Buscar

TEMA II Falhas em elementos mecânicos

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 94 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 94 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 94 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 1/94
Falhas em elementos mecânicos
Prof. Carlos Frederico de Matos Chagas
Descrição
Conceitos de tensão devido ao carregamento sobre um elemento mecânico, a relação entre o carregamento
externo atuante e a tensão gerada no material. Conceitos de falha em virtude de carregamento estático e falha
por fadiga devido a carregamento dinâmico.
Propósito
Apresentar a relação entre o carregamento externo e a tensão induzida no material, bem como a relação entre a
tensão e a deflexão correspondente, aplicando essas relações para o cálculo de tensões e deformações devido
aos diferentes carregamentos é fundamental para evitar falhas e acidentes.
Objetivos
Módulo 1
Análise de cargas e tensões
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 2/94
Reconhecer os tipos de carregamento e a relação com as tensões causadas no material.
Módulo 2
Tensão, de�exão e rigidez do material
Identificar a relação entre a tensão, a deflexão correspondente e a rigidez do material.
Módulo 3
Carregamento estático, tensão e deformação
Aplicar as relações entre carregamento estático, tensão e deformação para análise de falha devido a
carregamento estático.
Módulo 4
Falha por fadiga em carregamento dinâmico
Aplicar a relação entre o carregamento dinâmico e as tensões induzidas no material para analisar a
ocorrência ou não de falha por fadiga devido ao carregamento dinâmico.
Introdução
Assista ao vídeo e identifique os principais conceitos que serão trabalhados ao longo deste material.

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 3/94
1 - Análise de cargas e tensões
Ao �nal deste módulo, você será capaz de reconhecer os tipos de carregamento e a relação com
as tensões causadas no material.
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 4/94
Vamos começar!
Relação entre o carregamento externo e a tensão em um
elemento mecânico
Conheça melhor a relação existente entre o carregamento externo e a tensão em um elemento mecânico.
Diferentes tipos de cargas
Análise de cargas e tensões

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 5/94
Todos os elementos de uma máquina ou sistema mecânico estão sujeitos a diferentes tipos de carregamentos
que podem estar atuando devido à transmissão de energia, torque ou de potência, por seu próprio peso, por
forças de atrito, inércia, forças centrífugas ou devido ao gradiente de temperatura. Esses carregamentos
externos, de acordo com a geometria do sistema, com o movimento realizado pelas peças e pelo tipo de junção
entre os elementos de máquinas poderão originar diferentes formas de tensão no material:

Tensões normais
Tração ou compressão devido ao carregamento nessas direções ou devido à flexão.

Tensões de crisalhamento
Essas tensões estão diretamente relacionadas aos esforços cortantes ou de torção.
Além disso, de acordo com o comportamento do carregamento ou como consequência do movimento do
sistema mecânico, o carregamento poderá ser estático ou dinâmico.
Carga estática
Este tipo de carga não muda em magnitude ou direção e aumenta gradualmente para um valor estável,
por exemplo, pelo próprio peso dos elementos da máquina.
Carga dinâmica
Muda em magnitude e/ou direção em relação ao tempo. Um exemplo é a carga atuando na biela de um
motor de combustão interna que varia conforme a posição do pistão e do tempo do motor.

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 6/94
As cargas de impacto (carga aplicada com certa velocidade) e as cargas de choque (carga aplicada
repentinamente) também são tipos de cargas dinâmicas, mas recebem essa denominação diferenciada porque
são aplicadas em elevadas taxas, ou seja, atingem rapidamente o valor máximo e descarregam o material
também rapidamente.
A determinação precisa das cargas atuando em um elemento de máquina é uma tarefa crítica e desafiadora.
Inicialmente, deve-se calcular adequadamente os carregamentos externos a que o elemento de máquina ou
peça estará submetido, pois todas as análises de tensões e deflexões, para serem satisfatórias, dependem do
cálculo adequado desses carregamentos.
Há casos em que as cargas sob as condições de operação são facilmente determináveis, como, por exemplo, a
carga em um eixo funcionando a uma velocidade conhecida e transmitindo um valor conhecido de torque. No
entanto, muitas vezes as cargas são difíceis de se determinar, como é o caso da carga sobre o chassi de um
veículo, que depende das condições da estrada e das práticas de direção. As cargas atuando em uma peça ou
elemento de máquina podem ser conhecidas diretamente ou podem demandar a realização de cálculos usando
conceitos básicos de engenharia mecânica.
Exemplo de chassis de veículo.
Há casos em que é necessário utilizar métodos experimentais para se obter uma definição estatística da carga.
Além disso, as cargas de serviço podem ser estimadas com a ajuda de registro de falhas de serviço e análise de
resistência. Após a determinação ou estimativa da carga externa aplicada, as cargas que atuam sobre os
diferentes membros da máquina são determinadas com o auxílio de diagramas de corpo livre e equações
básicas de equilíbrio de forças e momentos.
Uma vez conhecidos os esforços aplicados sobre os elementos de máquinas ou peças, bem como o ponto de
aplicação, podemos calcular as tensões internas no material. Assim sendo, podemos concluir que as tensões
provocadas no material estão intimamente ligadas ao carregamento aplicado sobre ele. Além disso, de acordo
com o material do elemento de máquina e suas respectivas propriedades, poderemos determinar as deflexões
do material.
Análise de cargas
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 7/94
A fim de se iniciar o projeto da estrutura de um sistema mecânico é preciso determinar os carregamentos
atuando sobre cada elemento que o compõe, para, em seguida, calcular as tensões no material. Para isso,
conforme a mecânica clássica, é necessário entender as cargas aplicadas, os pontos de aplicação dos esforços
e as restrições aos movimentos impostas pelas juntas entre as peças do sistema.
Podemos simplificar bastante a análise de uma estrutura ou máquina muito complexa
isolando sucessivamente cada elemento e analisando-o pelo uso de diagrama de
corpo livre (DCL).
Após a análise de todas as peças dessa maneira, o conhecimento obtido sobre cada uma pode ser superposto
para produzir informações sobre o comportamento do sistema como um todo. Assim, o diagrama de corpo livre
é essencialmente um meio de dividir um problema complexo em problemas menores segmentados e
gerenciáveis.
Cada peça analisada configura um problema mais simples cuja solução servirá como entrada para outro
problema simples, de maneira que, ao final do procedimento, seja possível reunir todas as soluções, como se
estivéssemos remontando o sistema que foi dividido e juntando as informações obtidas.
O uso de diagramas de corpo livre para determinação de esforços ou carregamentos serve aos seguintes
propósitos (BUDYNAS; NISBETT, 2015):
1. Inicialmente, no diagrama se estabelecem as direções dos eixos de referência (referencial), proporcionando
ainda um meio para esquematizar o sistema e suas peças, registrando as dimensões dos elementos e as
magnitudes e direções dos carregamentos conhecidos, além de auxiliar o projetista ou sua equipe a arbitrar as
direções e sentidos dosesforços desconhecidos.
2. O diagrama de corpo livre proporciona uma ferramenta de comunicação visual importante para a
sistematização da soluçãode problemas de projeto, sendo de grande valia para a organização do projetista e
para a comunicação clara inequívoca dos cálculos realizados para outros interessados no projeto.
3. A construção cuidadosa e completa do diagrama de corpo livre evidencia pontos que nem sempre são
aparentes na definição do problema ou na geometria do sistema como um todo. Assim, o diagrama ajuda a
compreender todas as faces do problema.
4. O diagrama de corpo livre, ao fornecer uma ferramenta de comunicação visual, auxilia na obtenção do
equacionamento do problema e, consequentemente, na sua solução.
5. O diagrama de corpo livre permite que outros sigam o raciocínio do projetista ou sua equipe, ilustrando todos
os esforços considerados, suas direções, sentidos e pontos de aplicação.
A seguir, ilustraremos a utilização de um diagrama de corpo livre para análise dos esforções sobre uma
estrutura. Considere o sistema da imagem seguinte:
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 8/94
Considere que o sistema apresentado foi projetado para suportar uma carga de 30kN. O sistema é composto
por uma lança AB com seção reta retangular de 30mm x 50mm e de uma barra com seção reta circular BC com
diâmetro de 20mm. A lança e a barra são conectadas por um pino em e são suportadas por pinos e
suportes em e , respectivamente.
Inicialmente, desenharemos um diagrama de corpo livre da estrutura, destacando-a de seus apoios em e
, e substituindo os apoios pelos esforços que exercem sobre a estrutura (reações) conforme a figura a
seguir.
Observe que o esboço da estrutura foi simplificado omitindo todos os detalhes desnecessários. Vamos
prosseguir a análise, assumindo que as direções das reações em e são desconhecidas. Cada uma
dessas reações, portanto, será representada por suas componentes nas direções e componentes,
 e em , e e em . Assim, considerando que a estrutura está em equilíbrio,
teremos:
Rotacione a tela. 
Ainda resta determinar os valores de duas das quatro reações: e , o que não pode ser feito a partir
da última equação. Como temos duas incógnitas, precisamos de mais uma equação. Para determiná-la,
B
A C
A
C
A C
x y
Ax Ay A Cx Cy C
∑Mc = 0 → Ax ⋅ 0, 6 − 30.0, 8 = 0
 Ax = 40kN
∑Fx = 0 → Ax + Cx = 0
Cx = −Ax → Cx = −40kN
∑Fy = 0 → Ay + Cy − 30 = 0
Ay Cy
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 9/94
"desmontaremos" a estrutura, em outras palavras, vamos analisar a lança isoladamente. Substituindo as
forças nos pinos pelos respectivos esforços, o diagrama de corpo livre considerado é o seguinte:
Aplicando as equações de equilíbrio e fazendo o somatório dos momentos em torno de igual a zero:
Mas,
Portanto, as forças externas agindo sobre a lança AB e a barra BC podem ser determinadas pois conhecemos os
carregamentos em , e .
 e , logo 
, assim 
 e , portanto 
Para a lança AB, a reação em induz a compressão da lança, pois tem a mesma intensidade, mas o sentido
oposto da componente horizontal da reação em , conforme a imagem.
Onde , ou seja, 
Já a reação em e a força de aplicada em , submetem a haste a um esforço de
tração, conforme ilustrado a seguir.
AB
B
∑MB = 0 → Ay ⋅ 0, 8 = 0 → Ay = 0
Ay + Cy − 30 = 0 → Cy = 30kN
A B C
Ax = 40kN → Ay = 0 A = 50kN →
Bx = −40kN ← eBy = 30kN ↑ B = 50kN
Cx = −40kN ← Cy = 30kN ↑ C = 50kN
A
B
FAB = 40kN FAB = Ax = A
C 30kN B BC
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 10/94
Onde , ou seja, .
Conhecendo as forças externas nas barras, podemos calcular a tensão resultante no material.
Análise de tensões
Tensão no material
Uma vez que podemos calcular os esforços sobre um sistema mecânico e suas peças ou elementos, podemos
calcular a tensão no material. Essa tensão é uma consequência direta do tipo de carregamento e das restrições
aos movimentos do sistema ou peça. A tensão pode ser normal, representada pela letra grega ou tensão de
cisalhamento (ou cisalhantes), representadas pela letra .
Os dois tipos de tensão podem ocorrer isoladamente (tração ou compressão pura, no
caso da tensão normal, ou cisalhamento puro) ou de forma combinada, ou seja,
tensões normais e de cisalhamento atuando ao mesmo tempo.
As unidades de tensão mais comuns são libras por polegada quadrada (PSI), caso se utilize o sistema inglês.
Para unidades Sistema Internacional (SI), a unidade de medida das tensões é newtons por metro quadrado
 ou diferentes tipos de tensão que podemos encontrar em um sistema ou estrutura. A seguir,
estudaremos os diferentes tipos de tensão que podemos encontrar em um sistema ou estrutura.
Tensão de tração
FBC = 50kN FBC = C
σ
τ
(N/m2 Pa)
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 11/94
Tensão normal
Como já indicamos, a haste do exemplo analisado na seção anterior está sujeita à ação das forças força
 e agindo em suas extremidades e na direção a ao longo do eixo da haste, que,
conforme já dito, caracteriza que a haste está sendo tracionada por uma carga axial. Um exemplo real de
elementos estruturais sob carregamento axial são os elementos da treliça da ponte mostrada na imagem a
seguir.
Ponte levadiça em Antuérpia, Bélgica.
Um elemento submetido a um carregamento axial pode estar sob tração (tendência de aumentar a dimensão na
direção do carregamento) ou sob compressão (tendência de reduzir a dimensão na direção do carregamento),
conforme observado na imagem seguinte.
O valor da tensão devido à tração e a tensão devido à compressão podem ser calculadas pela
expressão:
Rotacione a tela. 
Onde:
 - tensão tratativa ou compressiva, conforme o caso;
BC
FBC F
′
BC B C
(σt)
σ =
P
A
σ
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 12/94
 - carregamento externo sobre o elemento;
 - área da seção reta do elemento (seção normal à direção do carregamento externo, daí o nome tensão
normal).
A tensão tratativa tem valor positivo e, a compressiva, valor negativo. Há ainda a tensão normal induzida pela
flexão de um elemento mecânico. Na imagem a seguir, um elemento mecânico é submetido a um momento
fletor que provoca a sua flexão.
Em tal condição, a porção do elemento acima do eixo neutro está submetida à compressão e, a porção abaixo
do eixo neutro, submetida à tração. O valor absoluto da tensão varia linearmente de 0, sobre o eixo neutro, até o
valor máximo a uma distância c do eixo neutro, conforme ilustrado a seguir:
O valor máximo da tensão devido à flexão pode ser calculado por meio da equação a seguir:
Rotacione a tela. 
Onde:
 - tensão normal devido à flexão;
 - maior distância até o eixo neutro da seção reta;
 - momento de inércia de área da seção reta em relação ao eixo neutro.
P
A
M
σ = −
Mc
I
σ
c
I
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 13/94
Para compreendermos como calcular a tensão normal em diferentes condições de carregamento
apresentaremos alguns exemplos de cálculo na sequência. Primeiramente, considere a imagem a seguir. A barra
da imagem tem seção reta circular com diâmetro de 2,5cm.
Como a tensão normal nesse caso é calculada pela fórmula e , calculamos
, onde .
Assim,
O segundo exemplo trata de uma barra com seção reta retangular e 
submetida à flexão pura conforme a imagem seguinte:
No caso de tensão normal devido à flexão, , onde c é a distância do eixo neutro à extremidade
da barra. Nesse caso, como a seção reta é simétrica, , . Além disso, dado que o
elemento estrutural considerado tem seção reta retangular:
σ =
P
A
P = 250 N
A =
πd2
4
d = 2, 5cm(0, 025m)
σ =
250
π(0,025)2
4
σ = 509, 3MPa
(b = 3, 5cm h = 4cm)
(M = 300 Nm)
σ = −
Mc
I
c =
h
2
, log c =2cm
I =
bh3
12
= 5, 6 ⋅ 10−5m4
σ = −
300.0, 02
5, 6 ⋅ 10−5
′
σ = 107, 1MPa
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 14/94
Rotacione a tela. 
Finalmente, vamos analisar o último exemplo, que é mais completo e complexo. É importante salientar que
calcularemos somente a tensão normal devido à flexão e não consideraremos outras tensões envolvidas. A
imagem a seguir ilustra a situação que analisaremos. A viga AB da figura tem seção reta circular com 2,5cm de
diâmetro.
Utilizaremos o diagrama de corpo livre (DCL) para determinar os esforços nos apoios. A próxima imagem ilustra
o DCL em questão.
Com base nas informações sobre o carregamento e a geometria da estrutura, temos:
Rotacione a tela. 
Agora, construiremos um diagrama de momento fletores para a situação. Para isso, consideramos o apoio 
como referência e calculamos o momento fletor em função da distância da seção considerada em relação ao
ponto .
∑MA = 0
 5 ⋅ R2 − 2, 5 ⋅ 100 = 0
R2 = 50 N
∑Fy = 0
R1 + R2 − 100 = 0
R1 + 50 − 100 = 0
R1 = 50 N
A
A
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 15/94
Ao analisarmos o diagrama de momento fletor, observamos que a seção em que o momento possui o maior
valor absoluto é a seção central da viga. Como a seção reta da viga é circular com diâmetro de ,
dado que , e :
Tensão tangencial
Tensão de cisalhamento
Quando forças transversais V e V’ são aplicadas a um elemento estrutural AB, como na figura a seguir, ao
contrário do que ocorre com a tensão normal (quando há tendência de alteração do comprimento do elemento
sob carregamento), ocorre, em vez disso, a tendência de distorcer o elemento. Passando uma seção em 
entre os pontos de aplicação das duas forças (b), obtemos o diagrama da porção AC mostrada na figura em c.
Logo, a resultante das forças internas na face da seção em deve ser igual a V.
Essas forças internas elementares são chamadas de tensão de cisalhamento ou cisalhantes e são
representadas pela letra . Dividindo o esforço cortante pela área da seção transversal, obtemos
o valor médio da tensão cisalhante.
d 2, 5cm
σ = −
Mc
I
I =
πd4
64
c = 1, 25cm
σ = 81, 5MPa
C
C
τ V A
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 16/94
Rotacione a tela. 
Deve-se ressaltar que o valor obtido por essa equação é um valor médio da tensão de cisalhamento em toda a
seção. Ao contrário das tensões normais, a distribuição da tensão de cisalhamento ao longo da seção não pode
ser considerada uniforme. O valor real da tensão de cisalhamento varia de zero na superfície externa do
elemento até um valor máximo , que pode ser muito maior do que o valor médio .
Cisalhamento transversal devido à �exão
Quando uma viga, eixo ou barra sofre um carregamento transversal, além do momento fletor, há uma força
cortante que causa uma tensão de cisalhamento no elemento estrutural. A imagem seguinte, baseada na que foi
utilizada no último exemplo que estudamos sobre a tensão normal em um elemento sob flexão, mostra o
diagrama de esforço cortante para aquele tipo de carregamento.
Carregamento
Diagrama de esforço cortante
τav =
V
A
τmax τav 
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 17/94
O cisalhamento devido a um carregamento transversal ou cortante não é fácil de se visualizar. Considere uma
viga em balanço composta por três pranchas de madeira. Se não estiverem unidas por algum meio, a aplicação
de uma carga na extremidade livre das pranchas fará com que se dobrem (flexionem) e deslizem uma sobre a
outra, conforme mostrado na imagem a seguir. Se, ao invés disso, as pranchas forem coladas, por exemplo, a
cola impedirá que as pranchas deslizem em relação às outras. Essa resistência ao deslizamento, ou resistência
a forças paralelas à superfície da viga, gera uma tensão de cisalhamento no material.
Considere o carregamento representado na imagem a seguir:
A fórmula para cálculo da tensão cisalhante (ou de cisalhamento), simbolizada pela letra grega τ gerada por um
esforço cortante (carregamento transversal) V é a seguinte:
Rotacione a tela. 
Onde:
 - tensão de cisalhamento;
 - esforço cortante;
 - primeiro momento de área ou momento estático;
 - primeiro momento de inércia de área;
 - espessura da viga.
τ =
VQ
Ib
τ
V
Q
I
b
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 18/94
Cisalhamento devido à torção
Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se a aplicação desse
torque gera uma torção pequena, ou seja, o ângulo de rotação resultante da aplicação desse torque é reduzido, o
comprimento do elemento e as dimensões de sua seção reta permanecem inalterados. Observe a imagem
seguinte:
Se fizermos o mesmo tipo de análise que fizemos quando apresentamos o conceito de cisalhamento, temos a
condição da imagem seguinte:
O conjunto das tensões de cisalhamento internas resulta em um torque interno, igual e oposto ao torque
aplicado. A tensão de cisalhamento máxima é calculada pela expressão:
Rotacione a tela. 
Onde:
 – torque aplicado sobre o elemento;
 – raio da seção reta;
 – momento polar de inércia da seção reta.
τmax =
T ⋅ r
J
T
r
J
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 19/94
Na continuação, apresentaremos alguns exemplos para esclarecer os cálculos da tensão cisalhante em
diferentes condições de carregamentos. Inicialmente, retornaremos a uma viga sob flexão, conforme as
condições em seguida:
A viga AB da figura tem seção reta circular com 2,5cm de diâmetro. Inicialmente, utilizamos o DCL a seguir para
cálculo das reações nos apoios:
Com base nas informações sobre o carregamento e a geometria da estrutura, temos:
Rotacione a tela. 
Agora, construiremos um diagrama de esforço cortante:
∑MA = 0
5 ⋅ R2 − 2, 5 ⋅ 100 = 0
R2 = 50 N
∑Fy = 0
R1 + R2 − 100 = 0
R1 + 50 − 100 = 0
R1 = 50 N
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 20/94
O maior valor do esforço cortante ocorre no centro da viga (valor absoluto ). Assim, a tensão de
cisalhamento máxima será:
Mas,
Logo,
Cabe ressaltar que o valor máximo da tensão cisalhante é bem inferior ao valor máximo da tensão normal
devido à flexão anteriormente calculado e . Finalmente,
analisaremos o caso de um eixo submetido à torção, conforme a seguinte imagem:
O torque aplicado é kN.m e o diâmetro do eixo é de . Nessas condições, a tensão de
cisalhamento máxima será:
Rotacione a tela. 
= 100 N
τmax =
100Q
Ib
I =
π0, 0254
64
 e Q =
π0, 0258
8
τmax = 1, 3MPa
(τmax = 1, 3MPa σmax = 81, 5MPa)
T = 10 10cm
τmax =
Tr
J
=
10000 ⋅ 0, 05
π0,14
32
τmax = 51MPa
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 21/94
Vem que eu te explico!
Os vídeos a seguir abordam os assuntos mais relevantes do conteúdo que você acabou de estudar.
Módulo 1 - Vem que eu te explico!
Diagrama de corpo livre
Módulo 1 - Vem que eu te explico!
Diagrama de esforço cortante e diagrama de momento �etor

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 22/94
Questão 1
Assinale a alternativa com o valor correto da tensão normal devido à flexão na situação ilustrada na
imagem.

Vamos praticar alguns conceitos?
Falta pouco para atingir seus
objetivos.
A σ = 32kPa
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 23/94
Questão 2
A tensão de cisalhamento máxima atuando sobre um eixo submetido a um torque de 25kN.me com a
seção reta circular de diâmetro interno de 2,5cm e diâmetro externo de 7,5cm é de:
B σ = 133, 3kPa
C σ = 32MPa
D σ = 133, 3MPa
E σ = 320kPa
Responder
A τmax = 244, 5MPa
B τmax = 2, 3MPa
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 24/94
2 - Tensão, de�exão e rigidez do material
Ao �nal deste módulo, você será capaz de identi�car a relação entre a tensão, a de�exão
correspondente e a rigidez do material.
C τmax = 2, 5MPa
D τmax = 20GPa
E τmax = 80, 5MPa
Responder

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 25/94
Vamos começar!
A relação entre rigidez e deformação
Assista ao vídeo a seguir e compreenda melhor a relação existente entre rigidez e deformação.
Tensão X deformação
Rigidez e deformação
Todos os elementos mecânicos reais se deformam plástica ou elasticamente, quando submetidos a um
carregamento. Um corpo pode ser considerado rígido se é suficientemente insensível ao carregamento, ou seja,

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 26/94
quando carregado, apresenta uma deformação que pode ser desprezada.
A análise de deflexão sofrida por um elemento mecânico deve ser considerada no projeto de várias maneiras.
Por exemplo, em uma transmissão, as engrenagens devem ser apoiadas por um eixo rígido. Se o eixo se flexiona
demais, ou seja, se o eixo for muito flexível, os dentes não se encaixarão corretamente, o que resultará em
impacto excessivo, alto ruído, desgaste acelerado e falha prematura (BUDYNAS; NISBETT, 2015).
Às vezes, os elementos mecânicos devem ser projetados para terem uma característica particular de força-
deformação. Por exemplo, o sistema de suspensão de um automóvel deve ser projetado dentro de certos
limites, a fim de garantir que as frequências de vibração alcançadas para todas as condições de carregamento
do veículo sejam confortáveis para os passageiros e motorista, pois o corpo humano se sente confortável
apenas dentro de uma faixa limitada de frequências (BUDYNAS; NISBETT, 2015).
Exemplo de suspensão de um automóvel.
Ao projetar um elemento mecânico de um sistema, muitas vezes a deflexão sofrida por esse elemento nas
condições de carregamento pode ser o fator limitador em lugar do nível de tensão no elemento. O diagrama a
seguir representa um gráfico tensão x deformação de um material dúctil submetido a ensaio de tração.
Exemplo
Um cabo de aço é flexível, mas, quando tracionado, pode ser considerado rígido. Por outro lado, o
mesmo cabo de aço submetido à compressão, distorce enormemente. Logo, o mesmo elemento
mecânico pode ser considerado rígido ou não rígido (flexível) dependendo das condições de
carregamento impostas (BUDYNAS; NISBETT, 2015).

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 27/94
Na região elástica, a equação que relaciona a tensão e a deformação é a seguinte:
Rotacione a tela. 
Onde, é o módulo de elasticidade ou módulo de Young do material. Neste módulo, estudaremos a
deformação dos corpos devido à sua geometria (forma) e ao carregamento a que o elemento está submetido.
Coe�ciente de elasticidade
A elasticidade é a propriedade de um material que permite que ele recupere sua configuração original após ter
sido deformado. Uma mola é um elemento mecânico que exerce uma força quando deformado. A imagem a
seguir mostra uma viga reta de comprimento simplesmente apoiada nas extremidades e carregada pela
força transversal . A deflexão está linearmente relacionada com a força , desde que o limite
elástico do material não seja ultrapassado, conforme indicado pelo gráfico na imagem, caracterizando uma mola
linear.
Na próxima imagem, uma viga reta é apoiada em dois cilindros de modo que o comprimento entre os apoios
diminui à medida que a viga é defletida pela força , devido à mudança do ponto de apoio sobre o cilindro
em função da deformação da viga. Quanto menor o comprimento entre apoios de uma viga, maior será a força
necessária para provocar o mesmo deslocamento .
Portanto, quanto maior a deformação da viga, menor a distância entre os apoios e maior a força requerida para
deformá-la, caracterizando uma viga que se torna mais rígida conforme é deformada. Além disso, a força não
σ ε
σ = Eε,
E
l
F y F
F
y
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 28/94
está linearmente relacionada à deflexão e, portanto, essa viga pode ser descrita como uma mola que se torna
mais rígida de forma não linear.
A imagem seguinte é uma vista lateral de uma calota circular. A força necessária para achatar a calota aumenta
no início e depois diminui à medida que a calota se aproxima de uma configuração plana, conforme mostrado
pelo gráfico. Qualquer elemento mecânico com essa característica se torna mais macio (menos rígido) de forma
não linear.
Se designarmos que a força exercida sobre um elemento mecânico elástico é função do deslocamento causado
pela força, de outra forma:
Rotacione a tela. 
O coeficiente de elasticidade ou coeficiente elástico é dado por (BUDYNAS; NISBETT, 2015):
Rotacione a tela. 
Onde:
 – deslocamento;
 – Força que causa o deslocamento.
F = F(y)
k = lim
Δy→0
ΔF
Δy
=
dF
dy
y
F
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 29/94
Importante salientar que deve ser medido na direção de e a partir do ponto de aplicação de .
Além disso, a equação tem um caráter geral e pode ser igualmente aplicada para torques e momentos (entrando
em lugar de ) e os respectivos deslocamentos angulares (em lugar de ). Para problemas em que a
relação entre o carregamento e o deslocamento é linear, é denominado constante de mola ou constante de
elasticidade e pode ser obtido por (BUDYNAS; NISBETT, 2015):
Rotacione a tela. 
As unidades mais comuns da constante de elasticidade são libra por polegada ou newtons por metro e,
para deslocamentos angulares, libra-polegada por radiano ou newton-metro por radiano.
A seguir, estudaremos a relação entre o carregamento aplicado sobre um elemento mecânico, suas
propriedades mecânicas e geometria e o deslocamento resultante.
Elemento axialmente carregado
Para um elemento axialmente carregado, isto é, sob tração ou compressão, podemos relacionar tensão no
material , com seu módulo de Young (módulo de elasticidade ) e a deformação pela equação:
Rotacione a tela. 
Mas a deformação é a razão entre a variação do comprimento do elemento do elemento cuja área da
seção reta é e seu comprimento inicial (l). Assim:
Rotacione a tela. 
Importante notar que é o deslocamento provocado pelo carregamento, isto é, equivale à deflexão .
Além disso:
y F F
F y
k
k =
F
y
k
(σ) E (ε)
σ = Eε
(Δl)
A
σ = E
Δl
l
Δl y
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 30/94
Rotacione a tela. 
Assim:
Rotacione a tela. 
Se, como vimos, 
Elemento sob torção
Para um elemento sob torção, a equação que relaciona o torque ou o momento aplicado , o módulo de
torção ou cisalhamento , o comprimento do elemento mecânico , seu momento polar de inércia
 e o deslocamento angular resultante é a seguinte:
Rotacione a tela. 
Assim, fazendo a razão entre o carregamento e o deslocamento , temos:
Rotacione a tela. 
De�exão de materiais carregados
σ =
F
A
F
A
= E
Δl
l
k = F/y = F/Δl′
(T )
(G) (l)
(J) (θ)
θ =
Tl
GJ
k T θ
T
θ
= k =
GJ
l
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 31/94
Cálculo das de�exões
O cálculo das deflexões pode ser feito de maneira direta para elementos mecânicos elasticamente carregados,
ou seja,que não tenham sofrido deformação plástica, e considerando que o material apresente relação entre
tensão e deformação linear, tal como em , como veremos para o caso de vigas
axialmente carregadas (tração ou compressão puras) ou submetidas a torques ou momentos que provoquem
torção (cisalhamento puro).
Para vigas sob flexão, o cálculo da deflexão é um pouco mais complexo e envolve algumas etapas, desde a
determinação da função que representa o esforço cortante, seguida pela função que representa o momento
fletor, a inclinação da viga e, finalmente, a deflexão, em um processo que se inicia com o desenho do diagrama
de corpo livre, passando pela determinação das reações nos apoios e alguns passos de integração para
determinação das funções mencionadas segundo as condições de contorno.
Finalmente, estudaremos casos mais complexos de carregamento onde utilizaremos o método da superposição
(de maneira simples, soma dos efeitos) para a determinação das deflexões. Convém ressaltar que existem
outros métodos, como o das funções de singularidade, ou o método de energia ou de Castigliano, que não serão
aprofundados aqui, mas podem ser encontrados na bibliografia sobre o assunto.
Elemento sob tração ou compressão
Para elementos mecânicos sob tensão axial, o cálculo da deformação e da deflexão pode ser realizado por meio
da equação:
Rotacione a tela. 
Assim:
Rotacione a tela. 
Onde:
σ ε(Δl/1) σ = Eε
F
A
= E
Δl
l
y = Δl =
Fl
EA
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 32/94
 – carregamento axial;
 – comprimento da viga;
 – módulo de elasticidade;
 – área da seção reta da viga.
Elemento sob torção
Como visto para a determinação do coeficiente de elasticidade , tal que , para um elemento
sob torção, o deslocamento angular resultante pode ser calculado pela equação a seguir:
Rotacione a tela. 
Onde:
 – torque ou o momento aplicado;
 – comprimento do elemento mecânico;
 – módulo de torção ou cisalhamento;
 – momento polar de inércia.
Elemento sob �exão
Estudaremos agora o caso de elementos mecânicos submetidos à flexão. A flexão de um elemento mecânico
ocorre quando ele é submetido a um carregamento transversal, como o carregamento uniformemente
distribuído na imagem seguinte:
F
l
E
A
(k T = kθ)
θ
θ =
Tl
GJ
T
l
G
J
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 33/94
O diagrama de corpo livre correspondente a esse carregamento é o apresentado na imagem a seguir:
Note que pela simetria do problema as reações em cada um dos apoios e devem ser iguais e,
somadas, devem possuir o mesmo valor da força resultante da aplicação da carga distribuída:
Rotacione a tela. 
Logo:
Rotacione a tela. 
Neste ponto é importante recordarmos algumas equações relativas à flexão. Inicialmente, a equação que
fornece o raio de curvatura de uma viga submetida a um momento é:
Rotacione a tela. 
Onde:
 – módulo de elasticidade do material da viga;
 – momento de inércia da viga.
Da definição matemática de curvatura e considerando que a deformação da viga é pequena, obtemosa equação:
(R1 R2)
(F)
R1 + R2 = F
F = wl e R1 = R2
R1 = R2 =
wl
2
(ρ) M
1
ρ
=
M
EI
E
I
2
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 34/94
Rotacione a tela. 
Consequentemente:
Rotacione a tela. 
Onde:
 – carregamento transversal (esforço cortante);
 – carregamento transversal distribuído.
A partir dessas equações e com base no carregamento uniformemente distribuído , o diagrama de esforço
cortante (DEC) e o diagrama de momento fletor (DMF) são os ilustrados a seguir:
Os diagramas de inclinação da viga e de deflexão são, respectivamente, os seguintes:
M
EI
=
d2y
dx2
V
EI
=
d3y
d3
q
EI
=
d4y
dx4
V
q
w
(θ = dy/dx) (y)
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 35/94
A nomenclatura e as convenções são ilustradas nas imagens. O eixo é positivo para a direita e o eixo 
positivo para cima. Todas as quantidades – carregamento, cisalhamento, momento, inclinação e deflexão – têm
o mesmo sinal que ; eles são positivos para cima e negativos para baixo.
As reações e e os carregamentos transversais em e são
respectivamente e . O momento fletor em e são
nulos porque a viga é simplesmente apoiada. Para uma viga simplesmente apoiada, as deflexões também são
nulas em cada extremidade (BUDYNAS e NISBETT, 2015).
Podemos calcular a deflexão no centro da viga, isto é, para o problema proposto, a maior deflexão
provocada pelo carregamento. Utilizando a equação:
Rotacione a tela. 
Para o carregamento em questão:
Rotacione a tela. 
Então:
x y
y
R1 R2 = 7, 5kN x = 0 x = l
V0 = 7, 5kN V1 = −7, 5kN x = 0 x = l
y
d2y
dx2
=
M
EI
M = R1x −
wx2
2
=
wl
2
x −
wx2
2
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 36/94
Rotacione a tela. 
Ao analisarmos a imagem a seguir, observamos que a viga é simplesmente apoiada em e ,
isto é, o deslocamento da viga é nulo nessas posições.
Assim sendo, para 
E, para 
Pela simetria do problema, esperamos que as inclinações nas extremidades sejam idênticas, porém, com sinais
opostos:
Rotacione a tela. 
Para .
EI
dy
dx
= ∫ Mdx,
EI
dy
dx
= ∫ (
wl
2
x −
wx2
2
)dx =
wl
4
x2 −
wx3
6
+ C1
EIy = ∫ ( wl
4
x2 −
wx3
6
+ C1)dx
EIy =
wl
12
x3 −
wx4
24
+ C1x + C2
x = 0 x = l
y = 0 x = 0
 EIy  = C2,C2 = 0
y = 0 x = l
EIy =
wl4
12
−
wl4
24
+ C1l
0 =
wl4
24
+ C1l
C1 = −
wl3
24
dy
dx x=0
= −
dy
dx x=1∣ ∣x = 0 3
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 37/94
Rotacione a tela. 
Para .
Rotacione a tela. 
Ainda pela simetria do problema, observa-se que a deflexão máxima ocorre para l/2. Assim:
Rotacione a tela. 
Esse valor pode ser calculado caso conheçamos o material e a geometria da viga, visto que os valores de e
 já são conhecidos. É importante destacar que para muitos casos de carregamento os livros de resistência
dos materiais apresentam tabelas com as fórmulas para os cálculos do momento fletor, esforço cortante,
deflexão e inclinação da viga. Confira a seguir alguns exemplos de carregamentos e condições de contorno, bem
como suas respectivas equações:
Carregamento e condição de contorno.
dy
dx
= −
wl3
24EI
x = l
dy
dx
=
1
EI
( wl
3
4
−
wl3
6
−
wl3
24
)
dy
dx
=
wl3
24EI
x =
ymax =
1
EI
[ wl
12
( l
2
)
3
−
w
24
( l
2
)
4
−
wl4
48
]
ymax = −
5wl
384EI
w
l
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 38/94
Carregamento e condição de contorno.
Carregamento e condição de contorno.
R1 = R2 = F/2
 V AB = R1eVBC = −R2
MAB = Fx/2eMBC =
F
2
(l − x)
yAB =
Fx
48EI
(4x2 − 3l2)
ymax = −
Fl3
48EI
R1 =
Fb
l
;R2 =
Fa
l
VAB = R1eVBC = −R2
MAB =
Fbx
l
eMBC =
Fa
l
(l − x)
yAB =
Fbx
6EIl
(x2 + b2 − l2)
yBC =
Fa(l − x)
6EIl
(x2 + a2 − 2 lx)
R1 =
11 F
16
;R2 =
5 F
16
;M1 =
3Fl
16
 V AB = R1eVBC = −R2
MAB =
F
16
(11x − 3l)eMBC =
5 F
16
(l − x)
yAB =
Fx
96EI
(11x − 9l)
yBC =
F(l − x)
96EI
(5x2 + 2l2 − 1 − 10x)
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 39/94
Carregamento e condição de contorno.
Carregamento e condição de contorno.
R1 = R2 =
wl
2
V =
wl
2
− wx
M =
wx
2
(l − x)
y =
wx
24EI
(2l2 − x3 − l3)
ymax = −
5wl4
384EI
R1 =
Fb
2l3
(3l2 − b2);R2 =
Fa2
2l3
(3l − a)
M1 =
Fb
2l2
(l2 − b2)
VAB = R1eVBC = −R2
MAB =
Fb
2l3
[b2l − l3 + x (3l2 − b2)]eMBC =
Fa2
2l3
(3l2 − 3lx − al + ax)
yAB =
Fbx2
12EIl3
[3l (b2 − l2) + x (3l2 − b2)]
yBC = yAB −
F(x − a)3
6EI
23/04/2023, 20:20 Falhas em elementos mecânicoshttps://stecine.azureedge.net/repositorio/00212en/03536/index.html# 40/94
Carregamento e condição de contorno.
Carregamento e condição de contorno.
De�exão por superposição
A deflexão resultante de carregamento combinado em uma estrutura pode ser calculada utilizando-se a
superposição. Nesse método, o efeito de cada carga é calculado como se aquele carregamento atuasse
isoladamente. O efeito combinado será, então, a soma dos efeitos de cada carregamento. O método da
superposição pode ser aplicado desde que as seguintes condições sejam atendidas (BUDYNAS; NISBETT, 2015):
R1 =
5wl
8
;R2 =
3wl
8
;M1 =
wl2
8
 V =
5wl
8
− wx
M = −
w
8
(4x2 − 5 lx + l2)
y =
wx
48EI
(l − x)(2x − 3l)
R1 =
Fa
l
;R2 =
F
l
(l + a)
VAB = R1 e VBC = F
MAB = −
Fax
l
;MBC = F(x − l − a)
yAB =
Fax
6EIl
(l2 − x2)
yBC =
F(x − l)
6EI
[(x − l)2 − a(3x − l)]
yc = −
Fa2
3EI
(l + a)
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 41/94
Condição I
A primeira condição para a aplicação da superposição é que cada deslocamento seja linearmente
relacionado à carga que a produz.
Condição II
O segundo ponto é que o carregamento não cria uma condição que afeta o resultado da aplicação do
outro carregamento.
Condição III
As deformações resultantes de qualquer carga específica não são grandes o suficiente para alterar as
relações geométricas do sistema estrutural.
Utilizaremos um exemplo da aplicação do método da superposição para melhor compreendê-lo. Confira a seguir.
Exemplo
Considere a viga carregada simultaneamente com o carregamento uniformemente e com uma força
concentrada como mostrado na figura a seguir. Usando o método da superposição, determine as reações nos
apoios e a deflexão da viga em função de (BUDYNAS; NISBETT, 2015).
Inicialmente, consideraremos apenas o carregamento distribuído .
x
w
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 42/94
Da tabela:
Rotacione a tela. 
Para a carga concentrada .
Da tabela:
Rotacione a tela. 
Pelo método da superposição, somamos os efeitos dos carregamentos:
R1 = R2 =
wl
2
y =
wx
24EI
(2 lx2 − x3 − l3)
F
R1 =
Fb
l
;R2 =
Fa
l
yAB =
Fbx
6EEIl
(x2 + b2 − l2)eyBC =
Fa(1 − x)
6EIl
(x2 + a2 − 2lx)
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 43/94
Rotacione a tela. 
Os métodos de integração e da superposição fornecem mecanismos eficazes para determinar a inclinação e a
deflexão em qualquer ponto de uma viga prismática, desde que o momento fletor possa ser representado
por uma única função analítica. No entanto, quando devido à presença de diversos carregamentos ao longo de
um elemento mecânico várias funções são necessárias para representar sobre o comprimento da viga,
esse método pode se tornar bastante trabalhoso, uma vez que requer a compatibilização de inclinações e
deflexões correspondentes em cada ponto de aplicação de carga ou de mudança de geometria.
O uso de funções de singularidade simplifica consideravelmente a determinação das
inclinações e deflexões em qualquer ponto do elemento.
Confira a seguir as funções de singularidade mais utilizadas e os respectivos carregamentos que representa.
Momento concentrado
R1 =
Fb
l
+
wl
2
R2 =
Fa
l
+
wl
2
yAB =
Fbx
6EIl
(x2 + b2 − l2) +
wx
24EI
(2 lxx2 − x3 − l3)
yBC =
Fa(l − x)
6EIl
(x2 + a2 − 2 lx) +
wx
24EI
(2 lx2 − x3 − l3)
M
M
⟨x − a⟩−2 = 0 x ≠ a
⟨x − a⟩−2 = ±∞ x = a
∫ ⟨x − a⟩−2dx = ⟨x − a⟩−1
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 44/94
Força concentrada
Carga uniformemente distribuída
Carga distribuída linearmente variável
⟨x − a⟩−1 = 0 x ≠ a
⟨ ⟩−1 +
⟨x − a⟩0 = {
∫ ⟨x − a⟩0dx = ⟨x − a⟩1
0 x < a
1 x ≥ a
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 45/94
Podemos resolver o problema que solucionamos por suposição utilizando as funções de singularidade como
ilustração. A situação analisada é a da imagem a seguir:
Considerando o diagrama de corpo livre, o carregamento pode ser representado pela função:
Rotacione a tela. 
Então, a função que representa o esforço cortante será dada por:
Rotacione a tela. 
Para o momento fletor, teremos:
Rotacione a tela. 
Integrando mais duas vezes para a inclinação e deflexão:
⟨x − a⟩1 = {0 x < a
x − a x ≥ a
q = R1 < x >
−1 −w < x >0 −F < x − a >−1 +R2 < x − l >
−1
V = ∫ qdx = R1 < x >0 −w < x >1 −F < x − a >0 +R2 < x − l >0
M = ∫ V dx = R1 < x >1 −w
< x >2
2
− F < x − a >1 +R2 < x − 1 >
1
EI
dy
dx
= ∫ Mdx = R1
⟨x⟩2
2
− w
⟨x⟩3
6
− F
⟨x − a⟩2
2
+ C1
EIy = R1
⟨x⟩3
6
− w
⟨x⟩4
24
− F
⟨x − a⟩3
6
+ C1x + C2
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 46/94
Rotacione a tela. 
 e podem ser determinados utilizando as condições de contorno em e em
 que resulta em:
Rotacione a tela. 
Assim:
Rotacione a tela. 
Observamos que quando usamos funções de singularidade para representar o carregamento, aquelas com
expoente maior ou igual a zero começando em podem ser substituídas por funções polinomiais
normais. Além disso, uma vez que as reações são determinadas, funções de singularidade representando
reações na extremidade direita do feixe podem ser omitidas da função de carregamento (BUDYNAS; NISBETT,
2015).
Outra observação que devemos ressaltar é que o termo que multiplica a deflexão é chamado de
rigidez estrutural, em uma analogia com a constante elástica ou rigidez de uma mola. Portanto, quanto maior o
produto , maior a rigidez de um elemento mecânico. A rigidez de uma estrutura pode ser alterada por
meio do material ou por meio da geometria .
Vem que eu te explico!
Os vídeos a seguir abordam os assuntos mais relevantes do conteúdo que você acabou de estudar.
Módulo 2 - Vem que eu te explico!
Relação deformação e módulo de elasticidade
Módulo 2 - Vem que eu te explico!
De�exão por superposição
C1 C1 (y = 0 x = 0
x = 1), 0
C1 = F
< l − a >3
6
= F
b3
6l
,  já que l − a = b;C2 = 0
 EIy  = R1
x3
6
− w
x4
24
− F
⟨x − a >3
6
+ F
b3
6l
x
x = 0
EI y
EI
(E) (I)

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 47/94

Vamos praticar alguns conceitos?
Falta pouco para atingir seus
objetivos.
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 48/94
Questão 1
Uma barra prismática de aço de de comprimento é tracionada axialmente. Se a área da seção
reta é de e o módulo de elasticidade do aço 207GPa $$,
considerando as afirmativas abaixo, assinale a alternativa correta
I. O módulo de elasticidade ou rigidez equivalente da viga é .
II. A tensão de tração, a forma da peça ou o elemento de máquina não limitam as opções de materiais a
serem selecionados.
III. A deflexão da viga sob o carregamento considerado é de .
Questão 2
1, 5m
12, 50cm2,F = 15kN E =
k = 1, 7kN/mm
0, 09mm
A Somente I está correta.
B Somente II está correta.
C Somente III está correta.
D I e II estão corretas.
E I e III estão corretas.
Responder
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 49/94
Considerando que uma viga de aço com seção reta quadrada de lado 12cm é submetida ao carregamento
combinado apresentado na imagem abaixo, sua deflexão máxima é de:
A 4mm
B 1,7mm
C 2,3mm
D 4cm
E 2,3cm
Responder

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 50/94
3 - Carregamento estático, tensão e deformação
Ao �nal deste módulo, você será capaz de aplicar as relações entre carregamento estático,
tensão e deformação para análise de falhadevido a carregamento estático.
Vamos começar!
Falhas resultantes de carregamento estático
Assista ao vídeo e compreenda melhor as falhas resultantes de carregamento estático.

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 51/94
Por que as peças falham?
Falhas em elementos mecânicos
Por que as peças falham? Inicialmente e de maneira superficial, responderíamos que “peças falham porque as
tensões desenvolvidas sob as condições de carregamento excederam sua resistência”. Essa resposta não está
errada, mas não esgota completamente a questão. A fim de aperfeiçoar e particularizar a explicação devemos
ainda responder as seguintes perguntas:
Que tipo de tensão causa a falha? Tração? Compressão? Cisalhamento?
A partir de então temos que analisar mais profundamente a questão, pois a resposta dependerá do material, da
sua resistência à compressão, à tração e ao cisalhamento. Além disso, o tipo de carregamento (estático ou
dinâmico, axial ou transversal), as condições de contorno (apoio simples, rótula, engastamento) e a presença
ou não de trincas no material devem ser considerados para uma análise completa.
Em geral, materiais dúcteis e isotrópicos submetidos a carregamentos estáticos falham devido às tensões de
cisalhamento, enquanto materiais frágeis são limitados pela tensão normal (embora existam exceções a essa
regra quando materiais dúcteis se comportam como frágeis). Essa situação requer que tenhamos diferentes
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 52/94
teorias de falha para as duas classes de materiais. Sendo assim, é importante diferenciar objetivamente os
materiais dúcteis dos frágeis.
Materiais dúcteis
Aqueles cujo percentual de elongação até a ruptura seja > 5%. A maioria dos metais dúcteis tem elongação
até a ruptura > 10%.
Materiais frágeis
Aqueles materiais cuja ruptura ocorre em valores iguais ou inferiores a 5% de elongação são considerados
materiais frágeis.
Entretanto, como podemos definir falha sob o ponto de vista do projeto mecânico? De maneira clara, podemos
considerar que há falha de uma peça se ela sofre ruptura. Além disso, caso um elemento mecânico apresente
deformações e distorções suficientemente grandes para impedir o funcionamento adequado do sistema,
também consideramos que houve falha. Materiais dúcteis apresentam deformação significativa antes de
romperem.
Por sua vez, os materiais frágeis rompem sem que haja deformação significativa, isto é, rompem com a sua
forma relativamente conservada. O tipo de carregamento – estático ou dinâmico – é outro importante fator para
análise da falha e determina a utilização de diferentes critérios. Logo, assim como diferenciamos os materiais
dúcteis dos frágeis, devemos fazê-lo para carregamento estático ou dinâmico.

Atenção!
Em linhas gerais, cargas estáticas são aplicadas lentamente e permanecem essencialmente
constantes no tempo. Cargas dinâmicas podem ser tanto aplicadas subitamente (carga de impacto)
como variadas repetidamente ao longo do tempo (carga de fadiga), ou podem ser aplicadas
simultaneamente.

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 53/94
Os mecanismos de falha são totalmente diferentes em cada caso. Por exemplo, para carregamento dinâmico,
materiais dúcteis e frágeis apresentam comportamento similar, e os materiais dúcteis falham de maneira
“frágil”. Neste módulo apresentaremos os diferentes critérios de falha para materiais dúcteis e frágeis sob
carregamento estático.
Falhas e deformação plástica
Falha estática em materiais dúcteis
Uma carga estática é uma força, torque ou momento aplicado a um elemento mecânico sem que haja mudança
em sua intensidade, ponto ou pontos de aplicação, direção e sentido. Logo, para ser considerada estática, a
carga não pode mudar de nenhuma maneira. Como consequência da aplicação de um carregamento estático o
material pode responder produzindo tensão axial – tração ou compressão –, tensão de cisalhamento, tensão de
flexão, ou qualquer combinação dessas tensões.
Normalmente, considera-se como a resistência desses materiais o limite de escoamento, ou seja, o maior valor
de tensão a que um material pode ser submetido sem sofrer deformação plástica. Nos materiais dúcteis o limite
de resistência ao escoamento , na maioria das vezes, é o mesmo em tração e em compressão
.
As teorias geralmente aceitas para critério de falha de materiais dúcteis são as seguintes:
Máxima tensão de cisalhamento (MSS);
Energia de distorção (DE);
Coulomb-Mohr para materiais dúcteis (DCM).
Critério da máxima tensão de cisalhamento
O critério da máxima tensão de cisalhamento (MSS), também conhecido como critério de Tresca, afirma que
qualquer componente mecânico sujeito a uma carga ou a uma combinação de cargas falhará sempre que a
tensão de cisalhamento máxima exceder a resistência de cisalhamento do material (isto é, a tensão de
cisalhamento no momento do escoamento na amostra padrão de ensaio de tração). A imagem seguinte mostra
o Círculo de Mohr para um estado de tensão triaxial com e como tensões principais tais que
.
(σy) (σyt)
(σyc)
σ1,σ2 σ3
σ1 ≥ σ2 ≥ σ3
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 54/94
As três tensões de cisalhamento principais são dadas por:
Rotacione a tela. 
Observando a imagem e considerando que , fica evidente que a maior tensão de
cisalhamento é . Assim:
Rotacione a tela. 
Considerando um ensaio de tração, e , resultando em:
Rotacione a tela. 
Além disso, o escoamento no ensaio de tração começa quando a tensão de tração é igual ao limite de
escoamento do material . Portanto, a tensão de cisalhamento máxima no momento do escoamento no
ensaio de tração é:
Rotacione a tela. 
Assim, a equação de projeto baseada na teoria da tensão de cisalhamento máxima, para um fator de projeto 
pode ser escrita como:
τ12 =
σ1 − σ2
2
; τ13 =
σ1 − σ3
2
; τ23 =
σ2 − σ3
2
σ1 ≥ σ2 ≥ σ3
τ13
τ13 = τmax =
σ1 − σ3
2
σ1 = σx σ2 = σ3 = 0
τmax =
σ1
2
(σ1)
(Sy)
τmax =
Sy
2
nd
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 55/94
Rotacione a tela. 
Observe que, para estado plano de tensão, e . A representação gráfica da
teoria da máxima tensão de cisalhamento, fornecendo o envelope de falha para o estado plano de tensão
, é mostrada a seguir:
De acordo com essa teoria, para o estado de tensão plana, o escoamento começa quando .
Mas no primeiro e terceiro quadrantes do gráfico e são da mesma natureza (tensões
tratativas no primeiro quadrante e compressivas no terceiro). Nesses quadrantes, o escoamento pode começar
quando atinge qualquer das tensões ou atinge o limite de escoamento, .
Portanto, no primeiro e no terceiro quadrantes, a área de segurança é limitada pelas linhas e
 No segundo e quarto quadrantes, a área é limitada por linhas, que representam a condição em
que a tensão de cisalhamento máxima atinge a resistência ao cisalhamento do material , ou seja,
 .
Essa teoria serve para a previsão de falhas de materiais dúcteis, mas é um pouco conservadora como veremos
mais à frente.
Falha e energia
Critério da energia de distorção
A teoria da energia de distorção prevê que o escoamento ocorre quando a energia de distorção por unidade de
volume atinge ou excede a energia de distorção por unidade de volume para escoamento do material sob tração
ou compressão simples. A teoria da energia de distorção (DE) originou-se da observação de que materiais
τmax =
Sy
2 ⋅ nd
;σ1 − σ3 =
Sy
2 ⋅ nd
σ3 = 0 τmax =
σ1 − σ2
2
(σ3 = 0)
σ1 − σ2 = Sy
(σ1 × σ2),σ1 σ2
(σ1) (σ2) Sy
σ1 = ±Sy
σ2 = ±Sy.
(SSy)
τmax = SSy = Sy/2
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html#56/94
dúcteis submetidos a estados de tensão hidrostáticos apresentaram escoamento para
valores de tensão muito acima dos valores dados do previsto no ensaio de tração simples.
A partir dessa observação, postulou-se que o escoamento não é um fenômeno simples
de tração ou compressão, mas que, na verdade, está de alguma forma relacionado à
distorção angular do material sob carregamento.
Para desenvolver a teoria, observaremos um elemento de volume unitário submetido a qualquer estado de
tensão tridimensional designado pelas tensões e (figura a). Esse estado pode ser representado
como o resultado da soma de dois componentes: um componente hidrostático (figura b), que causa variações
apenas no volume do elemento, mas sem alterar sua forma; e um componente de distorção (figura c) que
contribui para alterar os ângulos do elemento, resultando em sua distorção com mudança de forma.
A tensão média é assim calculada:
Rotacione a tela. 
Considerando que a energia de deformação por unidade de volume para o estado de tensão triaxial é dada por:
Rotacione a tela. 
Que também pode ser escrita como:
Rotacione a tela. 
(σ1 = σ2 = σ3)
σ1,σ2 σ3
σav =
σ1 + σ2 + σ3
3
u =
1
2
(ε1σ1 − ε2σ2 − ε3σ3)
u =
1
2E
(σ21 + σ22 + σ23 − 2v (σ1σ2 + σ1σ3 + σ2σ3)
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 57/94
A energia de deformação provocada pela componente hidrostática da tensão pode ser calculada
usando:
Rotacione a tela. 
Se considerarmos que a energia de deformação (u) é o resultado da soma da componente hidrostática 
com a componente de energia de distorção , teremos para a energia de distorção:
Rotacione a tela. 
Observe que a energia de distorção é nula quando . Para o ensaio de tração simples, no
escoamento, e , a energia de distorção é:
Rotacione a tela. 
Portanto, para o estado de tensão triaxial, por analogia, o escoamento ocorrerá se:
Rotacione a tela. 
Se tivéssemos um caso de tração simples, o escoamento ocorreria quando . Por isso, o termo à
esquerda pode ser considerado como uma tensão equivalente correspondente ao estado triaxial de tensão. Essa
tensão equivalente é conhecida como tensão de Von Mises , onde:
(uav)
uav =
3σ2av
2E
(1 − 2v)
(uav)
(ud)
ud = u − uav =
1 + v
3E
[
(σ1 − σ2)
2 + (σ1 − σ3)
2 + (σ2 − σ3)
2
2
]
σ1 = σ2 = σ3
σ1 = Sy σ2 = σ3 = 0
ud =
1 + v
3E
S 2y
[
(σ1 − σ2)
2 + (σ1 − σ3)
2 + (σ2 − σ3)
2
2
]
1/2
≥ Sy
σ ≥ Sy
(σ′)
σ′ = [
(σ1 − σ2)
2 + (σ1 − σ3)
2 + (σ2 − σ3)
2
2
]
1/2
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 58/94
Rotacione a tela. 
Caso, em lugar das tensões principais, conheçamos as componentes , e das tensões, podemos
usar:
Rotacione a tela. 
Finalmente, se considerarmos um caso de cisalhamento puro onde apenas a tensão cisalhante ,
temos:
Rotacione a tela. 
Para que haja escoamento,
Rotacione a tela. 
Ou seja,
Rotacione a tela. 
Esse resultado mostra que o critério da máxima tensão de cisalhamento é mais conservativo que o critério da
energia de distorção, já que, para o primeiro critério, , enquanto, para o segundo,
. Em outras palavras, o projetista aceita um nível de tensão maior no material ao utilizar o
critério da energia de distorção quando comparado ao nível de tensão que aceitaria se utilizasse o critério de
Tresca para um mesmo material.
O exemplo a seguir (BUDYNAS; NISBETT, 2015) ajudará na compreensão da utilização dos critérios de falhas.
Exemplo
x y z
σ′ =
1
√2
[(σx − σy)2 + (σx − σz)2 + (σy − σz)2 + 6 (τ 2xy + τ 2zx + τ 2yz)]
1/2
τxy ≠ 0
σ′ = √3τxy
σ′ ≥ Sy
τmax =
Sy
√3
= 0, 577Sy
τmax = 0, 5 Sy
τmax = 0, 577 Sy
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 59/94
Um aço laminado a quente tem um limite de escoamento de e apresenta deformação real
na fratura de . Estimar o fator de segurança para os seguintes estados de estresse principais:
1. 
2. 
3. 
4. 
5. 
Como , o material é dúctil e podemos aplicar as teorias da energia de distorção (DE) e da máxima
tensão de cisalhamento (MSS). Utilizaremos as duas abordagens para comparação. Observe que os casos 1 e 4
retratam estados planos de tensão. Veja adiante o desdobramento dos casos expostos, respectivamente, na
lista anterior.
Caso 1
Uma vez que não há tensão de cisalhamento, as tensões normais são iguais às tensões principais. As tensões
principais são e . Utilizando inicialmente o
critério DE:
Rotacione a tela. 
O fator segurança é:
Rotacione a tela. 
Utilizando o critério MSS:
Sy = 700MPa
εf = 0, 55
σx = 500MPa,σy = 500MPa, τxy = 0
σx = 420MPa,σy = 280MPa, τxy = −105MPa
σx = 0MPa,σy = 280MPa, τxy = 315MPa
σx = −280MPa,σy = −420MPa, τxy = 105MPa
σ1 = 150MPa,σ2 = 150MPa,σ3 = 150MPa
εf > 0, 05
σ1 = σx = 500MPa,σ2 = σy = 500MPa σ3 = 0
σ′ = √
(500 − 0)2 + (500 − 500)2 + (500 − 0)2
2
= 500
ns =
Sy
σ′
=
700
500
= 1, 4
τmax =
σ1 − σ3
2
=
500 − 0
2
= 250
 Ssy =
Sy
2
=
700
2
= 350
ns =
Ssy
τmax
=
350
250
= 1, 4
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 60/94
Rotacione a tela. 
Nesse caso, ambos os critérios apresentam o mesmo nível de segurança.
Caso 2
Pelo critério DE:
Rotacione a tela. 
Pelo critério MSS, utilizando o círculo de Mohr para cálculo das tensões principais:
Rotacione a tela. 
Como 
E o fator de segurança será:
Rotacione a tela. 
Caso 3
Pelo critério DE:
σ′ =
1
√2
[(420 − 280)2 + (420 − 0)2 + (280 − 0)2 + 6 (−1052)]1/2 = 412, 64
ns =
Sy
σ′
=
700
412, 64
= 1, 70
σ1;σ2 =
σx + σy
2
±√(
σx − σy
2
)
2
+ τ 2xy = 476, 19; 223, 81
σ3 = 0
τmax =
476, 19 − 0
2
= 238, 10
ns =
Ssy
τmax
=
350
238, 10
= 1, 47
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 61/94
Rotacione a tela. 
Pelo critério MSS, como uma das tensões, no caso , pelo círculo de Mohr obtemos:
Rotacione a tela. 
O fator de segurança será:
Rotacione a tela. 
Caso 4
Pelo método DE:
Rotacione a tela. 
E o fator de segurança será:
Rotacione a tela. 
Pelo critério MSS, inicialmente obtemos as tensões principais:
σ′ =
1
√2
[(0 − 280)2 + (280 − 0)2 + 6 (−3152)]
1/2
= 613, 25
ns =
Sy
σ′
=
700
613, 25
= 1, 14
σx = 0
τmax =√(
σx − σy
2
)
2
+ τ 2xy = 344, 71
ns =
Ssy
τmax
=
350
344, 71
= 1, 01
σ′ = 412, 64
ns =
Sy
σ′
=
700
412, 64
= 1, 70
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 62/94
Rotacione a tela. 
E o fator de segurança será:
Rotacione a tela. 
Caso 5
Pelo critério DE:
Rotacione a tela. 
Para esse caso:
Rotacione a tela. 
Para o critério MSS:
Rotacione a tela. 
Assim, também para esse critério, . Uma vez que a teoria MSS coincide ou está dentro dos limites
da teoria DE, ela sempre prevê um fator de segurança igual ou menor que a teoria DE. Para cada caso, exceto o
σ2;σ3 =
σx + σy
2
±√(
σx − σy
2
)
2
+ τ 2xy = −223, 91; −476, 19
τmax =
0 − (−476, 19)
2
= 238, 10
ns =
Ssy
τmax
=
350
238, 10
= 1, 47
σ′ = [
(σ1 − σ2)
2 + (σ1 − σ3)
2 + (σ2 − σ3)
2
2
]
1/2
= 0
ns =
Sy
σ′
=
700
0
→ ∞
τmax =
150 − (150)
2
= 0
ns → ∞
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 63/94
caso 5 que não retrata um estado plano de tensões, as linhas de carga são mostradas na imagem a seguir.
Observe que o caso 1 é o único em que as duas teorias concordam, dando assim o mesmo fator de segurança.
Para melhor compreensão da imagem: caso 1 (a), caso 2 (b), caso 3 (c), caso 4 (d), caso 5 (e).
O que são materiais frágeis?
Materiais frágeis são aqueles cuja deformação na fratura não supera . Esses materiais não
apresentam escoamento, em outras palavras, apresentam pouca ou nenhuma deformação plástica na ruptura.
Devidoa essa característica, o critério de falha desses materiais está ligado ao limite de resistência à tração
 ou o limite de resistência à compressão , dependendo do carregamento.
As teorias mais aceitas para análise de falha de materiais frágeis (critérios de falha) são:
Máxima tensão normal máxima (MNS);
Coulomb-Mohr para materiais frágeis (CMB);
Mohr modificado (MM).
Máxima tensão normal (MNS)
Pela teoria da máxima tensão normal (MNS), a falha ocorre sempre que uma das três tensões principais igualam
ou excedem o limite de resistência à tração ou o limite de resistência à compressão . Assim
como procedemos para os materiais dúcteis, organizamos as tensões principais para um estado de tensão
triaxial em ordem decrescente . Essa teoria então prevê que a falha ocorre sempre que
 ou , pois (tensão compressiva).
As equações do critério de falha podem ser escritas como equações de projeto:
5%(ε ≤ 0, 05)
(Sut) (Suc)
(Sut) (Sut)
(σ1 ≥ σ2 ≥ σ3)
σ1 ≥ Sut σ3 ≤ Suc Suc < 0
σ1 =
sut
nd
ou σ3 =
suc
nd
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 64/94
Rotacione a tela. 
A teoria da máxima tensão normal não é adequada para previsão de falhas no quarto quadrante e
.
Coulomb-Mohr para materiais frágeis
O critério de Mohr estabelece um envelope de segurança baseado no limite de resistência à tração, no limite de
resistência à compressão e no limite de resistência ao cisalhamento obtidos experimentalmente para um dado
material, considerando que o material apresenta limite de resistência à tração e à compressão diferentes.
Portanto, esse critério pode ser usado para materiais dúcteis que possuam resistência ao escoamento sob
tração diferente da resistência ao escoamento sob compressão ( . O envelope está mostrado
na imagem a seguir:
Uma variação da teoria de Mohr, chamada de teoria de Coulomb-Mohr ou teoria do atrito interno, assume que o
limite BCD da figura é uma linha reta (tangente comum externa aos círculos representando compressão pura e
tração pura). Com isso, apenas as resistências à tração e à compressão são necessárias
para o equacionamento.
As equações da teoria de Coulomb-Mohr são as equações de projeto para estado plano de tensões a seguir:
Rotacione a tela. 
Mohr modi�cada
(σ1 > 0
σ2 < 0)
Syt ≠ Syc)
(Sut) (Suc)
σ1 =
Sut
nd
, σ1 ≥ σ2 ≥ 0
σ1
 Sut
+
σ2
 Suc
=
1
nd
, σ1 ≥ 0 ≥ σ2
σ2 =
Suc
nd
, 0 ≥ σ1 ≥ σ2
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 65/94
As equações do critério de Mohr modificado para análise de falhas, também na forma de equações de projeto
considerando estado plano de tensões são:
Rotacione a tela. 
O exemplo a seguir (BUDYNAS; NISBETT, 2015) nos ajudará a compreender a utilização dos critérios.
Exemplo
Consideremos que o material utilizado na estrutura da imagem é um ferro fundido cujos limites de resistência à
tração e à compressão são respectivamente e . Determine a força
 utilizando (a) o critério de Coulomb-Mohr; (b) O critério de Mohr modificado.
Assumimos que a alavanca DC é suficientemente robusta e não faz parte do problema. O elemento em A no
topo da superfície será submetido a uma tensão de flexão de tração e uma tensão de torção. Esse local, na
região de 1 polegada de diâmetro, é o local mais sensível ao carregamento e limita o valor da força. A tensão
normal e a tensão de cisalhamento em são dadas por (considerando os fatores de
concentração de tensão ):
Rotacione a tela. 
σ1 =
Sut
nd
, σ1 ≥ σ2 ≥ 0  ou  σ1 ≥ 0 ≥ σ2  e 
σ2
σ1
≤ 1
−
(Sut + Suc)σ1
 SutSuc
+
σ2
 Suc
=
1
nd
, σ1 ≥ 0 ≥ σ2  e 
σ2
σ1
> 1
σ2 =
Suc
nd
0 ≥ σ1 ≥ σ2 ∣ ∣∣ ∣Sut  = 31kpsi Suc = −109kpsiF σx (τxy) A= 1
σx =
Mc
I
=
12 F ⋅ 0, 5
π⋅14
64
= 142, 6 F
τxy =
Tr
J
=
15 F ⋅ 0, 5
π⋅14
32
= 76, 4 F
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 66/94
Calculamos as tensões principais:
Rotacione a tela. 
Expressão A
Considerando que , usaremos a equação considerando 
Rotacione a tela. 
Expressão B
Pelo critério de Mohr modificado, com e 
Rotacione a tela. 
Observamos que a força admissível para o critério de Coulomb-Mohr é menor do que a prevista para o critério de
Mohr modificado, o que era esperado, pois o primeiro critério é mais conservativo que o segundo.
Vem que eu te explico!
Os vídeos a seguir abordam os assuntos mais relevantes do conteúdo que você acabou de estudar.
σ1;σ2 =
σx + σy
2
±√(
σx − σy
2
)
2
+ τ 2xy = 175, 8 F ; −33, 2 F
σ1 ≥ 0 ≥ σ2 nd = 1
σ1
Sut
+
σ2
 Suc
=
1
nd
175, 8 F
31000
+
−33, 2 F
−109000
= 1
 F = 167, 3lbf
σ1 ≥ 0 ≥ σ2
σ2
σ1
=
33, 2
175, 8
< 1∣ ∣σ1 = Sutnd → 175, 8 F = 31000 F = 176, 3lbf
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 67/94
Módulo 3 - Vem que eu te explico!
Materiais dúcteis
Módulo 3 - Vem que eu te explico!
Materiais frágeis

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 68/94
Questão 1
Uma barra de aço laminado a quente possui resistência ao escoamento sob tração e compressão iguais a
. Assinale a alternativa que apresenta os fatores de segurança corretos segundo os critérios
da máxima tensão de cisalhamento e da energia de distorção, respectivamente, para o carregamento a
seguir:
 
Vamos praticar alguns conceitos?
Falta pouco para atingir seus
objetivos.
350MPa
σx = 84MPa;σy = 28MPaτxy = 7MPa
A MSS: ns = 8, 2;DE : ns = 4, 6
B MSS: ns = 4, 6;DE : ns = 9, 2
C MSS: DE: ns = 4, 1; ns = 2, 3
D MSS: ns = 4, 1;DE : ns = 4, 6
E MSS: ns = 8, 2;DE : ns = 9, 2
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 69/94
Questão 2
Um ferro fundido ASTM possui resistência ao escoamento sob tração e
. Assinale a alternativa que apresenta os fatores de segurança para o critério da
máxima tensão normal (MNS) e de Mohr modificado (MM), respectivamente, para o carregamento
.
Responder
Syt = 210MPa
Syc = 700MPa
σx = 140MPa;σy = 42MPa
A MNS: MM: ns = 1, 2; ns = 1, 5
B MNS: MM: ns = 2, 1; ns = 1, 1
C MNS: MM: ns = 8, 3; ns = 2, 1
D MNS: MM: ns = 3, 0; ns = 1, 1
E MNS: MM: ns = 1, 5; ns = 1, 5
Responder

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 70/94
4 - Falha por fadiga em carregamento dinâmico
Ao �nal deste módulo, você será capaz de aplicar a relação entre o carregamento dinâmico e as
tensões induzidas no material para analisar a ocorrência ou não de falha por fadiga devido ao
carregamento dinâmico.
Vamos começar!
Carregamento dinâmico e a falha por fadiga
Assista ao vídeo e compreenda melhor os conceitos que estão relacionados ao carregamento dinâmico e à falha
por fadiga.

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 71/94
Fadiga
Carregamento dinâmico e a falha por fadiga
A carga que muda de magnitude, direção ou sentido em relação ao tempo é conhecida como carga dinâmica. A
carga cíclica e a carga devido a um impacto são tipos de cargas dinâmicas. Para vários sistemas mecânicos,
particularmente os que possuem peças em movimento, pode haver um ou mais elementos da máquina sujeitos
a cargas cíclicas, resultando em tensões variáveis que flutuam entre diferentes valores de acordo com a
variação do carregamento.
Exemplo

23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 72/94
Os elementos de máquinas sujeitos a tensões cíclicas ou flutuantes frequentemente falham sob um valor
máximo de tensão induzida muito abaixo do limite de escoamento ou de resistência à tração 
ou compressão . Tal falha verificada em materiais sujeitos a carregamentosdinâmicos é conhecida
como falha por fadiga, uma vez que ocorre após um mgrande número de ciclos de tensão.
Ao contrário da falha estática, uma falha por fadiga não dá nenhum aviso! Ela é repentina e
total, portanto, muito perigosa.
Uma falha por fadiga tem uma aparência semelhante a uma fratura frágil. As superfícies são planas e
perpendiculares ao eixo de tensão com a ausência de empescoçamento (deformação plástica). O processo que
leva a uma falha por fadiga, no entanto, é bastante diferente daquele da fratura frágil estática e resulta de três
estágios de desenvolvimento, que podem ser vistos detalhadamente a seguir.
Estágio I
O estágio I é o início de uma ou mais microtrincas devido à deformação plástica cíclica, que é seguida da
propagação segundo o plano cristalográfico até encontrar o contorno de grão, por onde que se estende por dois
a cinco grãos. As trincas do estágio I geralmente não são detectáveis a olho nu.
Estágio II
No estágio II, a trinca progride, passando do tamanho micro para o macro e formando superfícies de fratura em
forma de platô, paralelas e separadas por sulcos. Esses platôs costumam ser lisos e normais à direção da
máxima tensão de tração. Essas superfícies podem ser onduladas com bandas escuras e claras denominadas
marcas de praia, conforme as observadas na imagem a seguir.
Um elemento na superfície de um eixo rotativo e sujeito a carga de flexão sofre tanto tração como
compressão para cada rotação do eixo.
(Sy) (Sut)
(Suc)
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 73/94
Marcas de praia.
Durante o carregamento cíclico, essas trincas abrem e fecham conforme a variação do carregamento. O aspecto
das marcas da praia depende de como o carregamento varia em magnitude ou frequência além da natureza
corrosiva do ambiente.
Estágio III
O estágio III ocorre durante o ciclo de tensão final, quando o material que ainda não foi atingido pela trinca não
pode suportar os esforços, resultando numa fratura súbita e rápida. Essa fratura de fase III pode ser frágil ou
dúctil, ou, até mesmo, uma combinação de ambos os modos. Frequentemente, quando as marcas de praia estão
presentes, os padrões das marcas da fase III apontam para a das trincas iniciais. A imagem a seguir traz
representações de superfícies de falha por fadiga sob diferentes condições de carga e níveis de concentração
de tensão.
A falha por fadiga é devida à formação e propagação de trincas. Uma trinca por fadiga se inicia, geralmente, em
uma descontinuidade no material onde a tensão cíclica é máxima. Essas descontinuidades podem ter diferentes
origens:
mudanças rápidas na secção transversal, rasgos de chaveta, orifícios de lubrificação etc. onde ocorrem
concentrações de tensão;
elementos que rolam e/ou deslizam uns contra os outros (rolamentos, engrenagens etc.) sob alta pressão de
contato;
locais de marcação de peças, marcas de ferramentas, arranhões e rebarbas; projeto inadequado de juntas;
montagem incorreta; e outras falhas de fabricação;
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 74/94
processamento do material (laminação, forjamento, fundição, extrusão, estampagem, tratamento térmico) que
pode gerar descontinuidades, tais como inclusões de material, segregação de elementos de liga, vazios,
precipitação de partículas endurecidas e descontinuidades cristalinas.
Uma vez iniciada uma trinca, sua propagação pode ser acelerada por tensões residuais, temperaturas elevadas,
ciclo de temperatura, ambiente corrosivo, e pela frequência.
Movimentos cíclicos e projetos
Análise e projeto considerando a falha por fadiga
Tal como fizemos para o estudo e projeto considerando a falha estática, tentaremos apresentar critérios para
análise e projeto de sistemas sob carregamento dinâmico que podem falhar devido a fadiga.
Curva de fadiga (Curva S-N) e limite de fadiga
As propriedades de fadiga dos materiais são obtidas com a ajuda do teste padrão de eixo rotativo, no qual uma
amostra de seção circular altamente polida é submetida a cargas cíclicas. A amostra é sujeita a um momento de
flexão constante e gira em torno de seu eixo a uma velocidade muito elevada. Em consequência, pontos do
corpo de provas fora do eixo neutro sofrem repetidas inversões de tensão (tração e compressão). O gráfico
tensão-vida para um aço UNS G41 300 normalizado com limite de resistência à tração de 810MPa é apresentado
na imagem seguinte:
O teste é repetido para diversas amostras, sujeitando-as a diferentes valores de tensão. O número de ciclos (um
ciclo corresponde a uma volta completa do eixo, isto é, um ponto do material fora do eixo neutro será submetido
a um ciclo de tração e compressão) que o corpo de provas resiste antes da fratura é chamado vida em fadiga do
material. O primeiro teste é realizado submetendo a amostra a uma tensão ligeiramente abaixo da resistência à
tração do material, e os testes subsequentes são realizados com níveis de tensão menores.
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 75/94
A ordenada da curva é denominada resistência à fadiga , e pode ser definida como a tensão
máxima que o material pode suportar para um número específico de ciclos (inversões de tensão). Para os
metais ferrosos e suas ligas, a curva S-N torna-se horizontal após a ciclos, o que significa que o
material pode resistir a um número infinito de ciclos se a tensão induzida for inferior a esse nível.
A tensão correspondente a essa linha horizontal é chamada limite de fadiga.
O limite de fadiga pode ser definido como a amplitude máxima de tensão completamente invertida
que o espécime padrão pode suportar durante um número ilimitado de ciclos sem falha por fadiga. estudo
da fadiga em que a falha ocorre antes de 1000 ciclos chama-se fadiga de baixo ciclo. Já a fadiga de alto ciclo
diz respeito à falha que ocorre após os 1000 ciclos.
Na ausência de dados experimentais de fadiga sobre um material, podemos utilizar as seguintes relações:
Para aços, 
Para ferro fundido, 
Fatores modi�cadores do limite de resistência à fadiga
O corpo de provas utilizado nos testes para a determinação da resistência à fadiga é preparado cuidadosamente
e testado em condições controladas. O limite de resistência de qualquer elemento de máquina pode não
corresponder exatamente aos valores obtidos nos testes devido à variação do material, qualidade da fabricação,
condições ambientais e geometria. Portanto, o limite de resistência obtido experimentalmente deve ser
modificado utilizando alguns fatores (fatores de Marin) para obter resultados mais próximos da realidade.
O limite de resistência de uma determinada peça pode então ser estimado utilizando a seguinte relação:
Rotacione a tela. 
Onde:
 - limite de resistência à fadiga obtido experimentalmente;
 - fator de acabamento superficial;
 - fator de tamanho;
 - fator de carga;
S − N (Sf)
106 107
(S ′e)
O
S ′e = 0, 5Sut
S ′e = 0, 4Sut
Se = kakbkckdkekfS
′
e
S ′e
ka
kb
kc
23/04/2023, 20:20 Falhas em elementos mecânicos
https://stecine.azureedge.net/repositorio/00212en/03536/index.html# 76/94
 - fator de temperatura;
 - fator de confiabilidade; e
 - fatores diversos.
Fator de acabamento super�cial ( 
A superfície do corpo de provas do teste tensão-vida é altamente polida, mas a maioria dos elementos de
máquinas não tem o mesmo acabamento superficial, demandando uma modificação no limite de resistência
obtido experimentalmente. O fator de acabamento superficial depende do processo de fabricação utilizado e da
resistência à tração do material . O seu valor pode ser obtido por meio da fórmula a seguir (BUDYNAS;
NISBETT, 2015):
Rotacione a tela. 
Onde, a e b podem ser obtidos na tabela seguinte:
Acabamento superficial
Coeficiente  (Para Sut em
Mpa)
Coeficiente
b
Retificado 1,58 -0,085
Usinado ou laminado

Mais conteúdos dessa disciplina