Prévia do material em texto
10/04/2021 Estácio: Alunos https://simulado.estacio.br/alunos/?p0=67696560&user_cod=2535329&matr_integracao=201909223395 1/4 Teste de Conhecimento avalie sua aprendizagem Considere o modelo Z de programação de produção de dois itens A e B, onde x1 e x2 são decisões de produção no período programado. Max Z= 25x1+40x2 Sujeito a: x1+ 5x2≤30 x1 + 3x2≤100 x1≥0 x2≥0 Desta forma,construa o modelo dual correspondente: Segue abaixo o quadro final de resolução pelo Simplex do modelo primal Z de uma empresa, onde xF1 e xF2 são as variáveis de folga: Z x1 x2 xF1 xF2 b 1 10 0 15 0 800 0 0,5 1 0,3 0 10 0 6,5 0 -1,5 1 50 A partir daí, determine a solução do modelo dual e os valores das variáveis correspondentes: PESQUISA OPERACIONAL Lupa Calc. GST1235_A6_201909223395_V1 Aluno: ANDERSON SOUSA DA SILVA Matr.: 201909223395 Disc.: PESQUISA OPERACIONAL 2021.1 (G) / EX Prezado (a) Aluno(a), Você fará agora seu TESTE DE CONHECIMENTO! Lembre-se que este exercício é opcional, mas não valerá ponto para sua avaliação. O mesmo será composto de questões de múltipla escolha. Após responde cada questão, você terá acesso ao gabarito comentado e/ou à explicação da mesma. Aproveite para se familiarizar com este modelo de questões que será usado na sua AV e AVS. 1. Max D=30y1+100y2 Sujeito a: y1 + y2≥25 5y1+y2≥40 y1≥0 y2≥0 Min D=30y1+100y2 Sujeito a: y1 + y2≥25 5y1+3y2≥40 y1≥0 y2≥0 Max D=30y1+100y2 Sujeito a: y1 + y2≥25 y1+3y2≥40 y1≥0 y2≥0 Min D=3y1+10y2 Sujeito a: y1 + 2y2≥25 5y1+3y2≥40 y1≥0 y2≥0 Min D=3y1+100y2 Sujeito a: 3y1 + y2≥20 5y1+3y2≥40 y1≥0 y2≥0 2. Z*= 800, y1=15,y2=0,yF1=0 e yF2=10 Z*= 800, y1=0,y2=15,yF1=10 e yF2=0 Z*= 800, y1=15,y2=0,yF1=10 e yF2=0 Z*= 800, y1=15,y2=10,yF1=0 e yF2=0 javascript:voltar(); javascript:voltar(); javascript:diminui(); javascript:aumenta(); javascript:calculadora_on(); 10/04/2021 Estácio: Alunos https://simulado.estacio.br/alunos/?p0=67696560&user_cod=2535329&matr_integracao=201909223395 2/4 Max Z = 5x1 + 3x2 Sa: 6x1 + 2x2 ≤ 36 5x1 + 5x2 ≤ 40 2x1 + 4x2 ≤ 28 x1, x2 ≥ 0 Sendo o modelo acima o Primal de um problema. Qual das opções abaixo mostra corretamente o Dual deste modelo? Considere o seguinte modelo primal de programação linear. Maximizar Z = x1 + 2x2 Sujeito a: 2x1 + x2 6 x1 + x2 4 -x1 + x2 2 x1, x2 0 Acerca do modelo primal e das suas relações com o modelo dual associado a ele, identifique e assinale, dentre as alternativas abaixo, a correta. Z* =800,y1=10,y2=0,yF1=0 e yF2=0 3. Max D = 36y1 + 40y2 + 28y3 Sa: 6y1 + 5y2 + 2y3 ≥ 5 2y1 + 5y2 + 4y3 ≥ 3 y1, y2, y3 ≥ 0 Min D = 36y1 + 40y2 + 28y3 Sa: 6y1 + 5y2 + 2y3 ≥ 5 2y1 + 5y2 + 4y3 ≥ 3 y1, y2, y3 ≥ 0 Min D = 6y1 + 5y2 + 2y3 Sa: 36y1 + 40y2 + 28y3 ≥ 5 2y1 + 5y2 + 4y3 ≥ 3 y1, y2, y3 ≥ 0 Min D = 36y1 + 40y2 + 28y3 Sa: 6y1 + 5y2 + 2y3 ≥ 5 2y1 + 5y2 + 4y3 ≥ 3 y1, y2, y3 ≤ 0 Max D = 6y1 + 5y2 + 2y3 Sa: 36y1 + 40y2 + 28y3 ≥ 5 2y1 + 5y2 + 4y3 ≥ 3 y1, y2, y3 ≥ 0 4. O modelo dual tem três restrições do tipo maior ou igual. O número de restrições do primal é diferente do número de variáveis do dual. Os coeficientes da função-objetivo do dual são os mesmos coeficientes da função-objetivo do primal. Os termos constantes das restrições do primal são os coeficientes da função-objetivo do dual. Se os modelos primal e dual têm soluções ótimas finitas, então os valores ótimos dos problemas primal e dual são diferentes. ≤ ≤ ≤ ≥ 10/04/2021 Estácio: Alunos https://simulado.estacio.br/alunos/?p0=67696560&user_cod=2535329&matr_integracao=201909223395 3/4 No contexto de programação linear, considere as afirmações abaixo sobre os problemas primal-dual. I - Se um dos problemas tiver solução viável e sua função objetivo for limitada, então o outro também terá solução viável. II - Se um dos problemas tiver soluções viáveis, porém uma função-objetivo sem solução ótima, então o outro problema terá soluções viáveis. III - Se um dos problemas não tiver solução viável, então o outro problema não terá soluções viáveis ou terá soluções ilimitadas. IV - Se tanto o primal quanto o dual têm soluções viáveis finitas, então existe uma solução ótima finita para cada um dos problemas, tal que essas soluções sejam iguais. São corretas apenas as afirmações É dado o seguinte modelo Primal: Max Z = 3x1 + 5x2 1X1 + 2X2 <= 14 3X1 + 1X2 <= 16 1X1 - 1X2 <= 20 X1, X2, X3 >= 0 Analise as questões abaixo e assinale a questão correta do modelo DUAL correspondente: 5. II e III I , II e III II e IV I e II I, III e IV 6. Min D = 14Y1 + 16Y2 - 20Y3 Sujeito a: 1Y1 + 3Y2 + 1Y3 >= 3 2Y1 + 1Y2 - 1Y3 >= 5 X1 < 0; X2 >= 0; X3 = 0 Min D = 14Y1 + 16Y2 + 20Y3 Sujeito a: 1Y1 + 3Y2 + 1Y3 >= 3 2Y1 + 1Y2 - 1Y3 >= 5 Y1 >= 0; Y2 >= 0; Y3 >= 0 Min D = 14Y1 + 16Y2 + 20Y3 Sujeito a: 1X1 + 3X2 + 1X3 >= 3 10/04/2021 Estácio: Alunos https://simulado.estacio.br/alunos/?p0=67696560&user_cod=2535329&matr_integracao=201909223395 4/4 2X1 + 1X2 - 1X3 >= 5 Y1 >= 0; Y2 >= 0; Y3 >= 0 Max D = 3x1 + 5x2 Sujeito a: 1Y1 + 2Y2 <= 14 3Y1 + 1Y2 <= 16 1Y1 - 1Y2 <= 20 X1, X2, X3 >= 0 Max D = 14Y1 + 16Y2 + 20Y3 Sujeito a: 1Y1 + 3Y2 + 1Y3 > 3 2Y1 + 1Y2 - 1Y3 = 5 Y1 <= 0; Y2 >= 0; Y3 = 0 Não Respondida Não Gravada Gravada Exercício inciado em 10/04/2021 10:59:01. javascript:abre_colabore('35037','221726743','4477828651');