente destacou a estreita correlação existente entre a microbiota intestinal e o
desenvolvimento do cérebro, bem como uma correspondência entre a alteração da microbiota intestinal
e o aparecimento de algumas patologias neurológicas.
 EXEMPLO
Ansiedade, depressão, doença de Parkinson (DP), doença de Alzheimer (AD), esclerose múltipla, isquemia
cerebral e transtorno do espectro autista (ASD).
Com base nessas descobertas científicas, fica claro que qualquer forma de disbiose intestinal é capaz
de favorecer o desenvolvimento de doenças neurológicas. Por isso mesmo, é fundamental conhecer e
compreender os instrumentos de diálogo que existem entre o intestino e o cérebro.
O intestino pode interagir com o cérebro por meio de comunicação direta. Os três principais
mecanismos são:
Sistemanervoso entérico (ENS).
EEC do intestino.
Neurotransmissores produzidos pela microbiota intestinal.
Descreveremos esses três mecanismos e alguns outros a seguir:
Sistema nervoso entérico
 
Imagem: Shutterstock.com
Aspectos funcionais do GI, como movimentos peristálticos, o transporte de substâncias e o fluxo local de
sangue, são regulados por uma rede de gânglios neuronais conhecida como ENS. Sabe-se que os
neurônios do ENS se comunicam utilizando a mesma “linguagem” do SNC.
O ENS consiste em dois plexos ganglionares compostos de neurônios e glias que regulam uma
variedade de funções gastrointestinais e são essenciais para a vida. Localizados entre as camadas do
GI, esses plexos são caracterizados por cerca de 20 subtipos de neurônios que se diferenciam pela
expressão de vários neuropeptídios.
O ENS compartilha muitos recursos com o cérebro, incluindo a produção de neurotransmissores
utilizados para a transmissão sináptica, os recursos ultraestruturais presentes na interação neurônio-glia
e os programas transcricionais. Ele é capaz de operar independentemente do cérebro e da medula
espinhal, mas, em indivíduos saudáveis, funciona em colaboração tanto com ambos quanto com as
informações dos sistemas vagal, simpático e parassimpático. Isso serve para regular muitas funções
gastrointestinais, como a motilidade.
Essa conversa cruzada direta torna o ENS um alvo importante para a patogênese de muitos distúrbios
neurológicos. Sua disfunção está relacionada a distúrbios gastrointestinais, incluindo a constipação
severa, a anorexia e a gastroparesia.
Tais sintomas são comuns em pacientes com doenças neurológicas. O eixo hipotálamo-hipófise-adrenal
interage com as células do epitélio intestinal por meio do nervo vago.
 SAIBA MAIS
Alguns estudos pré-clínicos demonstraram que o nervo vago desempenha um papel central na comunicação
neural entre os micróbios do intestino e os efeitos comportamentais mediados centralmente. Em particular,
após uma vagotomia realizada na infância, os indivíduos analisados tiveram um risco menor de desenvolver
distúrbios neurológicos.
A estimulação do nervo vago, que é um tratamento médico usado para tratar a epilepsia e outras
condições neurológicas, se trata da aplicação de impulsos elétricos apropriados ao nervo. Supõe-se que
esses impulsos exerçam uma ação antiepiléptica, antidepressiva e anti-inflamatória, alterando a
excitabilidade do nervo nas células envolvidas.
Uma estreita correlação entre o ENS e a microbiota foi demonstrada pelo número reduzido de neurônios
entéricos e pela motilidade intestinal observada em camundongos GF. Além disso, experimentos
importantes mostraram uma excitabilidade intrinsecamente atenuada em neurônios primários aferentes
e – apesar do desenvolvimento e do influxo contínuo de ENS – uma mucosa intestinal defeituosa nesses
camundongos.
Com a administração da microbiota convencional, a recuperação dos camundongos GF normaliza a
densidade e a fisiologia do ENS no intestino. Cada micro-organismo pode ter um efeito diferente no
ENS: algumas bactérias comensais podem ter um efeito local interagindo com o ENS, enquanto as
patogênicas se beneficiam dele, criando um ambiente mais adequado para seu crescimento e
vantajoso para seus efeitos.
O controle exercido pela microbiota intestinal ocorre por meio do nervo vago e do ENS. Exemplos
clássicos são fornecidos pela bactéria Lactobacillus rhamnosus, que pode modular o comportamento
ansioso, e pela Bifidobacterium longum NCC3001, que exerce efeitos ansiolíticos. Foi demonstrado em
ratos que esses efeitos são perdidos após a vagotomia.
A microbiota suporta a ENS formada no nascimento e participa de sua homeostase ao longo da vida
adulta. Na verdade, em camundongos GF, verificou-se que o ENS é altamente comprometido –
especialmente nas áreas onde as bactérias são normalmente encontradas.
Evidências crescentes mostram que algumas doenças neurodegenerativas, como a DP, podem se
originar no intestino e se espalhar para o cérebro através do nervo vago. A possibilidade de uma estreita
correlação entre a disfunção do ENS e da microbiota e as doenças do SNC tem sido considerada, ainda
que essa hipótese deva ser mais bem analisada e aprofundada.
NEUROTRANSMISSORES PRODUZIDOS PELA MICROBIOTA
INTESTINAL
A microbiota intestinal é capaz de sintetizar muitos neurotransmissores, como a dopamina, a serotonina,
a norepinefrina e os ácidos δ-amino butíricos (GABA), que também exercem os próprios efeitos no
cérebro.
A Bifidobacterium infantis, por exemplo, se mostrou capaz de elevar os níveis de triptofano no plasma
sanguíneo e, assim, influenciar a transmissão central da serotonina.
 
Imagem: Shutterstock.com
Veremos a seguir outras possibilidades de produção:
Lactobacillus e Bifidobacterium: GABA.
Escherichia, Bacillus e Saccharomyces spp.: Noradrenalina.
Candida, Streptococcus, Escherichia e Enterococcus spp.: Serotonina.
Bacilo: Dopamina.
Lactobacillus: Acetilcolina.
Esses neurotransmissores podem atravessar a camada mucosa do intestino e entrar na corrente
sanguínea, porém não conseguem cruzar a barreira hematoencefálica. O impacto na função cerebral,
portanto, poderia ser indireto por ação no ENS.
Incluindo butirato, propionato e acetato, os SCFAs são produtos metabólicos essenciais da atividade
microbiana intestinal que podem afetar o cérebro, o equilíbrio de energia e o metabolismo. Além disso,
os AGCC têm propriedades neuroativas.
 EXEMPLO
Altas doses de propionato em ratos jovens induziram uma resposta neuroinflamatória e alterações
comportamentais, enquanto o butirato reduziu o comportamento depressivo, exercendo efeito sobre o SNC.
Até o momento, sabe-se que os SCFAs atuam preferencialmente como moduladores epigenéticos por
intermédio das histonas desacetilases. O eixo intestino-cérebro tem outra via de sinalização que envolve
a imunidade por meio de citocinas. Produzidas no intestino, as citoninas podem fluir para a corrente
sanguínea e, sob condições alteradas, afetar áreas do cérebro, como o hipotálamo.
INTERVENÇÕES PROBIÓTICAS E DIETÉTICAS
As percepções obtidas da microbiota intestinal e suas vias metabólicas associadas forneceram uma
oportunidade para se explorar o papel contributivo dessa microbiota na geração da variabilidade das
respostas fisiológicas aos nutrientes da dieta.
Aproveitando a capacidade de monitorar níveis contínuos de glicose, um padrão glicêmico
individualizado emerge quando há informações dietéticas cuidadosamente selecionadas com algoritmos
de aprendizado de máquina baseados em informações metagenômicas.
 
Foto: Shutterstock.com
 COMENTÁRIO
Medindo as respostas do microbioma em mais de 800 pessoas mediante o uso de 16S rRNA e perfil
metagenômico shotgun a fim de avaliar respectivamente a taxonomia e a função, adequar a ingestão
alimentar ao microbioma intestinal de um indivíduo pode minimizar o aumento de glicose pós-prandial. Esses
resultados ressaltam como os conselhos e/ou as intervenções alimentares têm potencial para serem
adaptados individualmente a cada pessoa dada a grande variação na resposta da glicose pós-prandial a
alimentos tradicionalmente “ruins” e “bons”.
Teoricamente, a modulação direta da composição microbiana tem o potencial de restaurar comunidades
microbianas saudáveis e de promover a saúde cardiovascular. Em um modelo de infarto do miocárdio do
rato, a administração de antibióticos de amplo espectro foi associada às mudanças nos níveis de leptina
e catabólitos de aminoácidos aromáticos, bem como à redução nos tamanhos de infarto.
Além disso, a administração de Lactobacillus plantarum ou Lactobacillus rhamnosus GR-1 foi associada
à atenuação da remodelação cardíaca pós-infarto em ratos. Micróbios de origem alimentar colonizam os
intestinos de maneira apenas transitória.
Estudos em humanos não estabeleceram se os probióticos e os prebióticos são capazes de influenciar
diretamente as distribuições microbianas globais. Embora existam vários relatos de efeitosde redução
de lipídios e pressão arterial com probióticos, os estudos de intervenção em humanos mostrando sua
eficácia são limitados. Por isso, não existem atualmente recomendações clínicas para sua prescrição.
METABÓLITOS MICROBIANOS: MODULADORES
FISIOLÓGICOS
Um papel fundamental para a microbiota intestinal é apoiar as funções fisiológicas diárias na digestão
dos alimentos por meio de vários processos de fermentação em resposta à ingestão alimentar de
substratos.
 ATENÇÃO
Alguns metabólitos podem até ser absorvidos diretamente na circulação do hospedeiro e servir como
“hormônios” para órgãos distantes como locais de ação. Outros podem ser posteriormente metabolizados por
enzimas hospedeiras semelhantes aos “pró-hormônios”, servindo como mediadores a jusante ou moléculas
de sinalização.
É provável que a maioria dos metabólitos gerados por micróbios possa fornecer efeitos sinérgicos que
promovem a saúde. No entanto, os metabólitos tóxicos também podem se acumular. Isso é
especialmente possível em dois casos:
As espécies patogênicas estão colonizando.
Os mecanismos normais de depuração do hospedeiro (por exemplo, função renal) desses
metabólitos estão comprometidos.
A detecção desse “metaboloma alimentar” oferece uma oportunidade única para se obter informações
não apenas sobre a qualidade e a quantidade da ingestão de alimentos, mas também sobre as
consequências funcionais como um resultado do complexo metabolismo microbiano-hospedeiro.
ÁCIDOS GRAXOS DE CADEIA CURTA: EFEITOS
FISIOLÓGICOS
A fermentação anaeróbica de nutrientes não digeridos, como o amido resistente, a fibra dietética e
vários polissacarídeos complexos, produz ácidos graxos que variam de uma a seis cadeias de carbono
comumente referidas como AGCC.
ACETATO, PROPIONATO E BUTIRATO SÃO
ABSORVIDOS ATIVA E PASSIVAMENTE NO EPITÉLIO
COLÔNICO PARA A VEIA PORTA.
Enquanto fornecem de 5 a 10% da fonte de energia para o hospedeiro humano, os AGCCs servem
como moléculas de sinalização, incluindo a modulação dos sistemas autônomos e da pressão arterial
sistêmica, bem como as respostas inflamatórias e outras funções celulares.
Os AGCCs exibem uma ampla gama de funções fisiológicas. Apontaremos algumas delas a seguir:
Inibição de histonas desacetilases (HDACS)
Quimiotaxia e modulação de fagocitose
Indução de espécies reativas de oxigênio
Proliferação celular
Alteração da integridade da barreira intestinal
 
Foto: Shutterstock.com
 ATENÇÃO
Pacientes com Diabetes mellitus tipo 2 (DM2) têm menos abundância de bactérias produtoras de butirato e
mais Lactobacillus spp.
De fato, os AGCCs, em particular o butirato, podem servir como substratos energéticos para as células
epiteliais do intestino. Além disso, o tratamento com a vancomicina reduz a abundância de bactérias
produtoras dele em pacientes com síndrome metabólica, destacando seu importante papel na
manutenção da sensibilidade à insulina.
Demonstrações recentes também revelaram que os AGCCs podem ativar diretamente GPCRs distintos.
O receptor de proteína G41 (GPR41) e o olfativo 78 (Olfr78) são alguns dos GPCR identificados, a partir
de estudos genéticos e de modelos de camundongos, para a interação com AGCCs.
Em particular, o Olfr78 é altamente expresso no aparelho renal justaglomerular, local em que ele medeia
a secreção de renina em resposta a SCFAs. Além disso, tanto o Olfr78 quanto o GPR41 são expressos
em células musculares lisas de pequenos vasos de resistência nos quais medeiam diferencialmente o
tônus vascular.
Curiosamente, os camundongos knock-out para o Olfr78 são hipotensos, enquanto os para o GPR41
são hipertensos. Isso implica que essas vias podem constituir ligações fisiologicamente importantes
entre os SCFAs e o controle da pressão sanguínea do hospedeiro. O propionato de AGCC de três
carbonos pode estimular o Olfr78 a aumentar a pressão arterial, enquanto a estimulação da GPR41 tem
o potencial de diminuir a pressão arterial.
O papel obrigatório da microbiota intestinal na geração de AGCCs foi demonstrado pelo tratamento com
antibióticos que aumentou a pressão arterial em camundongos knockout para o Olfr78, apoiando ainda
mais o envolvimento desses receptores no controle da pressão arterial.
Estudos recentes em animais demonstraram que AGCCs derivados da microbiota intestinal são críticos
para a resposta imune do hospedeiro e a capacidade de reparo cardíaco após o infarto do miocárdio em
um modelo de camundongo com ou sem antibióticos. No entanto, a demonstração direta de tais
efeitos nas DCV humanas permanece limitada.
E6. ÁCIDOS BILIARES E MODULAÇÃO MICROBIANA:
EFEITOS FISIOLÓGICOS
Os ácidos biliares facilitam a absorção da gordura da dieta e das moléculas solúveis em gordura. Vários
desses ácidos podem regular o metabolismo de energia graças à ativação de receptores nucleares,
como o receptor 1 de ácido biliar acoplado à proteína G (TGR5) e o receptor farnesóide X (FXR).
O FXR intestinal parece regular o colesterol hepático 7α-hidroxilase (CYP7A1), uma enzima que limita a
velocidade da síntese de ácido biliar, por meio de um mecanismo dependente do fator de crescimento
de fibroblastos 15 (FGF-15/19). Desse modo, os humanos produzem um grande pool de ácido biliar
hidrofílico conjugado, sendo ele mantido graças ao antagonismo de feedback positivo de FXR no
intestino e no fígado.
Enquanto isso, por intermédio da hidrólise de sais biliares e da 7α-desidroxilação do ácido biliar, a
microbiota intestinal é capaz de produzir hormônios de ácidos biliares secundários que afetam a
fisiologia do hospedeiro por agonismo de FXR no intestino e no fígado, resultando, assim, em um pool
de ácido biliar hidrofóbico não conjugado menor.
Curiosamente, os ácidos biliares, como o ácido desoxicólico, podem servir como um agente
antimicrobiano direto devido à sua hidrofobicidade e às propriedades detergentes nas membranas
bacterianas. Portanto, existe um equilíbrio dinâmico entre o tamanho e a composição do pool dieta-
microbioma intestinal-ácido biliar.
A hidrofilicidade do pool de ácidos biliares pode estar associada aos estados de doença, enquanto os
níveis reduzidos desses ácidos no intestino podem estar ao crescimento excessivo de bactérias e
inflamação.
 COMENTÁRIO
Análogo semissintético do ácido biliar e um potente agonista FXR recentemente aprovado para o tratamento
da esteatohepatite não alcoólica, o ácido obeticólico pode reduzir a translocação bacteriana e a inflamação
intestinal.
E7. MODULAÇÃO DIETÉTICA DE AGCC
As muitas ligações entre a comunidade microbiana intestinal alterada, os metabólitos e a suscetibilidade
para DCV e doenças metabólicas colocaram um holofote no microbioma intestinal como um novo alvo
potencial para a terapêutica. Atualmente, a modulação da dieta é a principal ferramenta terapêutica
utilizada na prática clínica para impactar as doenças metabólicas crônicas.
Embora as interações com o estilo de vida possam impactar claramente a estrutura e a função da
comunidade microbiana intestinal, poucos estudos exploram o impacto das intervenções dietéticas no
microbioma intestinal em humanos. Os existentes sobre a dieta da microbiota intestinal em humanos
geralmente observam efeitos modestos em curto prazo.
 
Foto: Shutterstock.com
No entanto, mudanças extremas de dietas baseadas em animais para outras baseadas em vegetais
podem modificar as produções regionais e sistêmicas de SCFAs, contribuindo potencialmente, desse
modo, para alguns dos efeitos benéficos propostos por tais dietas.
 SAIBA MAIS
Em um estudo, uma dieta baseada em animais está associada a aumentos na abundância de micro-
organismos tolerantes à bile (Alistipes, Bilophila e Bacteroides) e a diminuições nos níveis de Firmicutes que
metabolizam os polissacarídeos vegetais dietéticos (Roseburia, Eubacterium rectale e Ruminococcus bromii).
Resultado: reduções significativas nas concentrações de acetato e butirato fecal ao se mudar de dietas
baseadas em plantas para outras baseadas em animais.
Tambémé interessante notar que o transplante de microbiota fecal de doadores magros para pacientes
resistentes à insulina com síndrome metabólica leva à melhora da sensibilidade à insulina. Esse
transplante também foi associado ao aumento da abundância de bactérias produtoras de butirato, como,
por exemplo, Roseburia.
Ao colonizar camundongos deficientes em apolipoproteína E livre de germes (Apoe- / -) com
comunidades microbianas intencionais com ou sem Roseburia intestinalis, revelou-se que as interações
micróbio-dieta são cruciais para se entender a interação entre a microbiota e a DCV.
Na presença de polissacarídeos vegetais R. intestinalis, isso poderia produzir butirato e conferir proteção
contra a aterosclerose, ao passo que, em dietas com um baixo teor de polissacarídeos vegetais,
nenhuma proteção foi observada. Da mesma forma, a microbiota protegeu contra a aterosclerose os
camundongos Apoe- / - alimentados com dieta de ração rica em polissacarídeos vegetais, mas não
aqueles alimentados com dietas de um estilo ocidental.
METABÓLITOS MICROBIANOS COMO MEDIADORES
PATOGÊNICOS DE TMAO
As descobertas de potenciais mediadores patogênicos que modulam direta ou indiretamente as
suscetibilidades às doenças forneceram uma janela valiosa para as interações microbiano-hospedeiro
que podem modular os riscos cardiorrenais.
Em uma descoberta inicial baseada na análise metabolômica não direcionada, Wang e demais autores
(2011) identificaram 18 analitos de pequenas moléculas que, em coortes de caso-controle de validação
subsequentes (2.000 indivíduos), repetidamente faziam a distinção entre pacientes com aqueles sem o
desenvolvimento futuro de eventos cardiovasculares adversos importantes, como, por exemplo, morte,
miocárdio infração (MI) e acidente vascular cerebral.
Alguns desses metabólitos são agora identificados como preditores conhecidos de risco de DCV que
não estão associados à microbiota intestinal (como a L-citrulina). Três dos analitos (m/z 76, 104 e 118)
estavam intimamente correlacionados entre si, sugerindo a participação em um caminho comum.
Já um em particular (m / z 76) parecia estar conduzindo a associação com riscos de DCV incidentes.
Subsequentemente se mostrou que se tratava do N-óxido de trimetilamina (TMAO), um subproduto
dependente da microbiota intestinal da colina e da fosfatidilcolina dietéticas.
Outro metabólito desconhecido – cujos níveis estão fortemente associados a riscos incidentes de DCV –
foi identificado como o aminoácido trimetilisina (TML). Demonstrou-se na análise que ele serve como um
precursor nutriente para a geração de TMAO dependente da microbiota intestinal.
GERAÇÃO MICROBIANA DE TRIMETILAMINA: PRODUÇÃO
HOSPEDEIRA DE N-ÓXIDO DE TRIMETILAMINA
O catabolismo microbiano de nutrientes dietéticos que possuem uma porção trimetilamina [TMA; - N
(CH3) 3], como colina, fosfatidilcolina e L-carnitina, pode servir como um precursor para a geração de
TMA por enzimas microbianas específicas ("TMA liase") residentes nos intestinos.
Gás odorífero com cheiro de peixe podre, o TMA é então absorvido pelo hospedeiro, sendo, após a
entrega ao fígado por meio da circulação portal, rapidamente convertido em TMAO pelo fígado em
enzima flavina mono-oxigenase (FMOs, particularmente o FMO3).
Enquanto camundongos fêmeas pareciam ter mais atividade FMO3 do que os machos, os estudos de
associação do genoma humano ainda não identificaram quaisquer diferenças de sexo nas variantes de
FMO3. Já os pacientes com polimorfismos genéticos de FMO3 experimentaram um distúrbio metabólico
de TMA excessivo denominado de síndrome do mau odor de peixe (ou trimetilaminúria). Eventualmente,
o TMAO é excretado predominantemente pelos rins.
 COMENTÁRIO
A química do TMA enquanto um metabólito tóxico foi originalmente estudada por causa de seu acúmulo
como resultado da purificação no esgoto.
A colina é uma fração química abundante na bile, sendo continuamente liberada nos intestinos tanto em
onívoros quanto em veganos. Já a carnitina é um nutriente abundante na carne, especialmente nas
vermelhas. Tanto uma quanto a outra, uma vez presentes no intestino, são absorvidas pelo intestino
delgado através de transportadores específicos, porém essa absorção é incompleta – particularmente no
caso de grandes refeições que podem saturar os sistemas de absorção.
Consequentemente, a ingestão de colina e carnitina na dieta pode dar origem a elevações significativas
no TMA e TMAO. Esse fenômeno já demonstrou ter muitos efeitos adversos no metabolismo do
hospedeiro – em especial, em sua saúde cardiovascular.
GERAÇÃO DE TMAO POR DIETA
Depois de observar que os níveis plasmáticos de TMAO estão associados de forma dose-dependente
com a doença arterial coronariana (DAC) em indivíduos, os estudos funcionais iniciais procuraram
determinar se as associações observadas estavam mecanicamente ligadas à causa da doença.
Para demonstrar diretamente uma contribuição pró-aterogênica da via TMAO do metaorganismo (ou
seja, envolvendo o micróbio e o hospedeiro), esses estudos alimentaram camundongos com uma dieta
rica em colina ou carnitina.
Apontaremos agora as consequências dessa dieta:
Aumento de níveis plasmáticos de TMAO
Espuma de macrófagos carregada de colesterol
Formação de células
Desenvolvimento de placa aterosclerótica aórtica aumentada
Por outro lado, os camundongos GF (sem micróbios intestinais) ou a supressão antibiótica de curto
prazo de amplo espectro da microbiota intestinal eliminaram a capacidade de geração de TMAO e
suprimiram a dieta (colina ou carnitina), levando ao aumento da placa aterosclerótica dependente.
Experimentos de transplante microbiano usando comunidades microbianas cecais recuperadas de uma
cepa de camundongos com um alto produtor de TMA/TMAO (C57BL/6J), em comparação com outro de
baixo TMA/TMAO (camundongos NZW/LacJ), evidenciaram a transmissão do realce dependente da
dieta de colina na aterosclerose.
Para os humanos, a supressão da produção de TMAO é prontamente observada em indivíduos
saudáveis tomando um curso curto de antibióticos mal absorvidos. Isso ilustra ainda mais o papel
obrigatório da microbiota intestinal na geração de TMA/TMAO.
 ATENÇÃO
Em uma coorte de mais de 1.800 indivíduos, os níveis plasmáticos de TMAO, independentemente dos fatores
de risco tradicionais, foram associados positivamente com DAC, doença arterial periférica e história de infarto
agudo do miocárdio (IAM).
Como os SCFAs, é claro que a formação de TMA/TMAO é amplamente dependente de fontes de
nutrientes. Fontes dietéticas de colina/fosfatidilcolina e carnitina podem influenciar claramente os níveis
sistêmicos.
 
Foto: Shutterstock.com
No geral, os veganos e os vegetarianos têm níveis circulantes de TMAO e capacidades fecais de
geração de TMA/TMAO mais baixos que os dos onívoros.
Uma dieta rica em carne vermelha está associada a níveis mais elevados de TMAO circulante, bem
como a uma redução significativa da excreção renal fracionada de TMAO em comparação com outra
com carne branca ou sem carne.
Curiosamente, a exposição crônica a suplementações orais de L-carnitina também pode induzir
capacidades de geração de TMA/TMAO em humanos. Esse mesmo efeito da suplementação dietética
de L-carnitina foi observado em camundongos e humanos. Como se trata de suplementos nutricionais
comuns sem receita, servindo como aditivos alimentares para o consumo alimentar humano e animal,
seu impacto geral de longo prazo na saúde cardiovascular é desconhecido e precisa ser investigado.
Os níveis plasmáticos de TMAO também podem aumentar com um alto teor de gordura, embora os
efeitos sejam menos claros em dietas isocalóricas.
 VOCÊ SABIA
A "dieta ocidental" é, em particular, pobre em fibras e rica em gordura e/ou carboidratos, sendo um fator que
pode levar à disbiose grave. Em contraste, as dietas "mediterrâneas" e vegetarianas, as quais incluem frutas
abundantes, vegetais, azeite e peixes oleosos, são conhecidas por seus efeitos anti-inflamatórios,podendo
ainda prevenir a disbiose.
PRÁTICA CLÍNICA: UM EXEMPLO DE UM
MODELO DE ATENDIMENTO NUTRICIONAL
PARA DISBIOSE INTESTINAL
A especialista Aline Cardozo Monteiro fala sobre um caso clínico com enfoque no atendimento para
disbiose intestinal.
VERIFICANDO O APRENDIZADO
CONSIDERANDO OS CONCEITOS DE MICROBIOTA INTESTINAL, ANALISE AS
ASSERTIVAS A SEGUIR. 
 
I. A MICROBIOTA INTESTINAL PODE SER VISTA COMO UM ÓRGÃO DO CORPO
REAL QUE CONTRIBUI PARA O BEM-ESTAR DO ORGANISMO HOSPEDEIRO. OS
TRILHÕES DE MICRÓBIOS QUE COLONIZAM O TRATO GASTROINTESTINAL
INFLUENCIAM PROCESSOS LOCAIS E SISTÊMICOS, COMO TRANSFORMAÇÃO
DE NUTRIENTES, FORNECIMENTO DE VITAMINAS, MATURAÇÃO DA IMUNIDADE
MUCOSA, COMUNICAÇÃO INTESTINO-CEREBRAL E ATÉ PROGRESSÃO DE
TUMOR. 
II. COMO OUTROS ÓRGÃOS, O FUNCIONAMENTO ADEQUADO DA MICROBIOTA
INTESTINAL DEPENDE DE UMA COMPOSIÇÃO CELULAR ESTÁVEL, QUE, NO
CASO DA MICROBIOTA HUMANA, CONSISTE PRINCIPALMENTE DE BACTÉRIAS
DOS FILOS BACTEROIDETES E ACTINOBACTERIA E, EM MENOR EXTENSÃO,
PROTEOBACTERIA E FIRMICUTES. 
 
PODEMOS AFIRMAR QUE:
A) I e II estão incorretas.
B) I e II estão corretas, e a II não se relaciona com a I.
C) Apenas I está correta.
D) Apenas II está correta.
E) I e II estão corretas.
2. CONSIDERE OS CONCEITOS DE MICROBIOTA INTESTINAL E ANALISE AS
ASSERTIVAS A SEGUIR. 
 
I. A OBESIDADE É CARACTERIZADA PELA DIMINUIÇÃO DA DIVERSIDADE
MICROBIANA E POR UMA SOBRERREPRESENTAÇÃO DE FIRMICUTES. UMA
PROPORÇÃO MAIS BAIXA DE BACTEROIDETES EM RELAÇÃO A FIRMICUTES
RESULTA EM UMA MAIOR LIBERAÇÃO DE LPS NA CIRCULAÇÃO. 
II. NÍVEIS MAIS ALTOS DE LPS CONTRIBUEM PARA UM ESTADO DE
INFLAMAÇÃO CRÔNICA DE BAIXO GRAU QUE OCORRE NA OBESIDADE. 
 
PODEMOS AFIRMAR QUE:
A) I e II estão incorretas.
B) I e II estão corretas, e a II é causa da I.
C) Apenas I está correta.
D) Apenas II está correta.
E) I e II estão corretas.
GABARITO
Considerando os conceitos de microbiota intestinal, analise as assertivas a seguir. 
 
I. A microbiota intestinal pode ser vista como um órgão do corpo real que contribui para o bem-
estar do organismo hospedeiro. Os trilhões de micróbios que colonizam o trato gastrointestinal
influenciam processos locais e sistêmicos, como transformação de nutrientes, fornecimento de
vitaminas, maturação da imunidade mucosa, comunicação intestino-cerebral e até progressão de
tumor. 
II. Como outros órgãos, o funcionamento adequado da microbiota intestinal depende de uma
composição celular estável, que, no caso da microbiota humana, consiste principalmente de
bactérias dos filos Bacteroidetes e Actinobacteria e, em menor extensão, Proteobacteria e
Firmicutes. 
 
Podemos afirmar que:
A alternativa "E " está correta.
 
A microbiota intestinal saudável é fundamental para um adequado funcionamento do organismo. Dessa
forma, ela é importante para a absorção de nutrientes, o fornecimento de vitaminas e a maturação da
mucosa intestinal. É fundamental uma adequada colonização da mucosa com a maior proporção de
Bacteroides e actinobactéria.
2. Considere os conceitos de microbiota intestinal e analise as assertivas a seguir. 
 
I. A obesidade é caracterizada pela diminuição da diversidade microbiana e por uma
sobrerrepresentação de Firmicutes. Uma proporção mais baixa de Bacteroidetes em relação a
Firmicutes resulta em uma maior liberação de LPS na circulação. 
II. Níveis mais altos de LPS contribuem para um estado de inflamação crônica de baixo grau que
ocorre na obesidade. 
 
Podemos afirmar que:
A alternativa "B " está correta.
 
A obesidade é caracterizada pela colonização de Firmicutes que ocasionam uma maior liberação de
LPS na circulação, o que gera, por sua vez, um maior estado inflamatório.
MÓDULO 2
 Descrever a nutrição funcional no tratamento das alergias alimentares e da síndrome
bacteriana/fúngica
ALERGIAS ALIMENTARES
CONCEITOS E EPIDEMIOLOGIA
A alergia alimentar (AA) é uma reação adversa a um antígeno alimentar específico normalmente
inofensivo para a população saudável. Mediada por mecanismos imunológicos, a AA surge em
indivíduos suscetíveis a esse alérgeno específico. Ela, portanto, difere das reações adversas causadas
por toxinas ou patógenos contidos nos alimentos, bem como das chamadas intolerâncias alimentares
que, apesar de apresentarem os mesmos sintomas, reconhecem mecanismos patogenéticos diferentes.
As intolerâncias são definidas como reações não imunes mediadas por mecanismos tóxicos,
farmacológicos, metabólicos e indefinidos. Eis dois exemplos de intolerâncias alimentares não imunes
mediadas:
 
Foto: Shutterstock.com
Intolerância ao leite devido à deficiência da enzima lactase (normalmente presente na borda em escova
da mucosa intestinal).
 
Foto: Shutterstock.com
Reações adversas a alimentos caracterizados por um alto teor de histamina ou por substâncias
liberadoras de histamina, como morangos, chocolate, bebidas alcoólicas e queijos fermentados.
No passado, as AAs e as intolerâncias eram frequentemente confundidas devido à sua semelhança
clínica. Além disso, o mesmo alimento costuma ser responsável tanto pela intolerância quanto pela
alergia, dificultando ainda mais o diagnóstico.
O que distingue a fórmula baseada em aminoácidos (AAF) de outras reações adversas aos alimentos é,
portanto, o mecanismo patogenético subjacente: a AA se trata de uma reação adversa que surge de
uma resposta imunológica específica que ocorre de forma reproduzível na exposição a determinado
alimento. Além disso, com base no mecanismo imunopatogenético específico, é possível distinguir os
AAs mediados por imunoglobulina E (IgE) das reações mistas e não mediadas por IgE a alimentos.
A AA é muito comum em todo o mundo e está se tornando um grande problema de saúde pública.
 COMENTÁRIO
Embora faltem dados epidemiológicos precisos, está claro que a prevalência da AA aumentou
significativamente nas últimas duas décadas nos países ocidentais: taxas de até 10% foram documentadas
entre crianças em idade pré-escolar.
Estima-se que mais de 220 milhões de pessoas em todo o mundo sofrem de AA. No entanto, fazer
estimativas precisas não é fácil devido à:
Foto: Shutterstock.com
 VOCÊ SABIA
Mais de um terço dos pais relata reações de hipersensibilidade alimentar em seus filhos, mas a prevalência
de AA objetivamente diagnosticada e verificável no primeiro ano de vida varia de 6% a 10%, caindo para 2%
a 5% na idade adulta.
Por muito tempo, a AA foi considerada uma doença quase exclusivamente pediátrica, já que, na maioria
dos casos, ela começa na infância e tende a desaparecer com o crescimento. No entanto, o atual
crescimento exponencial da população adulta e idosa, especialmente nos países ocidentais, assim como
as mudanças ambientais e de estilo de vida, mudou profundamente a epidemiologia da AA, registrando-
se, com isso, um aumento crescente mesmo em idade avançada.
 
Foto: Shutterstock.com
Além disso, a AA no envelhecimento exibe características clínicas e mecanismos imunopatogenéticos
peculiares, aumentando a complexidade diagnóstica. Ela inclui um amplo espectro de manifestações
clínicas, desde formas leves, com a localização de órgãos, até formas graves e potencialmente fatais,
com um envolvimento sistêmico.
Quase metade dos pacientes com AA dependente de IgE já experimentou pelo menos uma reação
anafilática grave, especialmente na infância e adolescência. A variabilidade das expressões clínicas e a
complexidade dos mecanismos imunológicos subjacentes contribuem para tornar o diagnóstico muitas
vezes difícil, complicando os estudos sobre a epidemiologia da AA.
Embora cada tipo de alimento possa constituir um alérgeno potencial, a lista de alimentos responsáveis
pela grande maioria dos casos, principalmente em suas formas clinicamente mais graves, é
relativamente curta. Listaremos a seguir aqueles mais frequentemente responsáveis por alergias em
crianças nos países industrializados:
Leite de vaca
Ovos
Trigo
Peixe
Marisco
Amendoim
Nozes
Soja
No entanto, em 80% dos casos, as criançascom AA não dependente de IgE se recuperam até os três
anos de vida.
Já os alérgenos causais prevalentes em adultos são:
Peixes e frutos do mar
Amendoins
Nozes
Frutas
Vegetais
 
Imagem: Shutterstock.com
Em relação aos hábitos alimentares, diferentes alimentos também podem ser responsáveis pela
sensibilização alérgica em outros países. Vejamos os casos de hipersensibilidade mais frequentes em
cada nação:
México: Chocolate, morangos, crustáceos e ovos
Chile: Nozes e amendoins
El Salvador: Pimenta, nozes, chocolate, leite e camarões
Colômbia: Frutas, vegetais e frutos do mar
Uma prevalência crescente de AA foi recentemente demonstrada em países em desenvolvimento. Taxas
de incidência semelhantes às encontradas em nações ocidentais foram relatadas na China e na África.
O crescimento econômico de países como a China e a expansão do fenômeno da globalização
delineiam um futuro aumento da prevalência de AA.
 VOCÊ SABIA
Crianças de origem asiática ou africana nascidas no Ocidente têm um maior risco de desenvolver AA do que
as caucasianas, sugerindo a importância da interação genoma-ambiente-estilo de vida no determinismo
dessa patologia.
MANIFESTAÇÕES CLÍNICAS
As manifestações clínicas da AA são altamente variáveis. A história natural pode mudar de paciente
para paciente, bem como a expressão de biomarcadores e a resposta a várias abordagens terapêuticas.
Compreender a história natural da AA é essencial, portanto, para planejar o manejo dos pacientes com
sucesso.
A história natural da AA é diferente em crianças e adultos. A maioria das AAs começa nos primeiros
dois anos de vida, mas o tipo de alérgenos causadores afeta essa história, assim como o risco de
reações sistêmicas.
 ATENÇÃO
As reações alérgicas ao leite de vaca e aos ovos geralmente desaparecem com o avançar da idade,
enquanto a alergia a amendoins, nozes e frutos do mar persiste com mais frequência mesmo na vida adulta;
além disso, cerca de 30% dos pacientes desenvolvem mais de um tipo de sensibilização alérgica ao longo do
tempo. Já a sensibilização das frutas aparece tardiamente, exibindo várias reatividades cruzadas que dão
origem a manifestações clínicas peculiares, como a síndrome de AA ao pólen.
As manifestações clínicas da AA podem afetar vários órgãos e sistemas, incluindo a pele, o intestino e
os sistemas respiratório, cardiovascular e nervoso. Ademais, os sintomas se desenvolvem de maneiras
variadas, dando origem a quadros complexos de doenças.
 
Foto: Shutterstock.com
Curiosamente, em pacientes afetados por AA, a pele pode ser um dos órgãos-alvo mais comuns, cujas
manifestações clínicas incluem prurido e urticária, assim como um importante local de sensibilização
primária a alérgenos alimentares. Desse modo, a dermatite atópica é considerada um fator de risco para
o desenvolvimento de AA.
Fatores ambientais podem favorecer o desencadeamento de uma AA e a gravidade de sua
manifestação clínica. Vários deles são facilitadores com o potencial para desencadear reações alérgicas
após a ingestão de um alérgeno alimentar, incluindo exercícios, álcool e drogas, como antiácidos e anti-
inflamatórios não esteroides (AINEs), menstruação e infecções.
A URTICÁRIA OU A ANAFILAXIA PODE SER
DESENCADEADA DEPOIS DE UM EXERCÍCIO FÍSICO
REALIZADO PELO PACIENTE NO ESPAÇO DE 2 A 4
HORAS APÓS A INGESTÃO DOS ALIMENTOS
CULPADOS.
O caso acima ilustra uma anafilaxia induzida por exercício dependente de alimentos (FDEIA). Nesse
fenótipo alérgico particular, que afeta principalmente o sexo feminino e é frequente em adolescentes e
adultos jovens, o alimento responsável é principalmente o trigo, embora leite, soja, aipo e frutos do mar
também estejam implicados.
Estudos sugeriam que o exercício físico, além de outros fatores facilitadores, aumenta a absorção
gastrointestinal de alérgenos alimentares e diminui o limiar de degranulação de mastócitos e basófilos
em indivíduos sensibilizados. A grande maioria dos pacientes com FDEIA tem IgE sérica específica para
a gliadina ômega-5 e – apenas em uma minoria de casos – a glutenina de alto peso molecular (HMW-
glutenina).
 
Foto: Shutterstock.com
Mais comum em adultos e adolescentes, a síndrome alérgica oral (SAO) apresenta sintomas que
afetam principalmente a orofaringe e depende de uma polissensibilização a alérgenos inalantes e
alimentares (síndrome da AA ao pólen). Maçãs, amendoins, amêndoas, avelãs e outras frutas da família
Rosaceae são comumente implicadas em pacientes com alergia a bétula. Já banana, kiwi e melão são
os alimentos desencadeadores naqueles alérgicos à ambrosia.
Nesse fenótipo, a IgE contra o pólen apresenta uma reação cruzada com as proteínas homólogas em
alimentos vegetais. As IgE responsáveis são inicialmente direcionadas contra o pólen, que, uma vez
inalado, induz a rinite.
 EXEMPLO
O contato da fruta crua pêssego ou maçã com a mucosa oral imediatamente provoca coceira, queimação oral
e angioedema dos lábios, língua e palato.
Elencamos acima as principalmente reações cruzadas com os epítopos alimentares termolábeis.
Consequentemente, pudemos observar que, em testes de diagnóstico de pele, é melhor usar frutas
cruas ou vegetais.
MICROBIOTA INTESTINAL
Na figura adiante, observaremos a ilustração do microbioma intestinal como um alvo contra a AA. Vários
fatores genéticos, ambientais e dietéticos podem modular o eixo do sistema imunológico do microbioma
intestinal, influenciando a ocorrência da AA.
São associados como protetores da AA:
Número de irmãos
Exposição a animais de estimação ou rurais
Alimentação rica em fibras
Alimentos fermentados
Antioxidantes
Ômega-3
Amamentação
Probióticos
 ATENÇÃO
Fatores como parto de cesariana, uso de antibióticos, inibidores de acidez gástrica, agentes antissépticos no
início da vida e dietas não saudáveis (junk food, alto consumo de gorduras saturadas e baixo de fibras)
podem aumentar o risco de AA.
 
Imagem: Adaptada de CANANI et al., 2019, p. 3.
 Microbiona intestinal como alvo contra a alergia alimentar.
Cada vez mais evidências indicam que a disbiose do microbioma intestinal no início da vida
representa um fator crítico subjacente à AA. Dados experimentais de modelos animais sugerem uma
ligação entre esse microbioma e a ocorrência de AA.
Houve uma redução dos casos nas células T reguladoras (Tregs) tanto de camundongos tratados com
antibióticos quanto dos GF com uma consequente predisposição ao desenvolvimento de alergia. A
administração de clostrídios definidos ou AGCC derivados de bactérias em camundongos GF induziu um
aumento no número de células Treg e reduziu a resposta alérgica.
A ação protetora de alergia de Clostridia também foi confirmada em um modelo animal. Nesse modelo,
demonstrou-se um efeito protetor significativo, que consiste na regulação da função de células linfoides
inatas, forkhead box P3 – fator de transcrição – Foxp3 + Tregs, imunoglobulina A e permeabilidade
epitelial intestinal. Criado com a inoculação de microbiota derivada de fezes humanas, o “modelo de
camundongo humanizado” resultou em um aumento nas células Treg e uma redução dos sintomas
alérgicos.
O papel funcional da disbiose associada à AF também foi revelado pela capacidade diferente da
microbiota intestinal de camundongos sensibilizados com um alérgeno para:
Aumentar o número de células Th2 e respostas de IgE.
Promover a sensibilização alérgica.
 COMENTÁRIO
Infelizmente, os dados que caracterizam o microbioma intestinal de pacientes afetados pela AF ainda são
preliminares.
Estudos recentes destacam a importância da modulação da microbiota intestinal por meio de
diferentes intervenções dietéticas em pacientes pediátricos com AA.
Crianças com alergia ao leite de vaca (APLV) tratadas com uma fórmula à base de soja e arroz
apresentaram uma baixa abundância fecal de Coriobacteriaceae e Bifidobacteriaceae. Aconteceu o
contrário com aquelas com APLV que consumiram uma fórmula extensivamente hidrolisada: além de
Coriobacteriaceae, houve certamente

Continue navegando