Buscar

APOL I E II Análise Matemática

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 55 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 55 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 55 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Questão 1/10 - Análise Matemática
“O conceito de relação de equivalência é relevante para todos os ramos da Matemática. Em linhas gerais, tal conceito surge como uma forma de generalizar a relação de igualdade, no sentido de que, elementos de um dado conjunto, mesmo distintos, cumprem papel equivalente”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: VIEIRA, V. L. Álgebra Abstrata para Licenciatura. Campina Grande: EDUEPB, 2013. p. 18. 
Considere o conjunto A={1,2,3,4}A={1,2,3,4}
De acordo com os conteúdos do livro-base Análise Matemática referentes à relações entre conjunto assinale a única alternativa que contém uma relação de equivalência do conjunto dado:
 
Nota: 10.0
	
	A
	R={(1,2),(2,1),(1,1),(2,2),(3,3),(4,4)}.R={(1,2),(2,1),(1,1),(2,2),(3,3),(4,4)}.
Você assinalou essa alternativa (A)
Você acertou!
Essa relação é reflexiva, pois (x,x)∈R,∀x∈A(x,x)∈R,∀x∈A. É simétrica pois para cada par (x,y)(x,y) que pertence à RR o seu simétrico (y,x)(y,x) também pertence à RR. E essa relação é transitiva pois se os pares (x,y)(x,y) e (y,z)(y,z), então, o par (x,z)(x,z) também pertence à RR (livro-base, capítulo 1).
	
	B
	R={(2,3),(4,1),(1,1),(2,2),(3,3),(4,4)}R={(2,3),(4,1),(1,1),(2,2),(3,3),(4,4)}
	
	C
	R={(2,1),(3,1)}R={(2,1),(3,1)}
	
	D
	R={(2,1),(2,3),(2,4),(1,1),(2,2),(3,3),(4,4)}R={(2,1),(2,3),(2,4),(1,1),(2,2),(3,3),(4,4)}
	
	E
	R={(1,2),(1,3),(1,4),(1,1),(2,2),(3,3),(4,4)}R={(1,2),(1,3),(1,4),(1,1),(2,2),(3,3),(4,4)}
Questão 2/10 - Análise Matemática
Leia o excerto de texto a seguir. 
“Para que tenha sentido determinar o limite ou indagar sobre a continuidade de uma função, e o domínio e o contradomínio da mesma devem possuir um certo tipo de estrutura, tornando-se o que se chama um ‘espaço topológico’. Em outras palavras, espaços topológicos são conjuntos equipados com estruturas tais que entre eles tem sentido falar em limites e continuidades de funções”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: Lima, E. L. Curso de Análise. v. 1. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada,  2013. p. 161. 
Conforme os conteúdos do livro-base Análise Matemática com respeito à conceitos topológicos, enumere, na ordem sequencial, as definições – em linguagem não formal – que se relacionam a cada um dos elementos a seguir:
 
1. Conjunto aberto
2. Ponto interior
3. Conjunto fechado
4. Ponto de acumulação
5. Conjunto compacto
6. Ponto aderente
 
( ) É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele.
( ) É todo conjunto que é simultaneamente fechado e limitado.
( ) É um conjunto tal que todos os pontos aderentes pertencem à ele.
( ) É um ponto que possui uma vizinhança inteiramente contida no conjunto.
( ) É um ponto que é limite de uma sequencia de elementos do conjunto.
( ) É um conjunto onde todos os seus pontos são interiores.
 
Agora marque a sequência correta:
 
Nota: 10.0
	
	A
	6 – 5 – 3 – 4 – 2 – 1
	
	B
	4 – 1 – 5 – 6 – 2 – 3
	
	C
	2 – 5 – 1 – 6 – 4 – 3
	
	D
	6 – 3 – 1 – 2 – 4 – 5
	
	E
	4 – 5 – 3 – 2 – 6 – 1
Você assinalou essa alternativa (E)
Você acertou!
A sequência correta é 4 – 5 – 3 – 2 – 6 – 1. Segundo o livro-base: “1. Conjunto aberto – É um conjunto onde todos os seus pontos são interiores. 2. Ponto interior – É um ponto que possui uma vizinhança inteiramente contida no conjunto. 3. Conjunto fechado – É um conjunto tal que todos os pontos aderentes pertencem à ele. 4. Ponto de acumulação – É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele. 5. Conjunto compacto – É todo conjunto que é simultaneamente fechado e limitado. 6. Ponto aderente – É um ponto que é limite de uma sequencia de elementos do conjunto” (livro-base, Capítulo 3).
Questão 3/10 - Análise Matemática
Considere a seguinte citação: 
“Diz-se que um número real aa é limite da sequência (xn)(xn) quando, para todo número real ε>0ε>0, dado  arbitrariamente, pode-se obter n0∈Nn0∈N tal que todos os termos xnn com índice n>n0n>n0 cumprem a condição |xn−a|<ε|xn−a|<ε. Escreve-se então a=limn∈Nxna=limn∈Nxn. [...] Em vez de a=limxna=limxn, escreve-se também a=limn∈Nxna=limn∈Nxn, a=limn→∞xna=limn→∞xn ou xn→axn→a. Esta última expressão lê-se ‘xnxn  tende para aa’ ou ‘converge para aa’. Uma sequência que possui limite diz-se convergente”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
LIMA, E. L., Análise Real: Funções de Uma Variável. 9. ed. v. 1. Rio de Janeiro: IMPA, 2007. p. 23-24.
Dada a sequência (12n)n∈N(12n)n∈N.
Considerando estas informações e os conteúdos do livro-base Análise Matemática sobre sequências numéricas, é correto afirmar que a sequência dada converge para:
Nota: 10.0
	
	A
	1212
	
	B
	∞∞
	
	C
	−∞−∞
	
	D
	1
	
	E
	0
Você assinalou essa alternativa (E)
Você acertou!
Dado ε>0ε>0, escolhemos n0∈Nn0∈N tal que n0>log21εn0>log2⁡1ε, isto é, 12n0<ε12n0<ε. Assim, se n>n0n>n0 temos que ∣∣12n−0∣∣=∣∣12n∣∣=12n<12n0<ε|12n−0|=|12n|=12n<12n0<ε. Portanto, lim12n=0lim12n=0. (livro-base, Capítulo 2).
Questão 4/10 - Análise Matemática
Observe a seguinte série numérica:
∑∞132k41−k∑1∞32k41−k
Com base nos conteúdos estudados no livro-base Análise Matemática sobre a convergência de séries numéricas, assinale a única alternativa correta a respeito da série mostrada acima.
Nota: 10.0
	
	A
	A série converge para 9494
	
	B
	A série converge para 3434
	
	C
	A série diverge.
Você assinalou essa alternativa (C)
Você acertou!
reescrevendo a série, temos: ∑∞132k41−k=∑∞19k4k−1=∑∞19(94)k−1∑1∞32k41−k=∑1∞9k4k−1=∑1∞9(94)k−1. Logo, essa é uma série geométrica com r=94>1r=94>1. Portanto, a série diverge. (livro-base, Capítulo 2).
	
	D
	A série diverge para 4343 
	
	E
	A série converge para 12.
Questão 5/10 - Análise Matemática
Considere o trecho de texto a seguir:
"Sejam f:X→Rf:X→R e a∈Xa∈X. O quociente q(x)=f(x)−f(a)x−aq(x)=f(x)−f(a)x−a tem sentido para x≠ax≠a, logo define uma função q:X−{a}→Rq:X−{a}→R, cujo valor q(x)q(x) é a inclinação da secante (reta que liga os pontos (a,f(a))(a,f(a)) e (x,f(x))(x,f(x)) no gráfico de ff em relação ao eixo xx."
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p. 88.}
Conforme os conteúdos estudados no livro-base Análise Matemática, analise as afirmativas a seguir e marque V para as afirmativas verdadeiras, e F para as afirmativas falsas.
I. ( ) Dizemos que uma função X→RX→R é derivável em XX quando é derivável em todos os pontos de xx pertencentes a XX.
II. ( ) Sejam X⊂RX⊂R, f:X→Rf:X→R e x0x0 um ponto de acumulação de XX pertencente ao conjunto XX. Assim a função ff é derivável no ponto x0x0 quando existe o limite a seguir: f′(x)=limx→x0f(x)−f(x0)x−x0f′(x)=limx→x0f(x)−f(x0)x−x0
III. ( ) Informalmente podemos dizer que a noção geométrica da derivada f′(x0)f′(x0) é a inclinação da reta tangente à função ff no ponto x0x0.
Agora marque a sequência correta:
Nota: 10.0
	
	A
	F – F – F
	
	B
	F – V – V
	
	C
	V – V – F
	
	D
	F – V – F
	
	E
	V – V – V
Você assinalou essa alternativa (E)
Você acertou!
A afirmativa I é verdadeira por ser uma consequência da definição(p.111). A afirmativa II é correta pois expressa a definição de derivada em um ponto (p.111) e a afirmativa III é correta porque corresponde à interpretação geométrica da derivada(livro base - p.111 e 112).
Questão 6/10 - Análise Matemática
Leia o fragmento de texto a seguir. 
“(f∘g)′(x)=f′(g(x))⋅g′(x)(f∘g)′(x)=f′(g(x))⋅g′(x). Uma maneira conveniente de lembrar essa fórmula consiste em chamar  a ‘função de fora’ e g a ‘função de dentro’ na composição (fg(x))(fg(x)) e, então, expressar em palavras como:
A derivada de (f(g(x))(f(g(x)) é a derivada da função de fora calculada na função de dentro vezes a derivada da função de dentro”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: ANTON, H., BIVENS, I., DAVIS, S. Cálculo. 8. ed. Porto Alegre: Bookman , v. 1.  2007. p. 210-211.
Considereas funções e f(x)=exf(x)=ex , g(x)=x2+2g(x)=x2+2 e a função composta h(x)=f(g(x))=e(x2+2)h(x)=f(g(x))=e(x2+2).
Com base no fragmento de texto dado e nos conteúdos do livro-base Análise Matemática sobre a Regra da Cadeia, assinale a única alternativa que representa a derivada da função composta dada.
Nota: 10.0
	
	A
	h′(x)=(x2+2)e(x2+2)h′(x)=(x2+2)e(x2+2)
	
	B
	h′(x)=(x2+2)e(x2+2)−1⋅2xh′(x)=(x2+2)e(x2+2)−1⋅2x
	
	C
	h′(x)=2x⋅e(x2+2)h′(x)=2x⋅e(x2+2)
Você assinalou essa alternativa (C)
Você acertou!
h′(x)=f′(g(x))g′(x)=e(x2+2)⋅2x=2x⋅e(x2+2)h′(x)=f′(g(x))g′(x)=e(x2+2)⋅2x=2x⋅e(x2+2) (livro-base, capítulo 4).
	
	D
	h′(x)=(x2+2)e(x2+2)−1h′(x)=(x2+2)e(x2+2)−1
	
	E
	h′(x)=2x⋅e(x2+2)−1h′(x)=2x⋅e(x2+2)−1
Questão 7/10 - Análise Matemática
Observe o gráfico de uma função f(x)=(1+1x)xf(x)=(1+1x)x representado na figura a seguir.
 
 
 
 
 
Com base no gráfico da função f(x)=(1+1x)xf(x)=(1+1x)x  e nos conteúdos estudados no livro-base Análise Matemática, analise as afirmativas a seguir.
I. limx→∞f(x)=∞limx→∞f(x)=∞ e limx→−∞f(x)=−∞limx→−∞f(x)=−∞
II. limx→∞f(x)=elimx→∞f(x)=e e limx→−∞f(x)=−∞limx→−∞f(x)=−∞
III. limx→0+f(x)=1limx→0+f(x)=1 e limx→0−f(x)=∞limx→0−f(x)=∞
IV. limx→0+f(x)=−∞limx→0+f(x)=−∞ e limx→0−f(x)=∞limx→0−f(x)=∞
V. limx→0+f(x)=1limx→0+f(x)=1 e limx→∞f(x)=elimx→∞f(x)=e
São corretas apenas as afirmativas:
Nota: 10.0
	
	A
	III e V
Você assinalou essa alternativa (A)
Você acertou!
A afirmativa I está incorreta porque limx→∞f(x)=elimx→∞f(x)=e e limx→−∞f(x)=elimx→−∞f(x)=e. A afirmativa II está incorreta porque limx→−∞f(x)=elimx→−∞f(x)=e. A afirmativa III está correta. A afirmativa IV está incorreta porque limx→0+f(x)=1limx→0+f(x)=1. A afirmativa V está correta (livro-base, Capítulo 3).
	
	B
	I e III
	
	C
	I e IV
	
	D
	II e V
	
	E
	II, III e V
Questão 8/10 - Análise Matemática
Considere o seguinte trecho de texto a seguir:
“A soma de uma série é o limite da sequência de somas parciais. Deste modo, quando escrevemos ∑∞n=1an=s∑n=1∞an=s, queremos dizer que, somando um número suficientes de termos da série, podemos chegar tão perto quanto quisermos do número ss. Observe que ∑∞n=1an=limn→∞∑ni=1ai∑n=1∞an=limn→∞∑i=1nai”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
STEWART, J. Cálculo. 6. ed. São Paulo: Cengage Learning , v. 2. 2011. p. 653.
De acordo com os conteúdos do livro-base Análise Matemática referentes à séries numéricas, assinale a alternativa que contém apenas séries convergentes.
Nota: 10.0
	
	A
	∑∞n=11n∑n=1∞1n, ∑∞n=11n2∑n=1∞1n2, ∑∞n=1n∑n=1∞n
	
	B
	
∑∞n=11n2∑n=1∞1n2, ∑∞n=12n+1∑n=1∞2n+1, ∑∞n=11n∑n=1∞1n
	
	C
	∑∞n=11n2∑n=1∞1n2, ∑∞n=112n+1∑n=1∞12n+1, ∑∞n=1(−1)nn∑n=1∞(−1)nn
Você assinalou essa alternativa (C)
Você acertou!
A série ∑∞n=11n2∑n=1∞1n2  é uma p-série com p=2>1p=2>1, logo, é convergente. A série ∑∞n=112n+1∑n=1∞12n+1 é uma série geométrica com |p|=12<1|p|=12<1, logo, converge. A série ∑∞n=1(−1)nn∑n=1∞(−1)nn converge pelo teste de Leibniz. (livro-base, capítulo 2).
	
	D
	∑∞n=11n∑n=1∞1n, ∑∞n=11n2∑n=1∞1n2, ∑∞n=11n3∑n=1∞1n3
	
	E
	∑∞n=1n3∑n=1∞n3, ∑∞n=1n2∑n=1∞n2, ∑∞n=1n∑n=1∞n
Questão 9/10 - Análise Matemática
Leia a passagem de texto a seguir: 
“No conjunto dos números naturais, que, segundo o matemático Leopold Kronecker (1823–1891), foi criado por Deus (o resto foi criado pelo homem, complementava ele), a diferença entre a e b só está definida se a≥ba≥b . Mas há questões envolvendo a ideia de subtração de números naturais em que o minuendo é menor que o subtraendo – por exemplo, gastar mais do que se tem. Para enfrentar essas questões, foi preciso ampliar o conjunto dos números naturais, com a adjunção de novos números, os números inteiros negativos, introduzidos a princípio para possibilitar uma resposta a uma subtração qualquer de dois elementos de N”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: DOMINGUES, H. H.; IEZZI, G. Álgebra Moderna. 4. ed. reform. São Paulo: Atual, 2003. p. 29.
Conforme os conteúdos do livro-base Análise Matemática sobre a construção dos números inteiros, analise as assertivas que seguem e marque V para as asserções verdadeiras e F para as asserções falsas.
I. ( ) A operação de adição definida para o conjunto dos números inteiros é associativa e comutativa.
II. ( ) Cada elemento do conjunto dos números inteiros possui um inverso multiplicativo.
III. ( ) A classe de equivalência que representa o número zero é formada pelos pares ordenados que possuem o número zero em uma de suas coordenadas.
IV. ( ) O conjunto dos números inteiros é definido por meio de classes de equivalência da relação do conjunto N∪{0}XN∪{0}N∪{0}XN∪{0}.
Agora, assinale a alternativa que representa a sequência correta:
Nota: 10.0
	
	A
	V – V – V – F
	
	B
	V – F – F – V
Você assinalou essa alternativa (B)
Você acertou!
	
	C
	F – F – V – V
	
	D
	V – V – F – F
	
	E
	V – V – F – V
Questão 10/10 - Análise Matemática
Leia o seguinte fragmento de texto:
 
“Diz-se que a sequência (xn)(xn) é limitada quando o conjunto dos seus termos é limitado, isto é, quando existem números reais aa e bb tais que a≤(xn)≤ba≤(xn)≤b para todo n∈Nn∈N”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
LIMA, E. L., Curso de Análise. 14. ed. v 1. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada, 2013. p. 101.
De acordo com estas informações e os conteúdos do livro-base Análise Matemática, assinale a afirmativa correta:
Nota: 10.0
	
	A
	A sequência (sin(n)n)n∈N(sin⁡(n)n)n∈N é divergente
	
	B
	limsin(n)n=0limsin⁡(n)n=0
Você assinalou essa alternativa (B)
Você acertou!
A alternativa correta é a letra b), pois lim1n=0lim1n=0 e (sin(n))(sin⁡(n)) é uma sequência limitada. (livro-base, Capítulo 2)
	
	C
	∣∣sin(n)n∣∣≤12|sin⁡(n)n|≤12, para todo n∈Nn∈N
	
	D
	limsin(n)n=1limsin⁡(n)n=1
	
	E
	A sequência (sin(n)n)n∈N(sin⁡(n)n)n∈N  é limitada.
Questão 1/10 - Análise Matemática
“Em vários problemas da Matemática e das duas aplicações busca-se uma função que cumpra certas condições dadas. É frequente, nestes casos, obter-se uma sequência de funções cada uma das quais cumpre as condições exigidas apenas aproximadamente, porém com aproximações cada vez melhores.” 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
LIMA, E.L. Análise Real. 4. ed. Rio de Janeiro: IMPA, 1999. p. 151.
De acordo com os conteúdos do livro-base Análise Matemática, assinale a alternativa correta.
Nota: 0.0Você não pontuou essa questão
	
	A
	Na convergência simples o valor de NN encontrado não depende de nenhum valor atribuído.
	
	B
	A sequência de Cauchy está relacionada é um exemplo de convergência simples.
	
	C
	Na convergência uniforme o valor de NN a ser encontrado deve depender apenas do valor de εε.
Consequência da definição da convergência uniforme em contraposição à convergência simples onde NN depende dos valores dados para εε e xx. (livro-base p.167-168)
	
	D
	Geometricamente qualquer sequência de funções fnfn converge de forma simples para outras funções sendo dependente de εε e xx.
	
	E
	Seja (fn)(fn) uma sequência de funções com fn:[a,b]→Rfn:[a,b]→R que converge uniformemente para uma função f:[a,b]→Rf:[a,b]→R. Se cada função fnfn é integrável então ff não tem primitiva.
Questão 2/10 - Análise Matemática
Considere o seguinte trecho de texto a seguir:
“A soma de uma série é o limite da sequência de somas parciais. Deste modo, quando escrevemos ∑∞n=1an=s∑n=1∞an=s, queremos dizer que, somando um número suficientes de termos da série, podemos chegar tão perto quanto quisermos do número ss. Observe que ∑∞n=1an=limn→∞∑ni=1ai∑n=1∞an=limn→∞∑i=1nai”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
STEWART, J. Cálculo. 6. ed. São Paulo: Cengage Learning , v. 2. 2011. p. 653.
De acordo com os conteúdos do livro-base Análise Matemática referentes à séries numéricas, assinale a alternativa que contém apenas séries convergentes.
Nota: 0.0Você não pontuou essa questão
	
	A
	∑∞n=11n∑n=1∞1n, ∑∞n=11n2∑n=1∞1n2, ∑∞n=1n∑n=1∞nB
	
∑∞n=11n2∑n=1∞1n2, ∑∞n=12n+1∑n=1∞2n+1, ∑∞n=11n∑n=1∞1n
	
	C
	∑∞n=11n2∑n=1∞1n2, ∑∞n=112n+1∑n=1∞12n+1, ∑∞n=1(−1)nn∑n=1∞(−1)nn
A série ∑∞n=11n2∑n=1∞1n2  é uma p-série com p=2>1p=2>1, logo, é convergente. A série ∑∞n=112n+1∑n=1∞12n+1 é uma série geométrica com |p|=12<1|p|=12<1, logo, converge. A série ∑∞n=1(−1)nn∑n=1∞(−1)nn converge pelo teste de Leibniz. (livro-base, capítulo 2).
	
	D
	∑∞n=11n∑n=1∞1n, ∑∞n=11n2∑n=1∞1n2, ∑∞n=11n3∑n=1∞1n3
	
	E
	∑∞n=1n3∑n=1∞n3, ∑∞n=1n2∑n=1∞n2, ∑∞n=1n∑n=1∞n
Questão 3/10 - Análise Matemática
Leia o fragmento de texto a seguir:
 
“Utilizaremos, porém, com frequência cada vez maior, a linguagem geométrica segundo a qual nos referimos ao corpo RR como ‘a reta’, diremos ‘ponto’ em vez de ‘número real’, traduziremos ‘a<ba<b’ por ‘aa está à esquerda de bb’, dados x,y∈Rx,y∈R, interpretaremos o valor absoluto |x−y||x−y| como ‘distância do ponto xx ao ponto yy’ e, finalmente, veremos o intervalo [a,b][a,b] como o segmento de reta cujos extremos são os pontos aa e bb.”
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
LIMA, E. L., Curso de Análise. 14. ed. v 1. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada, 2013. p. 162.
 
Conforme os conteúdos do livro-base Análise Matemática sobre noções topológicas da reta, analise as afirmativas a seguir e marque V para as afirmativas verdadeiras e F para as afirmativas falsas.
 
I.   ( ) O ponto x=1x=1 é um ponto interior do conjunto X={1}∪[32 , 2]X={1}∪[32 , 2].
II.  ( ) O conjunto X={n | n∈N}X={n | n∈N} não possui pontos de acumulação.
III. ( ) O ponto x=0x=0 é um ponto de acumulação do conjunto X={12 | n∈N}X={12 | n∈N}.
IV.  ( ) O ponto x=0x=0 é um ponto de aderência do conjunto X={12 | n∈N}X={12 | n∈N}.
 
Assinale a alternativa que contém a sequência correta:
Nota: 0.0Você não pontuou essa questão
	
	A
	V-V-F-V
	
	B
	F-F-V-V
	
	C
	V-F-F-V
	
	D
	V-F-V-F
	
	E
	F-V-V-V
A alternativa que contém a sequência correta é a letra e). A afirmativa I está incorreta, pois qualquer intervalo centrado em x=1x=1 não está contido no conjunto XX. A afirmativa II está correta, pois para qualquer x∈Rx∈R, com x∉Xx∉X, é fácil ver que existem vizinhanças de xx que não contém pontos de XX e para os pontos x∈Xx∈X, existem vizinhanças de xx que contém apenas o ponto xx. Logo, não existem pontos de acumulação. A afirmativa III está correta, pois qualquer vizinhança de zero contém um ponto diferente de zero que pertence ao conjunto XX. A afirmativa IV está correta pois zero é o limite da sequência (1n)(1n) que é formada por pontos de XX. (livro-base, Capítulo 3).
Questão 4/10 - Análise Matemática
Consideremos a função f:R→Rf:R→R dada por f(x)={x2+1, x≤12x, x>1f(x)={x2+1, x≤12x, x>1.
Com base nos conteúdos do livro-base Análise Matemática a respeito de funções contínuas e deriváveis, é correto afirmar que:
 
Nota: 0.0Você não pontuou essa questão
	
	A
	Em x=1x=1, ff é contínua, mas não é derivável.
	
	B
	Em x=1x=1, ff é derivável, mas não é contínua.
	
	C
	Em x=1x=1, ff possui limites laterais, mas são diferentes.
	
	D
	Em x=1x=1, ff é contínua e é derivável.
Temos que limx→1+f(x)=limx→1+2x=2⋅1=2=f(1)limx→1+f(x)=limx→1+2x=2⋅1=2=f(1) e limx→1−f(x)=limx→1−(x2+1)=1+1=2=f(1)limx→1−f(x)=limx→1−(x2+1)=1+1=2=f(1). Portanto, ff é contínua em x=1x=1. Além disso, temos que limx→1+f(x)−f(1)x−1=limx→1+f(x)=2x−2x−1=2limx→1+f(x)−f(1)x−1=limx→1+f(x)=2x−2x−1=2 e limx→1−f(x)−f(1)x−1=limx→1−f(x)=(x2+1)−2x−1=limx→1−(x+1)=2limx→1−f(x)−f(1)x−1=limx→1−f(x)=(x2+1)−2x−1=limx→1−(x+1)=2 Logo, ff é derivável em x=1x=1 e f′(1)=2f′(1)=2 (livro-base, Capítulo 4).
	
	E
	Em x=1x=1, ff não é contínua nem é derivável.
 
Questão 5/10 - Análise Matemática
Leia o excerto de texto a seguir. 
“Para que tenha sentido determinar o limite ou indagar sobre a continuidade de uma função, e o domínio e o contradomínio da mesma devem possuir um certo tipo de estrutura, tornando-se o que se chama um ‘espaço topológico’. Em outras palavras, espaços topológicos são conjuntos equipados com estruturas tais que entre eles tem sentido falar em limites e continuidades de funções”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: Lima, E. L. Curso de Análise. v. 1. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada,  2013. p. 161. 
Conforme os conteúdos do livro-base Análise Matemática com respeito à conceitos topológicos, enumere, na ordem sequencial, as definições – em linguagem não formal – que se relacionam a cada um dos elementos a seguir:
 
1. Conjunto aberto
2. Ponto interior
3. Conjunto fechado
4. Ponto de acumulação
5. Conjunto compacto
6. Ponto aderente
 
( ) É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele.
( ) É todo conjunto que é simultaneamente fechado e limitado.
( ) É um conjunto tal que todos os pontos aderentes pertencem à ele.
( ) É um ponto que possui uma vizinhança inteiramente contida no conjunto.
( ) É um ponto que é limite de uma sequencia de elementos do conjunto.
( ) É um conjunto onde todos os seus pontos são interiores.
 
Agora marque a sequência correta:
 
Nota: 0.0Você não pontuou essa questão
	
	A
	6 – 5 – 3 – 4 – 2 – 1
	
	B
	4 – 1 – 5 – 6 – 2 – 3
	
	C
	2 – 5 – 1 – 6 – 4 – 3
	
	D
	6 – 3 – 1 – 2 – 4 – 5
	
	E
	4 – 5 – 3 – 2 – 6 – 1
A sequência correta é 4 – 5 – 3 – 2 – 6 – 1. Segundo o livro-base: “1. Conjunto aberto – É um conjunto onde todos os seus pontos são interiores. 2. Ponto interior – É um ponto que possui uma vizinhança inteiramente contida no conjunto. 3. Conjunto fechado – É um conjunto tal que todos os pontos aderentes pertencem à ele. 4. Ponto de acumulação – É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele. 5. Conjunto compacto – É todo conjunto que é simultaneamente fechado e limitado. 6. Ponto aderente – É um ponto que é limite de uma sequencia de elementos do conjunto” (livro-base, Capítulo 3).
Questão 6/10 - Análise Matemática
Considere a seguinte série numérica conhecida por série geométrica:
∑∞n=0rn=1+r+r2+r3+⋯∑n=0∞rn=1+r+r2+r3+⋯
 
Com base nos conteúdos do livro-base Análise Matemática a respeito de séries numéricas, analise as afirmativas a seguir e marque V para as verdadeiras e F para as falsas.
 
I.   ( ) A sequência de termos (rn)(rn) da série geométrica converge para zero para todo r∈Rr∈R
II.  ( ) A soma parcial dos temos da série da geométrica Sn=1+r+r2+⋯+rnSn=1+r+r2+⋯+rn é igual a 1−rn+11−r1−rn+11−r .
III. ( ) A série geométrica diverge para |r|≥1|r|≥1
IV.  ( ) ∑∞n=0(12)n=2∑n=0∞(12)n=2
Agora, assinale a alternativa que apresenta a sequência correta:
Nota: 0.0Você não pontuou essa questão
	
	A
	V-V-V-F
	
	B
	V-F-V-F
	
	C
	F-V-V-F
	
	D
	F-V-V-V
A alternativa que apresenta a sequência correta é a letra d). A afirmativa I é falsa porque a sequência dos termos diverge se |r|≥1|r|≥1. A afirmativa II é verdadeira pois SnSn é a soma dos termos de uma progressão geométrica. A afirmativa III é verdadeira pois se |r|≥1|r|≥1, a sequencia dos termos não converge para zero, logo, a série diverge. A afirmativa IV é verdadeira, pois a série é geométrica com r=12r=12. Logo, ∑∞n=0(12)n=11−12=112=2∑n=0∞(12)n=11−12=112=2. (livro-base, Capítulo 2).
	
	E
	F-V-F-V
Questão 7/10 - Análise Matemática
Considere o trecho de texto a seguir:
"Sejam f:X→Rf:X→R e a∈Xa∈X. O quociente q(x)=f(x)−f(a)x−aq(x)=f(x)−f(a)x−a tem sentido para x≠ax≠a, logo define uma função q:X−{a}→Rq:X−{a}→R, cujo valor q(x)q(x) é a inclinação da secante (reta que liga os pontos (a,f(a))(a,f(a)) e (x,f(x))(x,f(x)) no gráfico de ff em relação ao eixo xx."
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p. 88.}
Conforme os conteúdos estudados no livro-base Análise Matemática, analise as afirmativas a seguir e marque V para as afirmativas verdadeiras, e F para as afirmativas falsas.
I. ( ) Dizemos que uma função X→RX→R é derivável em XX quando é derivável em todos os pontos de xx pertencentesa XX.
II. ( ) Sejam X⊂RX⊂R, f:X→Rf:X→R e x0x0 um ponto de acumulação de XX pertencente ao conjunto XX. Assim a função ff é derivável no ponto x0x0 quando existe o limite a seguir: f′(x)=limx→x0f(x)−f(x0)x−x0f′(x)=limx→x0f(x)−f(x0)x−x0
III. ( ) Informalmente podemos dizer que a noção geométrica da derivada f′(x0)f′(x0) é a inclinação da reta tangente à função ff no ponto x0x0.
Agora marque a sequência correta:
Nota: 0.0Você não pontuou essa questão
	
	A
	F – F – F
	
	B
	F – V – V
	
	C
	V – V – F
	
	D
	F – V – F
	
	E
	V – V – V
A afirmativa I é verdadeira por ser uma consequência da definição(p.111). A afirmativa II é correta pois expressa a definição de derivada em um ponto (p.111) e a afirmativa III é correta porque corresponde à interpretação geométrica da derivada(livro base - p.111 e 112).
Questão 8/10 - Análise Matemática
Considere o trecho de texto a seguir:
 “Um espírito mais crítico indagaria sobre a existência dos números reais, ou seja, se realmente se conhece algum exemplo de corpo ordenado completo. Em outras palavras: partindo dos números naturais (digamos, apresentados através dos axiomas de Peano) seria possível, por meio de extensões sucessivas do conceito de número, chegar à construção dos números reais? A resposta é afirmativa. Isto pode ser feito de várias maneiras. A passagem crucial é dos racionais para os reais, a qual pode seguir o método dos cortes de Dedekind ou das sequências de Cauchy [...], para citar apenas os dois mais populares”.
 Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: LIMA, E. L. Curso de Análise. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada, 2013. v. 1. p. 60.
 
Conforme os conteúdos estudados no livro-base Análise Matemática, analise as afirmativas a seguir e marque V para as afirmativas verdadeiras e F para as afirmativas falsas.
         I.( ) A relação de equivalência que permite a construção dos números racionais dá a esse conjunto a propriedade de seus elementos possuírem um inverso multiplicativo, exceto ao elemento neutro da adição.
        II.( ) Os cortes de Dedekind são subconjuntos próprios do conjunto dos números racionais com algumas propriedades.
       III. ( ) O conjunto Xα={x∈Q∣x2<1}Xα={x∈Q∣x2<1} é um corte de Dedekind.
       IV. ( ) Pelos axiomas de Peano constrói-se o conjunto dos números naturais, partindo de um conjunto denominado  NN e uma função denominada de função sucessor.
 
Agora marque a sequência correta:
Nota: 0.0Você não pontuou essa questão
	
	A
	a) F – V – V – V
	
	B
	b) V – F – F – V
	
	C
	c) F – V – F – V
	
	D
	d) V – F – V – V
	
	E
	e) V – V – F – V
A afirmativa I é verdadeira pois, se x∈Qx∈Q, então x=¯¯¯¯¯¯¯¯¯¯¯¯(a,b) a,b∈Z,b≠0x=(a,b)¯ a,b∈Z,b≠0. Se a≠0a≠0, então, xx não é o elemento neutro da adição e y=¯¯¯¯¯¯¯¯¯¯¯¯(b,a)∈Qy=(b,a)¯∈Q. Temos que ¯¯¯¯¯¯¯¯¯¯¯¯(a,b)⋅¯¯¯¯¯¯¯¯¯¯¯¯(b,a)=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(ab,ba)=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(ab,ab)=¯¯¯¯¯¯¯¯¯¯¯¯(1,1)(a,b)¯⋅(b,a)¯=(ab,ba)¯=(ab,ab)¯=(1,1)¯. Como ¯¯¯¯¯¯¯¯¯¯¯¯(1,1)(1,1)¯ é o elemento neutro da multiplicação, temos que y=x−1y=x−1. A afirmativa II é verdadeira, pois se XαXα é um corte de Dedekind, então Xα⊂QXα⊂Q e Xα≠QXα≠Q por definição. A afirmativa III é falsa porque XαXα não contém todos os pontos menores que seus pontos. Basta ver que, por exemplo, 0∈Xα,−2<00∈Xα,−2<0, mas −2∉Xα−2∉Xα. A afirmativa IV é verdadeira por definição. (livro-base, capítulo 1).
Questão 9/10 - Análise Matemática
Observe a seguinte série numérica:
∑∞132k41−k∑1∞32k41−k
Com base nos conteúdos estudados no livro-base Análise Matemática sobre a convergência de séries numéricas, assinale a única alternativa correta a respeito da série mostrada acima.
Nota: 0.0Você não pontuou essa questão
	
	A
	A série converge para 9494
	
	B
	A série converge para 3434
	
	C
	A série diverge.
reescrevendo a série, temos: ∑∞132k41−k=∑∞19k4k−1=∑∞19(94)k−1∑1∞32k41−k=∑1∞9k4k−1=∑1∞9(94)k−1. Logo, essa é uma série geométrica com r=94>1r=94>1. Portanto, a série diverge. (livro-base, Capítulo 2).
	
	D
	A série diverge para 4343 
	
	E
	A série converge para 12.
Questão 10/10 - Análise Matemática
O primeiro fato a destacar sobre uma série de potências ∑∞nan(x−x0)n∑n∞an(x−x0)n é que o conjunto de valores de xx para os quais ela converge é um intervalo de centro x0x0. Esse intervalo  pode ser limitado (aberto, fechado ou semi-aberto), igual a RR  ou até mesmo reduzir-se a um único ponto.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p.159.
Considere a expansão da série de potências ex=∑∞n=0xnn!=1+x1!+x22!+x33!+⋯(x∈R)ex=∑n=0∞xnn!=1+x1!+x22!+x33!+⋯(x∈R)
Assinale a alternativa que contém os valores para x=1.
Nota: 0.0Você não pontuou essa questão
	
	A
	e=∑∞n=01n!=1−11+12−16+⋯e=∑n=0∞1n!=1−11+12−16+⋯
	
	B
	e=∑∞n=01n!=1+11+12+16+⋯e=∑n=0∞1n!=1+11+12+16+⋯
A alternativa correta é a letra b. Substituindo os valores de n no somatório temos: e=∑∞n=01n!=1+11!+122!+133!+⋯⇒e=∑∞n=01n!=1+11+12+16+⋯e=∑n=0∞1n!=1+11!+122!+133!+⋯⇒e=∑n=0∞1n!=1+11+12+16+⋯(livro-base p. 185).
	
	C
	e=∑∞n=01n!=1+13+15+⋯e=∑n=0∞1n!=1+13+15+⋯
	
	D
	e=∑∞n=01n!=1−13+15−⋯e=∑n=0∞1n!=1−13+15−⋯
	
	E
	e=∑∞n=02nn!=1+23+34+⋯e=∑n=0∞2nn!=1+23+34+⋯
Questão 1/10 - Análise Matemática
Considere a seguinte série numérica conhecida por série geométrica:
∑∞n=0rn=1+r+r2+r3+⋯∑n=0∞rn=1+r+r2+r3+⋯
 
Com base nos conteúdos do livro-base Análise Matemática a respeito de séries numéricas, analise as afirmativas a seguir e marque V para as verdadeiras e F para as falsas.
 
I.   ( ) A sequência de termos (rn)(rn) da série geométrica converge para zero para todo r∈Rr∈R
II.  ( ) A soma parcial dos temos da série da geométrica Sn=1+r+r2+⋯+rnSn=1+r+r2+⋯+rn é igual a 1−rn+11−r1−rn+11−r .
III. ( ) A série geométrica diverge para |r|≥1|r|≥1
IV.  ( ) ∑∞n=0(12)n=2∑n=0∞(12)n=2
Agora, assinale a alternativa que apresenta a sequência correta:
Nota: 0.0Você não pontuou essa questão
	
	A
	V-V-V-F
	
	B
	V-F-V-F
	
	C
	F-V-V-F
	
	D
	F-V-V-V
A alternativa que apresenta a sequência correta é a letra d). A afirmativa I é falsa porque a sequência dos termos diverge se |r|≥1|r|≥1. A afirmativa II é verdadeira pois SnSn é a soma dos termos de uma progressão geométrica. A afirmativa III é verdadeira pois se |r|≥1|r|≥1, a sequencia dos termos não converge para zero, logo, a série diverge. A afirmativa IV é verdadeira, pois a série é geométrica com r=12r=12. Logo, ∑∞n=0(12)n=11−12=112=2∑n=0∞(12)n=11−12=112=2. (livro-base, Capítulo 2).
	
	E
	F-V-F-V
Questão 2/10 - Análise Matemática
Observe o gráfico de uma função f(x)=(1+1x)xf(x)=(1+1x)x representado na figura a seguir.
 
 
 
 
 
Com base no gráfico da função f(x)=(1+1x)xf(x)=(1+1x)x  e nos conteúdos estudados no livro-base Análise Matemática, analise as afirmativas a seguir.
I. limx→∞f(x)=∞limx→∞f(x)=∞ e limx→−∞f(x)=−∞limx→−∞f(x)=−∞
II. limx→∞f(x)=elimx→∞f(x)=e e limx→−∞f(x)=−∞limx→−∞f(x)=−∞
III. limx→0+f(x)=1limx→0+f(x)=1 e limx→0−f(x)=∞limx→0−f(x)=∞
IV. limx→0+f(x)=−∞limx→0+f(x)=−∞ e limx→0−f(x)=∞limx→0−f(x)=∞
V. limx→0+f(x)=1limx→0+f(x)=1 e limx→∞f(x)=elimx→∞f(x)=e
São corretas apenas as afirmativas:
Nota: 0.0Você não pontuou essa questão
	
	A
	III e V
A afirmativa I está incorreta porque limx→∞f(x)=elimx→∞f(x)=e e limx→−∞f(x)=elimx→−∞f(x)=e. A afirmativa II está incorreta porque limx→−∞f(x)=elimx→−∞f(x)=e. A afirmativa III está correta. A afirmativa IV está incorreta porque limx→0+f(x)=1limx→0+f(x)=1. A afirmativa V está correta (livro-base, Capítulo 3).
	
	B
	I e III
	
	C
	I e IV
	
	D
	II e V
	
	E
	II, III e V
Questão 3/10 - Análise Matemática
“Em vários problemas da Matemática e das duas aplicações busca-se uma função que cumpra certas condições dadas. É frequente, nestes casos, obter-se uma sequência de funções cada uma das quais cumpre as condições exigidas apenas aproximadamente, porém com aproximações cada vez melhores.” 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
LIMA, E.L. Análise Real. 4. ed. Rio deJaneiro: IMPA, 1999. p. 151.
De acordo com os conteúdos do livro-base Análise Matemática, assinale a alternativa correta.
Nota: 0.0Você não pontuou essa questão
	
	A
	Na convergência simples o valor de NN encontrado não depende de nenhum valor atribuído.
	
	B
	A sequência de Cauchy está relacionada é um exemplo de convergência simples.
	
	C
	Na convergência uniforme o valor de NN a ser encontrado deve depender apenas do valor de εε.
Consequência da definição da convergência uniforme em contraposição à convergência simples onde NN depende dos valores dados para εε e xx. (livro-base p.167-168)
	
	D
	Geometricamente qualquer sequência de funções fnfn converge de forma simples para outras funções sendo dependente de εε e xx.
	
	E
	Seja (fn)(fn) uma sequência de funções com fn:[a,b]→Rfn:[a,b]→R que converge uniformemente para uma função f:[a,b]→Rf:[a,b]→R. Se cada função fnfn é integrável então ff não tem primitiva.
Questão 4/10 - Análise Matemática
Considere o seguinte trecho de texto a seguir:
“A soma de uma série é o limite da sequência de somas parciais. Deste modo, quando escrevemos ∑∞n=1an=s∑n=1∞an=s, queremos dizer que, somando um número suficientes de termos da série, podemos chegar tão perto quanto quisermos do número ss. Observe que ∑∞n=1an=limn→∞∑ni=1ai∑n=1∞an=limn→∞∑i=1nai”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
STEWART, J. Cálculo. 6. ed. São Paulo: Cengage Learning , v. 2. 2011. p. 653.
De acordo com os conteúdos do livro-base Análise Matemática referentes à séries numéricas, assinale a alternativa que contém apenas séries convergentes.
Nota: 0.0Você não pontuou essa questão
	
	A
	∑∞n=11n∑n=1∞1n, ∑∞n=11n2∑n=1∞1n2, ∑∞n=1n∑n=1∞n
	
	B
	
∑∞n=11n2∑n=1∞1n2, ∑∞n=12n+1∑n=1∞2n+1, ∑∞n=11n∑n=1∞1n
	
	C
	∑∞n=11n2∑n=1∞1n2, ∑∞n=112n+1∑n=1∞12n+1, ∑∞n=1(−1)nn∑n=1∞(−1)nn
A série ∑∞n=11n2∑n=1∞1n2  é uma p-série com p=2>1p=2>1, logo, é convergente. A série ∑∞n=112n+1∑n=1∞12n+1 é uma série geométrica com |p|=12<1|p|=12<1, logo, converge. A série ∑∞n=1(−1)nn∑n=1∞(−1)nn converge pelo teste de Leibniz. (livro-base, capítulo 2).
	
	D
	∑∞n=11n∑n=1∞1n, ∑∞n=11n2∑n=1∞1n2, ∑∞n=11n3∑n=1∞1n3
	
	E
	∑∞n=1n3∑n=1∞n3, ∑∞n=1n2∑n=1∞n2, ∑∞n=1n∑n=1∞n
Questão 5/10 - Análise Matemática
Consideremos a função f:R→Rf:R→R dada por f(x)={x2+1, x≤12x, x>1f(x)={x2+1, x≤12x, x>1.
Com base nos conteúdos do livro-base Análise Matemática a respeito de funções contínuas e deriváveis, é correto afirmar que:
 
Nota: 0.0Você não pontuou essa questão
	
	A
	Em x=1x=1, ff é contínua, mas não é derivável.
	
	B
	Em x=1x=1, ff é derivável, mas não é contínua.
	
	C
	Em x=1x=1, ff possui limites laterais, mas são diferentes.
	
	D
	Em x=1x=1, ff é contínua e é derivável.
Temos que limx→1+f(x)=limx→1+2x=2⋅1=2=f(1)limx→1+f(x)=limx→1+2x=2⋅1=2=f(1) e limx→1−f(x)=limx→1−(x2+1)=1+1=2=f(1)limx→1−f(x)=limx→1−(x2+1)=1+1=2=f(1). Portanto, ff é contínua em x=1x=1. Além disso, temos que limx→1+f(x)−f(1)x−1=limx→1+f(x)=2x−2x−1=2limx→1+f(x)−f(1)x−1=limx→1+f(x)=2x−2x−1=2 e limx→1−f(x)−f(1)x−1=limx→1−f(x)=(x2+1)−2x−1=limx→1−(x+1)=2limx→1−f(x)−f(1)x−1=limx→1−f(x)=(x2+1)−2x−1=limx→1−(x+1)=2 Logo, ff é derivável em x=1x=1 e f′(1)=2f′(1)=2 (livro-base, Capítulo 4).
	
	E
	Em x=1x=1, ff não é contínua nem é derivável.
 
Questão 6/10 - Análise Matemática
Considere o trecho de texto a seguir:
 “Um espírito mais crítico indagaria sobre a existência dos números reais, ou seja, se realmente se conhece algum exemplo de corpo ordenado completo. Em outras palavras: partindo dos números naturais (digamos, apresentados através dos axiomas de Peano) seria possível, por meio de extensões sucessivas do conceito de número, chegar à construção dos números reais? A resposta é afirmativa. Isto pode ser feito de várias maneiras. A passagem crucial é dos racionais para os reais, a qual pode seguir o método dos cortes de Dedekind ou das sequências de Cauchy [...], para citar apenas os dois mais populares”.
 Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: LIMA, E. L. Curso de Análise. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada, 2013. v. 1. p. 60.
 
Conforme os conteúdos estudados no livro-base Análise Matemática, analise as afirmativas a seguir e marque V para as afirmativas verdadeiras e F para as afirmativas falsas.
         I.( ) A relação de equivalência que permite a construção dos números racionais dá a esse conjunto a propriedade de seus elementos possuírem um inverso multiplicativo, exceto ao elemento neutro da adição.
        II.( ) Os cortes de Dedekind são subconjuntos próprios do conjunto dos números racionais com algumas propriedades.
       III. ( ) O conjunto Xα={x∈Q∣x2<1}Xα={x∈Q∣x2<1} é um corte de Dedekind.
       IV. ( ) Pelos axiomas de Peano constrói-se o conjunto dos números naturais, partindo de um conjunto denominado  NN e uma função denominada de função sucessor.
 
Agora marque a sequência correta:
Nota: 0.0Você não pontuou essa questão
	
	A
	a) F – V – V – V
	
	B
	b) V – F – F – V
	
	C
	c) F – V – F – V
	
	D
	d) V – F – V – V
	
	E
	e) V – V – F – V
A afirmativa I é verdadeira pois, se x∈Qx∈Q, então x=¯¯¯¯¯¯¯¯¯¯¯¯(a,b) a,b∈Z,b≠0x=(a,b)¯ a,b∈Z,b≠0. Se a≠0a≠0, então, xx não é o elemento neutro da adição e y=¯¯¯¯¯¯¯¯¯¯¯¯(b,a)∈Qy=(b,a)¯∈Q. Temos que ¯¯¯¯¯¯¯¯¯¯¯¯(a,b)⋅¯¯¯¯¯¯¯¯¯¯¯¯(b,a)=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(ab,ba)=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(ab,ab)=¯¯¯¯¯¯¯¯¯¯¯¯(1,1)(a,b)¯⋅(b,a)¯=(ab,ba)¯=(ab,ab)¯=(1,1)¯. Como ¯¯¯¯¯¯¯¯¯¯¯¯(1,1)(1,1)¯ é o elemento neutro da multiplicação, temos que y=x−1y=x−1. A afirmativa II é verdadeira, pois se XαXα é um corte de Dedekind, então Xα⊂QXα⊂Q e Xα≠QXα≠Q por definição. A afirmativa III é falsa porque XαXα não contém todos os pontos menores que seus pontos. Basta ver que, por exemplo, 0∈Xα,−2<00∈Xα,−2<0, mas −2∉Xα−2∉Xα. A afirmativa IV é verdadeira por definição. (livro-base, capítulo 1).
Questão 7/10 - Análise Matemática
Leia o excerto de texto a seguir. 
“Para que tenha sentido determinar o limite ou indagar sobre a continuidade de uma função, e o domínio e o contradomínio da mesma devem possuir um certo tipo de estrutura, tornando-se o que se chama um ‘espaço topológico’. Em outras palavras, espaços topológicos são conjuntos equipados com estruturas tais que entre eles tem sentido falar em limites e continuidades de funções”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: Lima, E. L. Curso de Análise. v. 1. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada,  2013. p. 161. 
Conforme os conteúdos do livro-base Análise Matemática com respeito à conceitos topológicos, enumere, na ordem sequencial, as definições – em linguagem não formal – que se relacionam a cada um dos elementos a seguir:
 
1. Conjunto aberto
2. Ponto interior
3. Conjunto fechado
4. Ponto de acumulação
5. Conjunto compacto
6. Ponto aderente
 
( ) É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele.
( ) É todo conjunto que é simultaneamente fechado e limitado.
( ) É um conjunto tal que todos os pontos aderentes pertencem à ele.
( ) É um ponto que possui uma vizinhança inteiramente contida no conjunto.
( ) É um ponto que é limite de uma sequencia de elementos do conjunto.
( ) É um conjunto onde todos os seus pontos são interiores.
 
Agora marque a sequência correta:
 
Nota: 0.0Você não pontuou essa questão
	
	A
	6 – 5 – 3 – 4 – 2 – 1
	
	B
	4 – 1 – 5 – 6 – 2 – 3
	
	C
	2 – 5 – 1 – 6 – 4 – 3
	
	D
	6 – 3 – 1 – 2 – 4 – 5
	
	E
	4 – 5 – 3 – 2 – 6 – 1
A sequência correta é 4 – 5 – 3 – 2 – 6 – 1. Segundo o livro-base: “1. Conjunto aberto – É um conjunto onde todos os seus pontos são interiores. 2. Ponto interior – É um ponto que possui uma vizinhança inteiramente contida no conjunto. 3. Conjunto fechado – É um conjunto tal que todos os pontos aderentes pertencem à ele. 4. Ponto de acumulação – É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele. 5. Conjunto compacto – É todo conjunto que é simultaneamente fechado elimitado. 6. Ponto aderente – É um ponto que é limite de uma sequencia de elementos do conjunto” (livro-base, Capítulo 3).
Questão 8/10 - Análise Matemática
Observe o intervalo X=(−√2,√2 )X=(−2,2 ) representado na reta real:
 
 
Levando em consideração o intervalo dado e os conteúdos estudados no livro-base Análise Matemática sobre noções topológicas, analise as assertivas a seguir e marque V para as assertivas verdadeiras e F para as assertivas falsas.
 
I.   ( ) XX é um conjunto aberto.
II.  ( ) XX é um conjunto limitado.
III. ( ) XX  é um conjunto compacto.
IV.  ( ) XX é um conjunto fechado.
 
Agora, assinale a alternativa que representa a sequência correta.
Nota: 0.0Você não pontuou essa questão
	
	A
	V-V-F-F
A alternativa que apresenta a sequência correta é a letra a). A afirmativa I é verdadeira porque todo ponto do conjunto XX é ponto interior de XX. A afirmativa II é verdadeira porque existe R>0R>0, por exemplo, R=3R=3 tal que |x|<3|x|<3 para todo x∈Xx∈X. A afirmativa III é falsa porque o conjunto XX não é fechado e nem limitado. A afirmativa IV é falsa porque o complementar do conjunto XX não é aberto, por exemplo, x=√2x=2 pertence ao complementar de XX, mas não é ponto interior do complementar. (livro-base, p. 88-91).
	
	B
	V-V-V-F
	
	C
	F-F-V-V
	
	D
	F-V-F-F
	
	E
	V-F-V-F
Questão 9/10 - Análise Matemática
Leia o seguinte fragmento de texto: 
“Historicamente os inteiros negativos não foram os primeiros números a surgir dos naturais – as frações positivas vieram antes. Nem foram introduzidos de maneira estruturada e com bom acabamento matemático. Muito pelo contrário. Simplesmente surgiram”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: DOMINGUES, H. H.; IEZZI, G. Álgebra Moderna, 4. ed. reform. São Paulo: Atual, 2003. p. 29.
De acordo com os conteúdos do livro-base Análise Matemática a respeito dos números racionais, assinale a alternativa correta.
Nota: 0.0Você não pontuou essa questão
	
	A
	O conjunto dos números racionais, com as operações de adição e multiplicação usuais, é um corpo ordenado completo.
	
	B
	Existe uma bijeção entre o conjunto Nn= {1,2,...,n}  e o conjunto Q para algum nϵNnϵN.
	
	C
	Os cortes de Dedekind são subconjuntos do conjunto de números racionais.
	
	D
	O conjunto dos números racionais não é enumerável.
	
	E
	O número que satisfaz a equação  X2 = 2 é racional.
Questão 10/10 - Análise Matemática
Leia o fragmento de texto a seguir:
 
“Utilizaremos, porém, com frequência cada vez maior, a linguagem geométrica segundo a qual nos referimos ao corpo RR como ‘a reta’, diremos ‘ponto’ em vez de ‘número real’, traduziremos ‘a<ba<b’ por ‘aa está à esquerda de bb’, dados x,y∈Rx,y∈R, interpretaremos o valor absoluto |x−y||x−y| como ‘distância do ponto xx ao ponto yy’ e, finalmente, veremos o intervalo [a,b][a,b] como o segmento de reta cujos extremos são os pontos aa e bb.”
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
LIMA, E. L., Curso de Análise. 14. ed. v 1. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada, 2013. p. 162.
 
Conforme os conteúdos do livro-base Análise Matemática sobre noções topológicas da reta, analise as afirmativas a seguir e marque V para as afirmativas verdadeiras e F para as afirmativas falsas.
 
I.   ( ) O ponto x=1x=1 é um ponto interior do conjunto X={1}∪[32 , 2]X={1}∪[32 , 2].
II.  ( ) O conjunto X={n | n∈N}X={n | n∈N} não possui pontos de acumulação.
III. ( ) O ponto x=0x=0 é um ponto de acumulação do conjunto X={12 | n∈N}X={12 | n∈N}.
IV.  ( ) O ponto x=0x=0 é um ponto de aderência do conjunto X={12 | n∈N}X={12 | n∈N}.
 
Assinale a alternativa que contém a sequência correta:
Nota: 0.0Você não pontuou essa questão
	
	A
	V-V-F-V
	
	B
	F-F-V-V
	
	C
	V-F-F-V
	
	D
	V-F-V-F
	
	E
	F-V-V-V
A alternativa que contém a sequência correta é a letra e). A afirmativa I está incorreta, pois qualquer intervalo centrado em x=1x=1 não está contido no conjunto XX. A afirmativa II está correta, pois para qualquer x∈Rx∈R, com x∉Xx∉X, é fácil ver que existem vizinhanças de xx que não contém pontos de XX e para os pontos x∈Xx∈X, existem vizinhanças de xx que contém apenas o ponto xx. Logo, não existem pontos de acumulação. A afirmativa III está correta, pois qualquer vizinhança de zero contém um ponto diferente de zero que pertence ao conjunto XX. A afirmativa IV está correta pois zero é o limite da sequência (1n)(1n) que é formada por pontos de XX. (livro-base, Capítulo 3).
Questão 1/10 - Análise Matemática
Atente para o seguinte excerto de texto:
“A exclusão do ponto x=ax=a na definição de limite é natural, pois o limite LL nada tem a ver com o valor f(a)[...]f(a)[...]. O conceito de limite é introduzido para caracterizar o comportamento da função f(x)f(x) nas proximidades do valor aa, porém mantendo-se sempre diferente de aa. Assim, podemos mudar o valor da função no ponto como quisermos, sem que isso mude o valor do limite, e é assim mesmo que deve ser. Agora, se a função já está definida em aa, e seu valor aí coincide com seu limite, então ocorrerá a continuidade do ponto”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
ÁVILA, Geraldo. Análise Matemática para licenciatura. 3 ed. ver. e ampl. São Paulo: Edgard Blücher, 2006.  p. 143.
 
Com base no fragmento de texto dado e nos conteúdos do livro-base Análise Matemática sobre Limite e continuidade, analise as afirmativas a seguir:
 
I. Se ff é uma função contínua em um ponto x=ax=a do seu domínio, então, ff é limitada numa vizinhança de a.
II. Toda função que é limitada superiormente e inferiormente é contínua.
III. Se existe o limite de uma função f(x)f(x) quando xx se aproxima de um ponto aa, então, ff é contínua no ponto aa.
IV. Se uma função possui limites laterais iguais em um ponto x=ax=a, então existe o limite bilateral de f(x)f(x) quando x=ax=a.
São corretas as alternativas:
Nota: 10.0
	
	A
	I e II apenas
	
	B
	I, III e IV apenas
	
	C
	I e IV apenas
Você assinalou essa alternativa (C)
Você acertou!
A afirmativa I é verdadeira, pois se ff é contínua em aa, então existe limx→af(x)limx→af(x). Logo ff é limitada numa vizinhança de aa. (livro-base, p. 92). A afirmativa II é falsa, basta ver o seguinte exemplo: f(x)={1,x≤00,x>0f(x)={1,x≤00,x>0. A função ff é limitada, pois |f(x)|≤1|f(x)|≤1 para todo x∈Rx∈R, mas ff não é contínua em x=0x=0. A afirmativa III é falsa, basta ver o seguinte exemplo: f(x)=⎧⎨⎩x2−1x−1,x≠10x=1f(x)={x2−1x−1,x≠10x=1. Temos que .
A afirmativa I é verdadeira, pois se ff é contínua em aa, então existe limx→af(x)limx→af(x). Logo ff é limitada numa vizinhança de aa. (livro-base, p. 92). A afirmativa II é falsa, basta ver o seguinte exemplo: f(x)={1,x≤00,x>0f(x)={1,x≤00,x>0. A função ff é limitada, pois |f(x)|≤1|f(x)|≤1 para todo x∈Rx∈R, mas ff não é contínua em x=0x=0. A afirmativa III é falsa, basta ver o seguinte exemplo: f(x)=⎧⎨⎩x2−1x−1,x≠10x=1f(x)={x2−1x−1,x≠10x=1. Temos que limx→1−f(x)=limx→1−x2−1x−1=limx→1−x+1=2≠f(1)limx→1−f(x)=limx→1−x2−1x−1=limx→1−x+1=2≠f(1). A afirmativa IV é verdadeira, pois se
 limx→a+f(x)=L=limx→a−f(x)limx→a+f(x)=L=limx→a−f(x), então limx→af(x)=Llimx→af(x)=L  . (livro-base, p. 96).
	
	D
	II e IV apenas
	
	E
	II e III apenas
Questão 2/10 - Análise Matemática
O primeiro fato a destacar sobre uma série de potências ∑∞nan(x−x0)n∑n∞an(x−x0)n é que o conjunto de valores de xx para os quais ela converge é um intervalo de centro x0x0. Esse intervalo  pode ser limitado (aberto, fechado ou semi-aberto), igual a RR  ou até mesmo reduzir-se a um único ponto.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p.159.
Considere a expansão da série de potências ex=∑∞n=0xnn!=1+x1!+x22!+x33!+⋯(x∈R)ex=∑n=0∞xnn!=1+x1!+x22!+x33!+⋯(x∈R)
Assinale a alternativa que contém os valores para x=1.
Nota: 10.0
	
	A
	e=∑∞n=01n!=1−11+12−16+⋯e=∑n=0∞1n!=1−11+12−16+⋯
	
	B
	e=∑∞n=01n!=1+11+12+16+⋯e=∑n=0∞1n!=1+11+12+16+⋯
Você assinalouessa alternativa (B)
Você acertou!
A alternativa correta é a letra b. Substituindo os valores de n no somatório temos: e=∑∞n=01n!=1+11!+122!+133!+⋯⇒e=∑∞n=01n!=1+11+12+16+⋯e=∑n=0∞1n!=1+11!+122!+133!+⋯⇒e=∑n=0∞1n!=1+11+12+16+⋯(livro-base p. 185).
	
	C
	e=∑∞n=01n!=1+13+15+⋯e=∑n=0∞1n!=1+13+15+⋯
	
	D
	e=∑∞n=01n!=1−13+15−⋯e=∑n=0∞1n!=1−13+15−⋯
	
	E
	e=∑∞n=02nn!=1+23+34+⋯e=∑n=0∞2nn!=1+23+34+⋯
Questão 3/10 - Análise Matemática
Atente para a seguinte informação sobre topologia:
“Para que tenha sentido determinar o limite ou indagar sobre a continuidade de uma função, e o domínio e o contradomínio da mesma devem possuir um certo tipo de estrutura, tornando-se o que se chama um ‘espaço topológico’. Em outras palavras, espaços topológicos são conjuntos equipados com estruturas tais que entre eles tem sentido falar em limites e continuidades de funções”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: LIMA, E. L. Curso de Análise. v. 1. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada,  2013. p. 161.
Conforme os conteúdos do livro-base Análise Matemática sobre os conceitos topológicos, assinale a alternativa que melhor define, de maneira informal, ponto de acumulação de um conjunto. 
Nota: 10.0
	
	A
	É um ponto de um conjunto que é simultaneamente fechado e limitado.
	
	B
	É um ponto do conjunto tal que todos os pontos aderentes pertencem a ele.
	
	C
	É um ponto que possui uma vizinhança inteiramente contida no conjunto.
	
	D
	É um ponto que é limite de uma sequência de elementos do conjunto.
	
	E
	É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele.
Você assinalou essa alternativa (E)
Você acertou!
Definição de ponto de acumulação (livro-base, p. 89).
Questão 4/10 - Análise Matemática
Observe a seguir o gráfico da função f:X→Rf:X→R, dada por f(x)=x−2x2−1f(x)=x−2x2−1, onde X=R−{−1,1}X=R−{−1,1}:
Observando o gráfico da função f(x)=x−2x2−1f(x)=x−2x2−1 e considerando os conteúdos do livro-base Análise Matemática, analise as afirmativas a seguir.
I. Para todo ε>0ε>0, é possível encontrar δ>0δ>0 tal que x∈Xx∈X e 0<|x−2|<δ0<|x−2|<δ impliquem |f(x)|<ε|f(x)|<ε.
II. limx→∞f(x)=+∞limx→∞f(x)=+∞
III. Podemos dizer que quando xx se aproxima de 11 pela esquerda a função f(x)f(x) tende a +∞+∞.
IV. limx→−1+f(x)=+∞limx→−1+f(x)=+∞
V. Podemos dizer que não existe o limite de f(x)f(x) quando xx se aproxima de 1 porque 1 não é ponto de acumulação do conjunto XX.
São corretas apenas as afirmativas:
Nota: 10.0
	
	A
	I, II e V
	
	B
	II, III e IV
	
	C
	III e IV
	
	D
	I, III e IV
Você assinalou essa alternativa (D)
Você acertou!
As afirmativas I, III e IV são corretas. A afirmativa I é correta porque a função é contínua em x=2x=2 e f(2)=0f(2)=0. A afirmativa II é incorreta porque limx→+∞f(x)=0limx→+∞f(x)=0. A afirmativa III é correta porque dado M>0M>0 existe δ>0δ>0 tal que x∈Xx∈X e 0<|1−x|<δ0<|1−x|<δ implicam f(x)>Mf(x)>M. A afirmativa IV é correta porque dado M>0M>0 existe δ>0δ>0 tal que 0<x−(−1)<δ0<x−(−1)<δ implica que f(x)>Mf(x)>M. A afirmativa V está incorreta porque 1 é ponto de acumulação de XX. (livro-base, Capítulo 3).
	
	E
	I, IV e V
Questão 5/10 - Análise Matemática
Observe o intervalo X=(−√2,√2 )X=(−2,2 ) representado na reta real:
 
 
Levando em consideração o intervalo dado e os conteúdos estudados no livro-base Análise Matemática sobre noções topológicas, analise as assertivas a seguir e marque V para as assertivas verdadeiras e F para as assertivas falsas.
 
I.   ( ) XX é um conjunto aberto.
II.  ( ) XX é um conjunto limitado.
III. ( ) XX  é um conjunto compacto.
IV.  ( ) XX é um conjunto fechado.
 
Agora, assinale a alternativa que representa a sequência correta.
Nota: 10.0
	
	A
	V-V-F-F
Você assinalou essa alternativa (A)
Você acertou!
A alternativa que apresenta a sequência correta é a letra a). A afirmativa I é verdadeira porque todo ponto do conjunto XX é ponto interior de XX. A afirmativa II é verdadeira porque existe R>0R>0, por exemplo, R=3R=3 tal que |x|<3|x|<3 para todo x∈Xx∈X. A afirmativa III é falsa porque o conjunto XX não é fechado e nem limitado. A afirmativa IV é falsa porque o complementar do conjunto XX não é aberto, por exemplo, x=√2x=2 pertence ao complementar de XX, mas não é ponto interior do complementar. (livro-base, p. 88-91).
	
	B
	V-V-V-F
	
	C
	F-F-V-V
	
	D
	F-V-F-F
	
	E
	V-F-V-F
Questão 6/10 - Análise Matemática
Considere a seguinte função definida por partes:
        
                                                                      f(x)={3x,x<1x+2x≥1f(x)={3x,x<1x+2x≥1
Considerando a função dada e os conteúdos do livro-base Análise Matemática sobre Derivadas, assinale a única alternativa correta:
Nota: 10.0
	
	A
	A derivadas laterais são iguais a 1.
	
	B
	  
f′(1−)=3f′(1−)=3   e    f′(1+)=1f′(1+)=1
Você assinalou essa alternativa (B)
Você acertou!
Temos que f′(1−)=limx→1−f(x)−f(1)x−1=limx→1−3x−3x−1=3f′(1−)=limx→1−f(x)−f(1)x−1=limx→1−3x−3x−1=3 e f′(1+)=limx→1+f(x)−f(1)x−1=limx→1+x+2−3x−1=1f′(1+)=limx→1+f(x)−f(1)x−1=limx→1+x+2−3x−1=1 (livro-base, p. 128-129).
	
	C
	A função não tem derivadas laterais.
	
	D
	As derivadas laterais têm valores iguais.
	
	E
	Não existem os limites laterais de ff em x=1x=1.
Questão 7/10 - Análise Matemática
Atente para a seguinte citação:
 
“Foi enquanto se dedicava ao estudo de algumas destas funções que Fermat deu conta das limitações do conceito clássico de reta tangente a uma curva como sendo aquela que encontrava a curva num único ponto. Tornou-se assim importante reformular tal conceito e encontrar um processo de traçar uma tangente a um gráfico num dado ponto - esta dificuldade ficou conhecida na História da Matemática como o ‘Problema da Tangente’”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: <http://www.somatematica.com.br/historia/derivadas.php>. Acesso em: 20 jun. 2017.
 
De acordo com as informações dadas e os conteúdos do livro-base Análise Matemática sobre Derivadas, sendo f′(x0)=limx→x0[f(x)−f(x0)]x−x0f′(x0)=limx→x0[f(x)−f(x0)]x−x0, assinale a alternativa que contém o limite que devemos calcular para encontrar a derivada da função f(x)=x2−1f(x)=x2−1 no ponto x=2x=2:
Nota: 10.0
	
	A
	limx→2(x2−1)±5x−2limx→2(x2−1)±5x−2
	
	B
	limx→2(x2−1)−3x−2limx→2(x2−1)−3x−2
Você assinalou essa alternativa (B)
Você acertou!
Como f(2)=3f(2)=3 e f′(2)=limx→2f(x)−f(2)x−2f′(2)=limx→2f(x)−f(2)x−2 quando esse limite existir, então, limx→2(x2−1)−3x−2limx→2(x2−1)−3x−2(livro-base p.113-115)
	
	C
	limx→0(x2−1)−2x−2limx→0(x2−1)−2x−2
	
	D
	limx→2(x2−1)x−2limx→2(x2−1)x−2
	
	E
	limx→0(x2−1)xlimx→0(x2−1)x
Questão 8/10 - Análise Matemática
Considere a seguinte imagem:
Fonte: imagem elaborada pelo autor da questão.
Considerando o gráfico fornecido e os conteúdos estudados no livro-base Análise Matemática sobre Teoria da Integral, assinale a alternativa que contém a área da região compreendida entre o eixo xx  e o gráfico da função f(x)=x+2f(x)=x+2  no intervalo limitado por x=0x=0 e x=2x=2.
 
Nota: 10.0
	
	A
	2
	
	B
	3232
	
	C
	4
	
	D
	1414
	
	E
	6
Você assinalou essa alternativa (E)
Você acertou!
A área da região é dada por: A(D)=∫20(x+2)dx=(x22+2x)∣∣∣20=(222+2⋅2)−(022+2⋅0)=[(2+4)−0]=6A(D)=∫02(x+2)dx=(x22+2x)|02=(222+2⋅2)−(022+2⋅0)=[(2+4)−0]=6.    (livro-base, p. 156).
Questão 9/10 - Análise Matemática
“Informalmente: limx→af(x)=Llimx→af(x)=L quer dizer que se pode tornar f(x)f(x) tão próximo de LL quanto se queira desde que se tome x∈Xx∈X suficientemente próximo, porém diferente, de aa.”
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p. 61.}
De acordo com os conteúdos do livro-base Análise Matemática, assinale a alternativa correta.
Nota: 10.0
	
	A
	Seja f:R−{2}→Rf:R−{2}→R, f(x)=x+3f(x)=x+3, então o valor de limx→2(x+3)limx→2(x+3) é 11.
	
	B
	Seja f:X→Rf:X→R e x0∈X′x0∈X′. Assim, se limx→x0f(x)=L1limx→x0f(x)=L1 e limx→x0f(x)=L2limx→x0f(x)=L2, então L1≠L2L1≠L2.C
	Sejam as funções f:X→Rf:X→R e g:X→Rg:X→R. Se limx→x0f(x)=L1limx→x0f(x)=L1 e limx→x0g(x)=L1limx→x0g(x)=L1, então limx→x0f(x)g(x)=L1+L2limx→x0f(x)g(x)=L1+L2.
	
	D
	Seja a função f(x):X→Rf(x):X→R então limx→x0k⋅f(x)=limx→x0f(x)klimx→x0k⋅f(x)=limx→x0f(x)k.
	
	E
	Sejam ff e g:R−{2}→Rg:R−{2}→R definidas por f(x)=3x+1f(x)=3x+1 e g(x):x+1g(x):x+1 e os limites limx→2f(x)=7limx→2f(x)=7 e limx→2g(x)=3limx→2g(x)=3 então limx→23x+1x+1=limx→2(3x+1)limx→2(x+1)=73limx→23x+1x+1=limx→2(3x+1)limx→2(x+1)=73.
Você assinalou essa alternativa (E)
Você acertou!
Sejam as funções f:X→Rf:X→R e g:X→Rg:X→R. Se limx→x0f(x)=L1limx→x0f(x)=L1 e limx→x0g(x)=L2limx→x0g(x)=L2 com L2≠0L2≠0, então limx→x0f(x)g(x)=L1L2limx→x0f(x)g(x)=L1L2. (Livro-base p. 93 a 95)
Questão 10/10 - Análise Matemática
 Veja esta informação sobre relação de equivalência.
“O conceito de relação de equivalência é relevante para todos os ramos da Matemática. Em linhas gerais, tal conceito surge como uma forma de generalizar a relação de igualdade, no sentido de que, elementos de um dado conjunto, mesmo distintos, cumprem papel equivalente”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: VIEIRA, V. L. Álgebra Abstrata para Licenciatura. Campina Grande: EDUEPB, 2013. p. 18.
 
De acordo com os conteúdos do livro-base Análise Matemática sobre as relações entre conjunto, assinale a única alternativa que contém uma relação de equivalência do conjunto A={1,2,3,4,5}A={1,2,3,4,5}:
Nota: 10.0
	
	A
	R={(1,1),(2,2),(3,3),(4,4),(5,5),(1,3),(3,1)}R={(1,1),(2,2),(3,3),(4,4),(5,5),(1,3),(3,1)}
Você assinalou essa alternativa (A)
Você acertou!
Essa relação é reflexiva, pois (x,x)∈R, ∀x∈A(x,x)∈R, ∀x∈A. É simétrica pois para cada par (x,y)(x,y)que pertence à RR o seu simétrico (y,x)(y,x) também pertence à RR. E essa relação é transitiva, pois se os pares (x,y)(x,y) e (y,z)(y,z), então, o par (x,z)(x,z) também pertence à RR (livro-base, capítulo 1).
	
	B
	R={(1,1),(1,2),(2,2),(3,3),(4,4),(5,5),(1,5)}R={(1,1),(1,2),(2,2),(3,3),(4,4),(5,5),(1,5)}
	
	C
	R={(2,2),(3,3)}R={(2,2),(3,3)}
	
	D
	R={(1,1),(2,2),(3,3),(4,4),(2,1),(2,4)}R={(1,1),(2,2),(3,3),(4,4),(2,1),(2,4)}
	
	E
	R={(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3),(1,4)}R={(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(1,3),(1,4)}
Questão 1/10 - Análise Matemática
Leia o seguinte fragmento de texto:
 
“Diz-se que uma função ff, definida num intervalo aberto II, é derivável em x0∈Ix0∈I se existe e é finito o limite da razão incremental
                                                         f(x)−f(x0)x−x0f(x)−f(x0)x−x0
com x→x0x→x0. Esse limite é, por definição, a derivada da função ff no ponto x0x0. Para indicar esse limite, usam-se as notações
                                              f′(x0),   (∂f)(x0)  e  dfdx(x0),f′(x0),   (∂f)(x0)  e  dfdx(x0),
esta última sendo o quociente de diferenciais”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: ÁVILA, G. Ánálise Matemática para Licenciatura. 3. ed. São Paulo: Edgard Blücher, 2006. p. 175-176.
 
De acordo com o fragmento de texto dado e com os conteúdos do livro-base Análise Matemática a respeito das derivadas de funções reais, analise as assertivas a seguir e marque V para as assertivas verdadeiras e F para as assertivas falsas.
 
I. ( ) Uma função que é contínua em um ponto x0x0 do seu domínio possui derivada neste ponto.
II. ( ) Se duas funções f,g:I→Rf,g:I→R possuem derivada num ponto x0∈Ix0∈I, então a derivada da soma é igual à soma das derivadas.
III. ( ) Uma função f:I→Rf:I→R possui derivada num ponto de acumulação x0x0 do seu domínio se, e somente se, existe e é finito o limite limx→x0[f(x)−f(x0)]x−x0limx→x0[f(x)−f(x0)]x−x0.
IV. ( ) Informalmente, o valor da derivada em um ponto x0x0 de uma curva indica a inclinação da reta tangente à curva em x0x0.
Agora, assinale a alternativa que apresenta a sequência correta:
Nota: 0.0Você não pontuou essa questão
	
	A
	V-F-V-F
	
	B
	F-V-F-V
	
	C
	V-V-V-F
	
	D
	F-V-V-F
	
	E
	F-V-V-V
A alternativa que apresenta a sequência correta é a letra e). A afirmativa I é falsa, basta observar a função f(x)=|x|f(x)=|x|. Essa função é contínua em x=0x=0, porém, não é derivável em x=0x=0. A afirmativa II é verdadeira pela regra da soma. A afirmativa III é verdadeira, pois é a definição de derivada. A afirmativa IV é verdadeira, pois é a noção geométrica de derivada (livro-base, p. 112-121).
Questão 2/10 - Análise Matemática
Observe o gráfico da função f(x)=x2f(x)=x2 e da sua reta tangente no ponto x=1x=1.
Fonte: Imagem produzida pelo autor da questão.
 
Considerando as informações dadas e os conteúdos do livro-base Análise Matemática sobre Derivadas, assinale a alternativa que contém a equação da reta tangente ao gráfico da função f(x)f(x) no ponto x=1x=1:
Nota: 0.0Você não pontuou essa questão
	
	A
	y=−2x+1y=−2x+1
	
	B
	y=3x–32y=3x–32
	
	C
	y=2x–1y=2x–1
A alternativa correta é letra c. Temos que f′(x)=2xf′(x)=2x, logo, f′(1)=2f′(1)=2 é a inclinação da reta tangente. No ponto x=1x=1 temos y=f(1)=1y=f(1)=1. Assim a equação da reta tangente é: (y−1)=2(x−1)(y−1)=2(x−1), isto é: y=2x−1y=2x−1. (livro-base, p. 111-113).
	
	D
	y=−x+3y=−x+3
	
	E
	y=−x+4y=−x+4
Questão 3/10 - Análise Matemática
Considere o trecho de texto a seguir:
“Quando ff é integrável, sua integral ∫baf(x)dx∫abf(x)dx é o número real cujas aproximações por falta são as somas superiores s(f,P)s(f,P) e cujas aproximações por excesso são as somas superiores S(f,P)S(f,P).”
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p. 122.
Conforme os conteúdos estudados no livro-base Análise Matemática, analise as afirmativas a seguir e marque V para as afirmativas verdadeiras, e F para as afirmativas falsas.
I.   ( ) Pelo Teorema Fundamental do Cálculo podemos deduzir que ∫10x2dx=13∫01x2dx=13.
II.  ( ) Se uma integral é imprópria então ela não pode ser convergente.
III. ( ) Toda função contínua é integrável.
Agora marque a sequência correta:
Nota: 0.0Você não pontuou essa questão
	
	A
	F – F – F
	
	B
	F – V – V
	
	C
	V – V – F
	
	D
	V – F – V
A afirmativa I é verdadeira por ser uma consequência do Teorema Fundamental do Cálculo (p.156). A afirmativa II é falsa pois uma integral imprópria pode ser tanto convergente como divergente conforme a função e o intervalo considerado (p.161). A afirmativa III é verdadeira pois representa uma propriedade que tem recíproca falsa ou seja, uma função pode ser integrável e não ser contínua (livro-base p.143 e 144)
	
	E
	V – V – V
Questão 4/10 - Análise Matemática
Leia a seguinte afirmação:
 
Considere a função f:R→Rf:R→R dada por f(x)=3x+1f(x)=3x+1. Desde que ff é uma função contínua, temos que limx→2f(x)=f(2)=3⋅2+1=7limx→2f(x)=f(2)=3⋅2+1=7.
 
Fonte: Citação elaborada pelo autor da questão.
Levando em consideração o texto dado e os conteúdos do livro-base Análise Matemática sobre Limite e continuidade, assinale a alternativa que demonstra, usando a definição, o limite mostrado acima.
Nota: 0.0Você não pontuou essa questão
	
	A
	Dado ε>0ε>0, existe δ=ε3δ=ε3 tal que: 0<|x−2|<δ⇒|f(x)−7|<ε0<|x−2|<δ⇒|f(x)−7|<ε
Temos que |f(x)−7|=|3x+1−7|=|3x−6|=3|x−2|.|f(x)−7|=|3x+1−7|=|3x−6|=3|x−2|. Assim, se escolhermos δ=ε3δ=ε3, teremos que  0<|x−2|<δ⇒|f(x)−7|<ε0<|x−2|<δ⇒|f(x)−7|<ε. (livro-base, p.90).
	
	B
	Dado ε>0ε>0, existe δ=ε2δ=ε2 tal que: 0<|x−2|<δ⇒|f(x)−7|<ε0<|x−2|<δ⇒|f(x)−7|<ε
	
	C
	Dado ε>0ε>0, existe δ=ε3δ=ε3 tal que: 0<|x−7|<δ⇒|f(x)−2|<ε0<|x−7|<δ⇒|f(x)−2|<ε
	
	D
	Dado ε>0ε>0, existe δ=ε2δ=ε2 tal que: 0<|x−7|<δ⇒|f(x)−2|<ε0<|x−7|<δ⇒|f(x)−2|<ε
	
	E
	Dado ε>0ε>0, existe δ=3εδ=3ε tal que: 0<|x−2|<δ⇒|f(x)−7|<ε0<|x−2|<δ⇒|f(x)−7|<ε
Questão 5/10 - Análise Matemática
Atente para o gráfico da função f:R→Rf:R→R representado abaixo.
Observando o gráfico dado e com base nos conteúdos do livro-base Análise Matemática, analise as afirmativas abaixo e marque V para as afirmativa verdadeiras e F para as afirmativas falsas.
I.   ( ) limx→3f(x)=5limx→3f(x)=5.
II.( ) A função ff  é contínua no ponto x=3x=3.
III. ( ) limx→1+f(x)=5.limx→1+f(x)=5.
IV.  ( ) ff é descontínua no ponto x=1x=1.
V.   ( ) f(1)=3f(1)=3
Assinale a alternativa que possui a seqûencia correta.
Nota: 0.0Você não pontuou essa questão
	
	A
	V-F-V-F-V
	
	B
	F-F-V-V-V
	
	C
	V-F-V-V-V
A alternativa que possui a sequência correta é a letra c). A afirmativa I é verdadeira porque os limites laterais são iguais limx→5−f(x)=5=limx→5+f(x)limx→5−f(x)=5=limx→5+f(x). A afirmativa II é falsa porque limx→3f(x)=5≠f(3)limx→3f(x)=5≠f(3). A afirmativa III é verdadeira porque quando xx se aproxima de 1 pela direita, a função se aproxima de 5. A afirmativa IV é verdadeira porque os limites laterais são diferentes. A afirmativa V é verdadeira, pois f(1)=f(1)=3  (livro-base, 99-102).
	
	D
	V-V-V-V-V
	
	E
	F-V-V-V-F
Questão 6/10 - Análise Matemática
Na definição de integral definida ∫baf(x)dx∫abf(x)dx, trabalhamos com uma função ff definida em um intervalo limitado [a,b][a,b] e presumimos que ff não tenha uma descontinuidade infinita. 
   Agora entenderemos o conceito de integral definida para o caso em que o intervalo é infinito e também para o caso onde ff tem uma descontinuidade infinita em [a,b][a,b]. Em ambos os casos, a integral é chamada integral imprópria. 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: STEWART, James. Cálculo. 7. ed. São Paulo: Cengage, 2013. v. I. p. 470.
 
Observe a imagem:
Com base na imagem dada e nos conteúdos do livro-base Análise Matemática sobre Integrais impróprias, a área da região hachurada na figura é o valor da integral imprópria ∫+∞11x2dx∫1+∞1x2dx que corresponde a:
Nota: 0.0Você não pontuou essa questão
	
	A
	A(D)=∞A(D)=∞
	
	B
	A(D)=2A(D)=2
	
	C
	A(D)=1A(D)=1
∫+∞11x2=limt→+∞∫t11x2dx=limt→+∞(F(t)−F(1))=limt→+∞((−1t)−(−11))=∫1+∞1x2=limt→+∞∫1t1x2dx=limt→+∞(F(t)−F(1))=limt→+∞((−1t)−(−11))= limt→+∞(−1t+1)=0+1=1limt→+∞(−1t+1)=0+1=1 (livro-base, p. 161)
	
	D
	A(D)=eA(D)=e
	
	E
	A(D)=e−1A(D)=e−1
Questão 7/10 - Análise Matemática
Considere o seguinte excerto de texto:
 
“Para que tenha sentido determinar o limite ou indagar sobre a continuidade de uma função, o domínio e o contradomínio da mesma devem possuir um certo tipo de estrutura, tornando-se o que se chama um ‘espaço topológico’. Em outras palavras, espaços topológicos são conjuntos equipados com estruturas tais que entre eles tem sentido falar em limites e continuidade de funções”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
LIMA, E. L., Curso de Análise. 14. ed. v 1. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada, 2013. p. 161.
 
Conforme os conteúdos do livro-base Análise Matemática os conjuntos podem ser classificados de acordo com algumas propriedades. Enumere, na ordem sequencial, as propriedades que se relacionam a cada um dos conjuntos a seguir:
 
1. Conjunto aberto
2. Conjunto fechado
3. Conjunto compacto
4. Conjunto enumerável
5. Conjunto completo
 
( ) Conjunto finito ou infinito que possui uma bijeção com o conjunto dos números naturais.
( ) Conjunto XX que satisfaz X=¯¯¯¯¯XX=X¯, onde ¯¯¯¯¯XX¯ é o conjunto dos pontos aderentes de XX.
( ) Conjunto XX que satisfaz X=X∘X=X∘, onde X∘X∘ é o conjunto dos pontos interiores de XX.
( ) Conjunto XX tal que todo subconjunto não-vazio de XX que é limitado superiormente e possui supremo.
( ) Conjunto que é fechado e limitado.
Agora, marque a sequência correta:
Nota: 0.0Você não pontuou essa questão
	
	A
	3-1-2-4-5
	
	B
	5-4-1-3-2
	
	C
	4-1-2-5-3
	
	D
	5-2-1-3-4
	
	E
	4-2-1-5-3
A sequência correta é 4 – 2 – 1 – 5 – 3. Segundo o livro-base: “1. Conjunto aberto – quando todos seus pontos são pontos interiores, isto é, X=X∘X=X∘. 2. Conjunto fechado – quando todos os pontos aderentes pertencem ao conjunto, ou seja, verifica-se a igualdade X=¯¯¯¯¯XX=X¯. 3. Conjunto compacto – todo conjunto que é simultaneamente fechado e limitado. 4. Conjunto enumerável – todo conjunto finito ou infinito que possui bijeção com os naturais. 5. Conjunto completo – quando todo subconjunto não-vazio e limitado superiormente possui supremo” (livro-base, p.22-33 e p.87-89).
Questão 8/10 - Análise Matemática
Observe o gráfico da função f(x)=⎧⎪⎨⎪⎩x+1,x<10,x=13−x,x>1f(x)={x+1,x<10,x=13−x,x>1
Com base na imagem dada e nos conteúdos do livro-base Análise Matemática sobre Limite a continuidade, analise as afirmações a seguir e marque V para as afirmações verdadeiras e F para as afirmações falsas.
I. ( ) limx→1+f(x)=2limx→1+f(x)=2
II. ( ) limx→1f(x)=f(1)limx→1f(x)=f(1)
III. ( ) ∄limx→1f(x)∄limx→1f(x)
IV. ( ) limx→1f(x)=2limx→1f(x)=2
V. ( ) f(1)=0f(1)=0
Agora assinale a alternativa que contém a sequência correta:
Nota: 0.0Você não pontuou essa questão
	
	A
	F – F – V – F – V
	
	B
	F – V – V – V – F
	
	C
	V – F – F – F – V
	
	D
	V – F – F – V – V
A alternativa que contém a sequência correta é a letra d. A afirmativa I é verdadeira porque limx→1+f(x)=limx→1+3−x=3−1=2limx→1+f(x)=limx→1+3−x=3−1=2. A afirmativa II é falsa porque limx→1+f(x)=2≠0=f(1)limx→1+f(x)=2≠0=f(1). A afirmativa III é falsa porque limx→1f(x)=2limx→1f(x)=2. A afirmativa IV é verdadeira porque os limites laterais de ff quando xx tende a 1 são iguais a 2. A afirmativa V é verdadeira pela definição da função. (livro-base, p. 90-97).
	
	E
	V – V – F – F – F
Questão 9/10 - Análise Matemática
Leia o excerto de texto a seguir. 
“Para que tenha sentido determinar o limite ou indagar sobre a continuidade de uma função, e o domínio e o contradomínio da mesma devem possuir um certo tipo de estrutura, tornando-se o que se chama um ‘espaço topológico’. Em outras palavras, espaços topológicos são conjuntos equipados com estruturas tais que entre eles tem sentido falar em limites e continuidades de funções”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: Lima, E. L. Curso de Análise. v. 1. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada,  2013. p. 161. 
Conforme os conteúdos do livro-base Análise Matemática com respeito à conceitos topológicos, enumere, na ordem sequencial, as definições – em linguagem não formal – que se relacionam a cada um dos elementos a seguir:
 
1. Conjunto aberto
2. Ponto interior
3. Conjunto fechado
4. Ponto de acumulação
5. Conjunto compacto
6. Ponto aderente
 
( ) É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele.
( ) É todo conjunto que é simultaneamente fechado e limitado.
( ) É um conjunto tal que todos os pontos aderentes pertencem à ele.
( ) É um ponto que possui uma vizinhança inteiramente contida no conjunto.
( ) É um ponto que é limite de uma sequencia de elementos do conjunto.
( ) É um conjunto onde todos os seus pontos são interiores.
 
Agora marque a sequência correta:
 
Nota: 0.0Você não pontuou essa questão
	
	A
	6 – 5 – 3 – 4 – 2 – 1
	
	B
	4 – 1 – 5 – 6 – 2 – 3
	
	C
	2 – 5 – 1 – 6 – 4 – 3
	
	D
	6 – 3 – 1 – 2 – 4 – 5
	
	E
	4 – 5 – 3 – 2 – 6 – 1
A sequência correta é 4 – 5 – 3 – 2 – 6 – 1. Segundo o livro-base: “1. Conjunto aberto – É um conjunto onde todos os seus pontos são interiores. 2. Ponto interior – É um ponto que possui uma vizinhança inteiramente contida no conjunto. 3. Conjunto fechado – É um conjunto tal que todos os pontos aderentes pertencem à ele. 4. Ponto de acumulação – É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele. 5. Conjunto compacto – É todo conjunto que é simultaneamente fechado e limitado. 6. Ponto aderente – É um ponto que é limite de uma sequencia de elementos do conjunto” (livro-base, Capítulo 3).
Questão 10/10 - Análise Matemática
Considere o seguinte subconjunto do conjunto dos números reais:
X={1,12,13,14,15,⋯1n,⋯}X={1,12,13,14,15,⋯1n,⋯}
 
Levando em consideração o conjunto dado e os conteúdos estudados no livro-base Análise Matemática sobre noções topológicas, analise as assertivas a seguir e marque V para as assertivas verdadeiras e F para as assertivas falsas.
 
I.   ( ) XX é um conjuntoaberto.
II.  ( ) 00 é um ponto de acumulação do conjunto XX.
III. ( )  XX é um conjunto limitado.
IV.  ( ) O ponto x=1x=1 é um ponto de aderência do conjunto XX.
V.   ( ) O conjunto XX é compacto.
 
Agora, assinale a alternativa que apresenta a sequência correta.
Nota: 0.0Você não pontuou essa questão
	
	A
	V-V-V-F-F
	
	B
	F-F-V-V-V
	
	C
	F-V-V-V-F
A alternativa que apresenta a sequencia correta é a letra c). A afirmativa I é falsa porque os pontos do conjunto XX não são interiores de XX. A afirmativa II é verdadeira porque dado ε>0ε>0 existe um natural n>1εn>1ε tal que 1ε∈(−ε,ε)∩X−{0}1ε∈(−ε,ε)∩X−{0}. A afirmativa III é verdadeira porque |x|≤1|x|≤1, para todo x∈Xx∈X. A afirmativa IV é verdadeira porque a sequencia constante (1)n∈N(1)n∈N converge para 1 e é formada por pontos do conjunto XX. A afirmativa V é falsa pois XX não é um conjunto fechado. De fato, 0 é um ponto de aderência do conjunto XX, mas 0 não pertence à XX. (livro-base, Capítulo 3).
	
	D
	V-V-F-F-F
	
	E
	F-V-V-V-V
Questão 1/10 - Análise Matemática
Considere a seguinte citação: 
“Diz-se que um número real aa é limite da sequência (xn)(xn) quando, para todo número real ε>0ε>0, dado  arbitrariamente, pode-se obter n0∈Nn0∈N tal que todos os termos xnn com índice n>n0n>n0 cumprem a condição |xn−a|<ε|xn−a|<ε. Escreve-se então a=limn∈Nxna=limn∈Nxn. [...] Em vez de a=limxna=limxn, escreve-se também a=limn∈Nxna=limn∈Nxn, a=limn→∞xna=limn→∞xn ou xn→axn→a. Esta última expressão lê-se ‘xnxn  tende para aa’ ou ‘converge para aa’. Uma sequência que possui limite diz-se convergente”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
LIMA, E. L., Análise Real: Funções de Uma Variável. 9. ed. v. 1. Rio de Janeiro: IMPA, 2007. p. 23-24.
Dada a sequência (12n)n∈N(12n)n∈N.
Considerando estas informações e os conteúdos do livro-base Análise Matemática sobre sequências numéricas, é correto afirmar que a sequência dada converge para:
Nota: 0.0Você não pontuou essa questão
	
	A
	1212
	
	B
	∞∞
	
	C
	−∞−∞
	
	D
	1
	
	E
	0
Dado ε>0ε>0, escolhemos n0∈Nn0∈N tal que n0>log21εn0>log2⁡1ε, isto é, 12n0<ε12n0<ε. Assim, se n>n0n>n0 temos que ∣∣12n−0∣∣=∣∣12n∣∣=12n<12n0<ε|12n−0|=|12n|=12n<12n0<ε. Portanto, lim12n=0lim12n=0. (livro-base, Capítulo 2).
Questão 2/10 - Análise Matemática
Leia o fragmento de texto a seguir. 
“(f∘g)′(x)=f′(g(x))⋅g′(x)(f∘g)′(x)=f′(g(x))⋅g′(x). Uma maneira conveniente de lembrar essa fórmula consiste em chamar  a ‘função de fora’ e g a ‘função de dentro’ na composição (fg(x))(fg(x)) e, então, expressar em palavras como:
A derivada de (f(g(x))(f(g(x)) é a derivada da função de fora calculada na função de dentro vezes a derivada da função de dentro”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: ANTON, H., BIVENS, I., DAVIS, S. Cálculo. 8. ed. Porto Alegre: Bookman , v. 1.  2007. p. 210-211.
Considere as funções e f(x)=exf(x)=ex , g(x)=x2+2g(x)=x2+2 e a função composta h(x)=f(g(x))=e(x2+2)h(x)=f(g(x))=e(x2+2).
Com base no fragmento de texto dado e nos conteúdos do livro-base Análise Matemática sobre a Regra da Cadeia, assinale a única alternativa que representa a derivada da função composta dada.
Nota: 0.0Você não pontuou essa questão
	
	A
	h′(x)=(x2+2)e(x2+2)h′(x)=(x2+2)e(x2+2)
	
	B
	h′(x)=(x2+2)e(x2+2)−1⋅2xh′(x)=(x2+2)e(x2+2)−1⋅2x
	
	C
	h′(x)=2x⋅e(x2+2)h′(x)=2x⋅e(x2+2)
h′(x)=f′(g(x))g′(x)=e(x2+2)⋅2x=2x⋅e(x2+2)h′(x)=f′(g(x))g′(x)=e(x2+2)⋅2x=2x⋅e(x2+2) (livro-base, capítulo 4).
	
	D
	h′(x)=(x2+2)e(x2+2)−1h′(x)=(x2+2)e(x2+2)−1
	
	E
	h′(x)=2x⋅e(x2+2)−1h′(x)=2x⋅e(x2+2)−1
Questão 3/10 - Análise Matemática
Observe a seguinte série numérica:
∑∞132k41−k∑1∞32k41−k
Com base nos conteúdos estudados no livro-base Análise Matemática sobre a convergência de séries numéricas, assinale a única alternativa correta a respeito da série mostrada acima.
Nota: 0.0Você não pontuou essa questão
	
	A
	A série converge para 9494
	
	B
	A série converge para 3434
	
	C
	A série diverge.
reescrevendo a série, temos: ∑∞132k41−k=∑∞19k4k−1=∑∞19(94)k−1∑1∞32k41−k=∑1∞9k4k−1=∑1∞9(94)k−1. Logo, essa é uma série geométrica com r=94>1r=94>1. Portanto, a série diverge. (livro-base, Capítulo 2).
	
	D
	A série diverge para 4343 
	
	E
	A série converge para 12.
Questão 4/10 - Análise Matemática
Considere o seguinte excerto de texto:
 
“Para que tenha sentido determinar o limite ou indagar sobre a continuidade de uma função, o domínio e o contradomínio da mesma devem possuir um certo tipo de estrutura, tornando-se o que se chama um ‘espaço topológico’. Em outras palavras, espaços topológicos são conjuntos equipados com estruturas tais que entre eles tem sentido falar em limites e continuidade de funções”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
LIMA, E. L., Curso de Análise. 14. ed. v 1. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada, 2013. p. 161.
 
Conforme os conteúdos do livro-base Análise Matemática os conjuntos podem ser classificados de acordo com algumas propriedades. Enumere, na ordem sequencial, as propriedades que se relacionam a cada um dos conjuntos a seguir:
 
1. Conjunto aberto
2. Conjunto fechado
3. Conjunto compacto
4. Conjunto enumerável
5. Conjunto completo
 
( ) Conjunto finito ou infinito que possui uma bijeção com o conjunto dos números naturais.
( ) Conjunto XX que satisfaz X=¯¯¯¯¯XX=X¯, onde ¯¯¯¯¯XX¯ é o conjunto dos pontos aderentes de XX.
( ) Conjunto XX que satisfaz X=X∘X=X∘, onde X∘X∘ é o conjunto dos pontos interiores de XX.
( ) Conjunto XX tal que todo subconjunto não-vazio de XX que é limitado superiormente e possui supremo.
( ) Conjunto que é fechado e limitado.
Agora, marque a sequência correta:
Nota: 0.0Você não pontuou essa questão
	
	A
	3-1-2-4-5
	
	B
	5-4-1-3-2
	
	C
	4-1-2-5-3
	
	D
	5-2-1-3-4
	
	E
	4-2-1-5-3
A sequência correta é 4 – 2 – 1 – 5 – 3. Segundo o livro-base: “1. Conjunto aberto – quando todos seus pontos são pontos interiores, isto é, X=X∘X=X∘. 2. Conjunto fechado – quando todos os pontos aderentes pertencem ao conjunto, ou seja, verifica-se a igualdade X=¯¯¯¯¯XX=X¯. 3. Conjunto compacto – todo conjunto que é simultaneamente fechado e limitado. 4. Conjunto enumerável – todo conjunto finito ou infinito que possui bijeção com os naturais. 5. Conjunto completo – quando todo subconjunto não-vazio e limitado superiormente possui supremo” (livro-base, p.22-33 e p.87-89).
Questão 5/10 - Análise Matemática
Considere a seguinte citação:
 
“Ter uma indeterminação (qualquer que seja) não significa que o limite considerado não existe ou que ele não pode ser calculado, mas que um estudo mais minucioso é necessário”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: <https://e-scola.edu.gov.cv/index.php?option=com_rea&id_disciplina=1&id_materia=2&id_capitulo=88&Itemid=298>. Acesso em: 20  jun. 2017.
Dado o seguinte limite: limx→12x−2x2−1limx→12x−2x2−1
Considerando essas informações e os conteúdos do livro-base Análise Matemática sobre limites, assinale a alternativa que fornece o valor do limite dado:
Nota: 0.0Você não pontuou essa questão
	
	A
	−2−2
	
	B
	2
	
	C
	∞∞
	
	D
	0
	
	E
	1
Temos uma indeterminação do tipo 0000, então podemos usar a Regra de L’Hôpital: limx→12x−2x2−1=limx→122x=1limx→12x−2x2−1=limx→122x=1. Outra forma de calcular esse limite seria isolando no numerador a expressão (x−1)(x−1) e fatorando o denominador como (x+1)(x−1)(x+1)(x−1).
(livro-base, p. 128).
Questão 6/10 - Análise Matemática
Observe a seguinte informação:
 Seja f:R→Rf:R→R uma função dada por:f(x)={ 2x+1,x≠1kx=1f(x)={ 2x+1,x≠1kx=1
Considerando a informação dada e os conteúdos do livro-base Análise Matemática sobre limite e continuidade, assinale a única alternativa correta.
Nota: 0.0Você não pontuou essa questão
	
	A
	Se k=2k=2, então a função f(x)f(x) é contínua em x=1x=1.
	
	B
	O limite lateral de f(x)f(x) quando xx tende a 1 pela direita é igual a 22.
	
	C
	limx→1f(x)=5limx→1f(x)=5
	
	D
	Se tivermos k=3k=3 então  f(x)f(x) será contínua

Continue navegando