Buscar

final

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 111 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 111 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 111 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

AVALIAÇÃO DE FORÇAS HIDROSTÁTICAS E HIDRODINÂMICAS NÃO 
LINEARES EM CORPOS FLUTUANTES REPRESENTADOS POR MALHAS 
DE PAINÉIS 
 
 
Jhonathan Jhefferson de Sousa Ribeiro 
 
 
 
Dissertação de Mestrado apresentada ao 
Programa de Pós-graduação em Engenharia 
Civil, COPPE, da Universidade Federal do Rio 
de Janeiro, como parte dos requisitos 
necessários à obtenção do título de Mestre em 
Engenharia Civil. 
Orientador: Fabrício Nogueira Corrêa 
 
 
 
Rio de Janeiro 
Fevereiro de 2020
AVALIAÇÃO DE FORÇAS HIDROSTÁTICAS E HIDRODINÂMICAS NÃO 
LINEARES EM CORPOS FLUTUANTES REPRESENTADOS POR MALHAS 
DE PAINÉIS 
 
Jhonathan Jhefferson de Sousa Ribeiro 
 
DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO 
LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA DA 
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS 
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM 
CIÊNCIAS EM ENGENHARIA CIVIL. 
 
 
Orientador: Fabrício Nogueira Corrêa 
 
 
 
Aprovada por: Prof. Fabrício Nogueira Corrêa 
Eng. Allan Carre de Oliveira 
Prof. Breno Pinheiro Jacob 
Prof. Carl Horst Albrecht 
Prof. Joel Sena Sales Junior 
 
 
 
 
 
 
RIO DE JANEIRO, RJ - BRASIL 
FEVEREIRO DE 2020
iii 
 
 
 
 
 
 
 
 
 
 
 Ribeiro, Jhonathan Jhefferson de Sousa 
Avaliação de forças hidrostáticas e hidrodinâmicas não 
lineares em corpos flutuantes representados por malhas de 
painéis / Jhonathan Jhefferson de Sousa Ribeiro – Rio de 
Janeiro: UFRJ/ COPPE, 2020. 
XIV, 97 p.: il.; 29,7 cm. 
Orientador: Fabrício Nogueira Corrêa 
Dissertação (mestrado) – UFRJ/ COPPE/ Programa de 
Engenharia Civil, 2020. 
Referências Bibliográficas: p. 95-97. 
1. Hidrostática não linear. 2. Hidrodinâmica não linear. 
3. Integral de superfície. 4. Offshore. I. Corrêa, Fabrício 
Nogueira. II. Universidade Federal do Rio de Janeiro, 
COPPE, Programa de Engenharia Civil. III. Título. 
 
iv 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ao meu avô Otávio Borges. 
Outro dia, noutro plano, 
noutra vida, a gente se vê. 
v 
 
AGRADECIMENTOS 
A Deus, em todas as suas formas de manifestação. 
Ao meu pai. Por toda vida, estive sempre de pé sobre seus ombros. 
À minha mãe, um anjo lindo a quem peço que sempre me acompanhe. 
À minha tia Socorro. Eu amo muito você. Muito. 
Ao meu ao meu avô Otávio Borges. O seu exemplo de força e brio vive no ideal de 
homem que busco um dia me tornar. “As coisas findas, muito mais que lindas, essas 
ficarão”. 
À minha avó Maria Antonieta, por ser “um dom, uma certa magia, a dose mais forte 
e lenta de uma gente que ri quando deve chorar”. 
À minha família. “Se for preciso, eu crio alguma máquina mais rápida que a dúvida, 
mais súbita que a lágrima, viajo a toda força, e num instante de saudade, eu chego pra 
dizer que eu vim te ver.” 
Aos meus amigos, aos quais agradeço pela leveza e peço desculpas pela minha 
ausência e às vezes impaciência nos últimos meses. 
Aos colegas de trabalho do LAMCSO, em especial à Ivete. Vocês são uma família 
que me acolheu e da qual muito bem me faz pertencer. 
Ao professor Carl Albrecht, pela imensa ajuda prestada em todas as fases deste 
trabalho. 
Ao aluno de iniciação científica Lucas Clarino, pelo grande auxílio na confecção de 
modelos e imagens deste trabalho. 
Ao meu orientador Fabrício Corrêa, por ser minha maior referência técnica na 
engenharia. 
 “O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento 
de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001 
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal 
de Nível Superior - Brasil (CAPES) - Finance Code 001” 
vi 
 
Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos 
necessários para a obtenção do grau Mestre em Ciências (M.Sc.) 
 
AVALIAÇÃO DE FORÇAS HIDROSTÁTICAS E HIDRODINÂMICAS NÃO 
LINEARES EM CORPOS FLUTUANTES REPRESENTADOS POR MALHAS 
DE PAINÉIS 
 
Jhonathan Jhefferson de Sousa Ribeiro 
 
Fevereiro/2020 
 
Orientador: Fabrício Nogueira Corrêa 
 
Programa: Engenharia Civil 
Atividades de extração de petróleo offshore têm sito feitas através de sistemas 
flutuantes baseados em plataformas ancoradas. Para análise e projeto destes sistemas, 
torna-se necessário calcular seus movimentos sob ação de carregamentos ambientais 
diversos, o que usualmente é feito através de ferramentas computacionais. 
Tradicionalmente, nestas ferramentas, forças geradas pela água devido à passagem de 
ondas são calculadas por matrizes lineares unitárias ou pela formulação de Morison para 
cilindros. Em ambos os casos, simplificações são impostas e não linearidades, além de 
outros efeitos como elevação instantânea da superfície do mar, podem ser 
negligenciados. Neste contexto, o objetivo deste trabalho é desenvolver um algoritmo 
para cálculo de forças e momentos resultantes de cargas hidrostáticas e hidrodinâmicas 
não lineares de onda atuando em cascos de plataformas offshore levando em 
consideração efeitos de elevação instantânea da superfície do mar. O algoritmo será 
incorporado à plataforma SITUA-Prosim, e sua verificação se dará a partir de 
comparação dos resultados com valores obtidos analiticamente ou por ferramentas 
computacionais já consolidadas. 
vii 
 
Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the 
requirements for the degree of Master of Science (M.Sc.) 
 
EVALUATION OF NONLINEAR HYDROSTATIC AND HYDRODYNAMIC 
FORCES IN FLOATING BODIES REPRESENTED BY PANEL MESH 
 
Jhonathan Jhefferson de Sousa Ribeiro 
 
February/2020 
 
Advisor: Fabrício Nogueira Corrêa 
 
Department: Civil Engineering 
Offshore oil production has been carried out by floating systems based on moored 
platforms. For the analysis and design of these systems, it is necessary to assess their 
motion responses under the action of various environmental loads, which is usually 
performed by numerical tools. Traditional tools usually evaluate forces due to the passage 
of waves by linear unitary matrices or by the Morison formulation for cylinders. In both 
cases, simplifications are imposed and non-linearities might be neglected, besides other 
effects such as instantaneous elevation of the sea surface. In this context, the goal of this 
work is to develop an algorithm for calculating forces and moments resulting from 
nonlinear hydrostatic and hydrodynamic wave loads acting on hulls of offshore platforms 
considering effects of instantaneous elevation of the sea surface. The algorithm will be 
incorporated into the SITUA-Prosim code and validated by comparing the results with 
values obtained analytically or by well-stablished computational tools. 
viii 
 
ÍNDICE 
1 INTRODUÇÃO ....................................................................................... 1 
1.1 Contexto e Motivação..................................................................................... 1 
1.2 Objetivo ......................................................................................................... 2 
1.3 Estruturação do Texto..................................................................................... 3 
2 FORMULAÇÃO ..................................................................................... 4 
2.1 Forças geradas pelo fluido .............................................................................. 4 
2.2 Representação do mar..................................................................................... 4 
 Ondas regulares ....................................................................................... 4 
 Representação espectral ........................................................................... 5 
2.3 Forças Hidrostáticas .......................................................................................6 
2.4 Forças Hidrodinâmicas ................................................................................... 8 
 Formulação de Morison ........................................................................... 8 
 Formulação de Froude-Krylov ................................................................. 9 
 Formulação de Difração/Radiação ......................................................... 11 
 Formulações Híbridas ............................................................................ 12 
3 IMPLEMENTAÇÃO .............................................................................. 13 
3.1 O SITUA-Prosim ......................................................................................... 13 
3.2 Conceitos básicos ......................................................................................... 14 
 Definição de vetor normal unitário ........................................................ 14 
 Volume e centro de volume de tetraedro ................................................ 15 
3.3 A Integral de Pressões .................................................................................. 16 
3.4 Descrição do método .................................................................................... 20 
3.5 Forças hidrostáticas ...................................................................................... 21 
3.6 Forças hidrodinâmicas .................................................................................. 25 
4 ESTUDO DE REFINAMENTO DE MALHA DE SUPERFÍCIE ...................... 28 
4.1 Introdução .................................................................................................... 28 
ix 
 
4.2 Plano horizontal: forças verticais .................................................................. 30 
4.3 Plano vertical: forças na direção da onda ...................................................... 36 
4.4 Semicilindro ................................................................................................. 42 
4.5 Cubo ............................................................................................................ 48 
4.6 Cilindro ........................................................................................................ 53 
4.7 Plataforma Semissubmersível ....................................................................... 58 
5 RESULTADOS E VERIFICAÇÃO ........................................................... 69 
5.1 Parede vertical .............................................................................................. 69 
5.2 Semicilindro ................................................................................................. 72 
5.3 Cubo ............................................................................................................ 76 
5.4 Cilindro ........................................................................................................ 80 
5.5 Navio ........................................................................................................... 84 
5.6 Plataforma Semissubmersível ....................................................................... 88 
6 CONCLUSÕES ..................................................................................... 92 
6.1 Considerações Finais .................................................................................... 92 
6.2 Sugestões para Trabalhos Futuros ................................................................. 93 
7 REFERÊNCIAS BIBLIOGRÁFICAS ........................................................ 95 
 
x 
 
LISTA DE FIGURAS 
Figura 2.1 – Representação de uma onda regular [4] ..................................................... 4 
Figura 2.2 – Pressões hidrostáticas atuando em um corpo parcialmente submerso ......... 6 
Figura 2.3 – Cilindro parcialmente submerso com eixo inclinado ................................. 7 
Figura 3.1 – Modelo de uma plataforma flutuante no programa SITUA-Prosim .......... 14 
Figura 3.2 – Definição de vetor normal à superfície do triângulo ................................ 15 
Figura 3.3 – Tetraedro e seu centro de volume ............................................................ 15 
Figura 3.4 – Integral de uma função numa superfície .................................................. 16 
Figura 3.5 – Triângulo destacado da malha com seus nós e vetor normal .................... 17 
Figura 3.6 – Volume de pressões sobre o triângulo ..................................................... 17 
Figura 3.7 – Demonstração geométrica do cálculo do volume ..................................... 18 
Figura 3.8 – Campo de pressões hidrostáticas atuando numa barragem ....................... 19 
Figura 3.9 – Fluxograma geral do método desenvolvido ............................................. 21 
Figura 3.10 – Cilindro com superfície “cortada” pela onda ......................................... 22 
Figura 3.11 – Definição do plano secante.................................................................... 22 
Figura 3.12 – Corte do triângulo pelo plano secante .................................................... 23 
Figura 3.13 – Profundidade dos nós do triângulo ........................................................ 23 
Figura 3.14 – Fluxograma para cálculo de forças hidrostáticas .................................... 24 
Figura 3.15 – Fluxograma para cálculo de forças a partir de pressões hidrostáticas ..... 24 
Figura 3.16 – Fluxograma para cálculo de forças hidrodinâmicas ............................... 26 
Figura 3.17 – Fluxograma para cálculo de forças a partir de pressões hidrodinâmicas . 26 
Figura 4.1 – Relação λ/n em cubo com aresta L = 12 m e onda com λ = 60 m ............. 29 
Figura 4.2 – Modelo esquemático de um quadrado horizontal fixo no espaço submetido 
a passagem de onda regular ........................................................................................ 31 
Figura 4.3 – Trecho de série temporal de forças atuando verticalmente no quadrado 
(n=5) .......................................................................................................................... 32 
Figura 4.4 – Trecho de série temporal de forças atuando verticalmente no quadrado 
(n=100) ...................................................................................................................... 32 
Figura 4.5 – Erro percentual nos valores de máximo, mínimo e amplitude em função de 
n ................................................................................................................................. 35 
xi 
 
Figura 4.6 – Modelo esquemático de um quadrado vertical fixo no espaço submetido a 
passagem de onda regular ........................................................................................... 36 
Figura 4.7 – Trecho de série temporal de forças atuando horizontalmente no quadrado 
(n=5) .......................................................................................................................... 37 
Figura 4.8 – Trecho de série temporal de forças atuando horizontalmente no quadrado 
(n=100) ...................................................................................................................... 38 
Figura 4.9 – Erro percentual nos valores de máximo, mínimo e amplitude em função de 
n ................................................................................................................................. 41 
Figura 4.10 – Modelo esquemático de um semicilindro fixo no espaço submetido a 
passagem de onda regular ........................................................................................... 42 
Figura 4.11 – Trecho de série temporal de forças atuando horizontalmente no 
semicilindro ................................................................................................................ 44 
Figura 4.12 – Trecho de série temporal de forças atuando verticalmente no semicilindro
 ...................................................................................................................................45 
Figura 4.13 – Modelo esquemático de um cubo fixo no espaço submetido a passagem 
de onda regular ........................................................................................................... 48 
Figura 4.14 – Trecho de série temporal de forças atuando horizontalmente no cubo .... 50 
Figura 4.15 – Trecho de série temporal de forças atuando verticalmente no cubo ........ 51 
Figura 4.16 – Modelo esquemático de um cilindro fixo no espaço submetido a 
passagem de onda regular ........................................................................................... 53 
Figura 4.17 – Trecho de série temporal de forças atuando horizontalmente no cilindro
 ................................................................................................................................... 55 
Figura 4.18 – Trecho de série temporal de forças atuando verticalmente no cilindro ... 56 
Figura 4.19 – Plataforma semissubmersível ................................................................ 58 
Figura 4.20 – Modelo esquemático da plataforma com posição fixa submetida a 
passagem de onda regular ........................................................................................... 60 
Figura 4.21 – Trecho de série temporal de forças atuando verticalmente na plataforma 
(T = 5 s) ..................................................................................................................... 61 
Figura 4.22 – Trecho de série temporal de forças atuando verticalmente na plataforma 
(T = 25 s).................................................................................................................... 61 
Figura 5.1 – Modelo de uma parede vertical modelada no SITUA .............................. 70 
Figura 5.2 – Série temporal de momento resultante em y ............................................ 71 
Figura 5.3 – Série temporal de forças atuando horizontalmente no semicilindro (T = 12 
s) ................................................................................................................................ 72 
Figura 5.4 – Série temporal de forças atuando verticalmente no semicilindro (T = 12 s)
 ................................................................................................................................... 74 
xii 
 
Figura 5.5 – Série temporal de forças atuando horizontalmente no cubo (T = 12 s) ..... 76 
Figura 5.6 – Série temporal de forças atuando verticalmente no cubo (T = 12 s) ......... 78 
Figura 5.7 – Série temporal de forças atuando horizontalmente no cilindro (T = 12 s) . 80 
Figura 5.8 – Série temporal de forças atuando verticalmente no cilindro (T = 12 s) ..... 82 
Figura 5.9 – Modelo de navio gerado no SITUA ......................................................... 84 
Figura 5.10 – Deslocamento Δz (heave) ...................................................................... 85 
Figura 5.11 –Forças hidrostáticas ................................................................................ 85 
Figura 5.12 – Deslocamento θ (roll) ........................................................................... 86 
Figura 5.13 – Momento devido às forças hidrostáticas ................................................ 87 
Figura 5.14 – Plataforma gerada por cilindros no SITUA ............................................ 88 
Figura 5.15 – Espectro de forças hidrodinâmicas em z ................................................ 89 
Figura 5.16 – Espectro de forças hidrodinâmicas em x ................................................ 90 
Figura 5.17 – Detalhe da região do encontro entre pontoons e colunas ........................ 91 
xiii 
 
 LISTA DE TABELAS 
Tabela 4.1 – Forças em z: máximos, mínimos e amplitudes ........................................ 33 
Tabela 4.2 – Forças em x: máximos, mínimos e amplitudes ........................................ 39 
Tabela 4.3 – Raio corrigido em função do número de lados do polígono regular ......... 43 
Tabela 4.4 – Forças de empuxo no semicilindro .......................................................... 44 
Tabela 4.5 – Forças em x: máximos, mínimos e amplitudes ........................................ 45 
Tabela 4.6 – Forças em z: máximos, mínimos e amplitudes ........................................ 46 
Tabela 4.7 – Forças em z: máximos, mínimos e amplitudes ........................................ 47 
Tabela 4.8 – Refinamento x Tempo de processamento x Erro ..................................... 47 
Tabela 4.9 – Discretização da superfície do cubo ........................................................ 49 
Tabela 4.10 – Forças de empuxo no cubo ................................................................... 50 
Tabela 4.11 – Forças em x: máximos, mínimos e amplitudes ...................................... 51 
Tabela 4.12 – Forças em z: máximos, mínimos e amplitudes ...................................... 52 
Tabela 4.13 – Refinamento x Tempo de processamento x Erro ................................... 52 
Tabela 4.14 – Raio corrigido em função do número de lados do polígono regular ....... 54 
Tabela 4.15 – Forças de empuxo no cilindro ............................................................... 55 
Tabela 4.16 – Forças em x: máximos, mínimos e amplitudes ...................................... 56 
Tabela 4.17 – Forças em z: máximos, mínimos e amplitudes ...................................... 57 
Tabela 4.18 – Refinamento x Tempo de processamento x Erro ................................... 58 
Tabela 4.19 – Propriedades físicas e geométricas da plataforma.................................. 59 
Tabela 4.20 – Malhas da plataforma ........................................................................... 59 
Tabela 4.21 – Forças em z (Malha 1): máximos, mínimos e amplitudes ...................... 62 
Tabela 4.22 – Forças em z (Malha 2): máximos, mínimos e amplitudes ...................... 64 
Tabela 4.23 – Relação entre λ, arestas das malhas e erros ........................................... 67 
Tabela 4.24 – Refinamento x Tempo de processamento x Erro ................................... 68 
Tabela 5.1 – Erro percentual no valor do empuxo ....................................................... 72 
Tabela 5.2 – Forças em x: máximos, mínimos e amplitudes ........................................ 73 
Tabela 5.3 – Forças em z: máximos, mínimos e amplitudes ........................................ 75 
Tabela 5.4 – Forças em x: máximos, mínimos e amplitudes ........................................ 77 
Tabela 5.5 – Forças em z: máximos, mínimos e amplitudes ........................................ 79 
xiv 
 
Tabela 5.6 – Forças em x: máximos, mínimos e amplitudes ........................................ 81 
Tabela 5.7 – Forças em z: máximos, mínimos e amplitudes ........................................ 83 
Tabela 5.8 – Rigidez hidrostática k33 e sua variação .................................................... 86 
Tabela 5.9 – Rigidez hidrostática k44 e sua variação .................................................... 87 
Tabela 5.10 –Tempo de processamento x pontos de integração ................................... 91 
1 
 
1 INTRODUÇÃO 
1.1 Contexto e Motivação 
As atividades de produção de petróleo em campos situados no mar (offshore), 
afastados da costa, têm sido feitas através de sistemas flutuantes baseados em plataformas 
ancoradas (tais como FPSOs, Semissubmersíveis, Monoboias etc.). Para a análise e 
projeto desses sistemas, torna-se necessário calcular seus movimentos sob a ação de 
carregamentos ambientais de onda e corrente o que usualmente é feito através de 
ferramentas computacionais baseadas em modelos hidrodinâmicos para representar o 
casco das plataformas, e modelos estruturais para representar as linhas de ancoragem e 
risers. 
Dentre as várias ferramentas computacionais disponíveis, destaca-se neste trabalho 
o SITUA-Prosim [1,2] (desenvolvido por pesquisadores do LAMCSO em parceria com 
aPetrobras). Esse programa permite que o usuário defina as configurações físicas e 
geométricas de componentes estruturais de sistemas offshore, além das condições de 
onda, vento, corrente etc., combinando-as em casos de carregamento. Nos modelos 
hidrodinâmicos, os cascos são representados como corpos rígidos com seis graus de 
liberdade (três de translação e três de rotação) e a interação destes com o fluido pode ser 
calculada por diferentes formulações. 
Tradicionalmente, em programas de análise dinâmica, forças geradas pelo fluido em 
plataformas Semissubmersíveis e Navios são calculadas a partir de matrizes lineares 
unitárias obtidas por programas de CFD (Computational Fluid Dynamics) adaptados, 
enquanto em Monoboias essas forças são calculadas por formulações de Morison para 
cilindros [3]. Em ambos os casos, elevações instantâneas de onda são negligenciadas e o 
cálculo de forças introduz simplificações: no primeiro, não linearidades são perdidas 
quando definidas ondas com amplitude não unitária; no segundo, forças são calculadas 
apenas no eixo dos cilindros e tidas como constantes ao longo da seção transversal. 
2 
 
Sob determinadas condições, as simplificações impostas por estas formulações 
usuais são válidas e apresentam bons resultados. Contudo, em casos que se afastem das 
premissas impostas às formulações, os resultados obtidos no cálculo de forças podem 
não ser confiáveis. Como exemplo de não adequação, tem-se análises de sistemas sob 
ação de ondas com grandes amplitudes que, por sua vez, geram forças não lineares. Isto 
significa que as elevações instantâneas da superfície do mar causadas pela energia das 
ondas devem ser consideradas. É demandado, então, o desenvolvimento de pesquisas 
com objetivo de propor soluções para estes casos. 
1.2 Objetivo 
Com base nas considerações descritas em 1.1, este trabalho tem por objetivo 
descrever a implementação de um algoritmo para cálculo de forças e momentos 
resultantes de cargas hidrostáticas e hidrodinâmicas não lineares de ondas atuando no 
casco de plataformas offshore levando em consideração efeitos de elevação instantânea 
da superfície do mar. 
O algoritmo é baseado na representação da superfície do casco através de uma malha 
de painéis com elementos triangulares. A partir desta, são definidos planos secantes para 
representação local da onda em cada painel e, utilizando expressões analíticas [3], 
pressões são calculadas em cada vértice da malha. Estas pressões são transformadas em 
forças sobre a área de cada elemento triangular, que por sua vez irão participar do cálculo 
de forças e momentos nos seis graus de liberdade da plataforma, acumulados e aplicados 
ao centro de gravidade da plataforma, referencial escolhido para definição da equação de 
movimento do corpo rígido no SITUA-Prosim (ao qual o algoritmo será incorporado). 
Desta forma, a ferramenta desenvolvida possibilita um cálculo mais preciso das 
componentes de pressão atuantes. A definição de planos secantes para representação 
local da onda permite que seja considerada de forma mais rigorosa a superfície submersa 
do corpo ao longo do tempo, avaliando a influência das elevações instantâneas de onda 
no cálculo de forças hidrostáticas e hidrodinâmicas. 
3 
 
1.3 Estruturação do Texto 
Inicialmente, no capítulo 2, são apresentadas formulações para o cálculo de pressões 
e forças hidrostáticas e hidrodinâmicas em corpos parcial ou totalmente submersos. 
Em 3, é apresentada a integral de pressões. São expostos seu cálculo, premissas e 
como a integral de pressões será utilizada para calcular resultantes de pressões 
hidrostáticas e hidrodinâmicas. 
No capítulo 4, é desenvolvido um estudo de refinamento com intuito de estabelecer 
uma relação entre o comprimento das arestas da malha e o comprimento da onda 
incidente. A partir daí, serão estabelecidas relações entre refinamento, acurácia dos 
resultados e tempo de processamento. 
Em 5, aliadas às conclusões sobre refinamento obtidas em 4, são expostas aplicações 
do método desenvolvido. 
Por fim, as conclusões e sugestões para trabalhos futuros são apresentadas no 
Capítulo 6, que é seguido pelas Referências Bibliográficas. 
4 
 
2 FORMULAÇÃO 
2.1 Forças geradas pelo fluido 
Um corpo total ou parcialmente imerso em um fluido está sujeito às atuações de 
forças hidrostáticas e, caso haja presença de ondas e correntes, também às forças 
hidrodinâmicas. Neste trabalho, serão apresentadas formulações para cálculo de forças 
hidrostáticas, além de, separadamente, formulações para o cálculo de forças decorrentes 
da passagem de ondas. Finda a exposição dessas, é apresentado o conceito de modelagens 
híbridas, que buscam combinar características positivas das formulações anteriores. 
2.2 Representação do mar 
Ondas marítimas podem ser descritas, basicamente, por dois modelos matemáticos: 
ondas determinísticas (ou mar regular) e representação espectral (ou mar irregular). Neste 
item, ambas serão brevemente apresentadas. 
 Ondas regulares 
Ondas regulares têm seu comportamento descrito em função de parâmetros que as 
caracterizam, como amplitude a (ou altura H), período T, comprimento de onda L (ou λ), 
profundidade d, elevação de superfície η e nível médio MWL, conforme Figura 2.1. 
 
Figura 2.1 – Representação de uma onda regular [4] 
5 
 
Devido à natureza aleatória das ondas, é complexo prever seu comportamento. Para 
tal, modelos matemáticos foram formulados e soluções aproximadas foram 
desenvolvidas com intuito de prever parâmetros como pressão, aceleração e velocidade. 
Dentre as teorias mais comuns que buscam resolver esse problema, pode-se citar: 
 a teoria Linear de Airy: teoria de primeira ordem, baseada na premissa de que 
a altura de onda é pequena comparada à profundidade; 
 e a Teoria de Stokes: teoria não linear de segunda, terceira ou quinta ordem. 
As teorias citadas, além da formulação e resolução do modelo para representação de 
ondas regulares podem ser encontradas em [3,5,6]. 
 Representação espectral 
Uma representação mais realística do mar pode ser feita através de um modelo 
espectral, que representa a distribuição de energia de onda numa faixa de frequências. 
Neste, o mar é assumido como uma soma de ondas determinísticas, cada uma com seus 
valores característicos de período, amplitude e fase. A partir de medições realizadas no 
campo e estudos estatísticos, os modelos espectrais são ajustados à área cujo mar deseja-
se representar [7]. 
Dentre os espectros mais utilizados, pode-se destacar o de Pierson-Moskowitz (2.1) 
e o de Jonswap (2.2): 
 
�(�) =
��
�
4
�
2�
��
� ��� exp �− �
2�
��
� ���� (2.1) 
onde S(ω) é a função densidade espectral, ω é a frequência angular da onda, HS é a altura 
de onda significativa e TZ é o período de cruzamento zero. 
 
�(�) = ���
�
���
����
��� �−1.25 �
�
��
�
��
� �
�����
������
�
�����
� �
 (2.2) 
onde S(ω) é a função densidade espectral, ω é a frequência angular da onda, α é um 
parâmetro de forma, γ é o parâmetro de pico, ωp é a frequência de pico e σ é um parâmetro 
de forma determinado em função da relação entre frequência ω e frequência de pico ωp 
[7]. 
6 
 
Uma descrição mais detalhada de cada um destes espectros pode ser encontrada em 
Chakrabarti [3]. 
2.3 Forças Hidrostáticas 
Pontos situados no interior de um fluido estão sujeitos a um campo de pressões 
hidrostáticas com valor dado pela equação (2.3): 
 � = ��ℎ (2.3) 
na qual ρ é a densidade do fluido, g é o módulo da aceleração da gravidade e h é a 
distância do ponto até a linha d’água. 
A partir desta expressão, pode-se realizar a integral destas pressões atuando na 
superfície de um corpo total ou parcialmente submerso, de forma a obter o valor da força 
resultante gerada pelo fluido, conforme equação (2.4): 
 
��������á���� = � ��ℎ�� (2.4) 
De acordo com o princípio de Arquimedes, esta força resultante é denominada 
Empuxo, atua verticalmentepara cima e pode ser calcula pela equação (2.5) 
 � = ����� (2.5) 
onde Vol é o volume da região do corpo submersa no líquido. 
A Figura 2.2 ilustra um corpo parcialmente submerso sobre o qual atuam pressões 
hidrostáticas resultando numa força resultante de empuxo E. O ponto de aplicação do 
empuxo é o centro geométrico do volume (CV) submerso do corpo e é denominado 
centro de empuxo ou centro de Carena. 
 
Figura 2.2 – Pressões hidrostáticas atuando em um corpo parcialmente submerso 
7 
 
Em ferramentas computacionais, as forças hidrostáticas podem ser calculadas de 
diversas formas, dentre as quais pode-se destacar: 
 Corpos completamente submersos: Estando um corpo completamente submerso, 
sendo seu volume conhecido, o valor do empuxo que atua sobre ele é constante. 
O valor do empuxo pode ser calculado diretamente pela equação (2.5); 
 Cilindro vertical parcialmente submerso: em corpos cilíndricos dispostos 
verticalmente (ou com pequenas inclinações), o cálculo da força hidrostática 
atuante pode ser obtido de forma aproximada considerando que seu volume 
submerso é igual a área da base do cilindro vezes a altura do seu eixo que se 
encontra submersa. Tendo o volume submerso, pode-se aplicar diretamente a 
equação (2.5); 
 
Figura 2.3 – Cilindro parcialmente submerso com eixo inclinado 
 Corpos quaisquer integrados numericamente: aplicando-se a equação (2.4) na 
superfície de um corpo. A partir da expressão do campo de pressões hidrostáticas 
num fluido e de uma malha de superfície que defina a geometria do corpo, pode-
se efetuar a integração e calcular o empuxo. Durante análises, o corpo pode se 
deslocar, exigindo a atualização da posição dos vértices da malha de superfície e 
nova integração para cálculo de empuxo a cada deslocamento [3]; 
8 
 
 Corpos quaisquer definidos por uma matriz de rigidez hidrostática: utilizando 
matrizes de rigidez hidrostática, nas quais os termos são forças e momentos 
restauradores que surgem no corpo quando submetido a deslocamentos (lineares 
ou angulares) unitários. Desta maneira, parte-se do princípio que geometria e 
deslocamentos do corpo não implicarão em não linearidades nas forças e 
momentos, de forma que esses possam ser calculados multiplicando o vetor de 
deslocamentos do corpo pelos termos da matriz. Cabe ressaltar que estas matrizes 
podem ser obtidas analiticamente a partir da área seccional da linha d’água [8], 
por ensaios com modelos reduzidos em tanques de provas [9], ou através da 
integração numérica mencionada anteriormente. 
2.4 Forças Hidrodinâmicas 
 Formulação de Morison 
A formulação de Morison [10] foi desenvolvida para aplicação, originalmente, em 
corpos cilíndricos esbeltos, quando a presença do corpo não ocasiona interferências 
significativas no fluido. Tendo D como uma dimensão transversal característica do 
corpo, a Chakrabarti [3]estabelece como critério usual o limite expresso na equação 
(2.6), na qual λ é o comprimento da onda incidente. 
 
� <
�
5
 (2.6) 
Satisfeita a equação anterior, a expressão de forças de Morison (2.7) é composta por 
parcelas inerciais (proporcionais às acelerações do corpo e das partículas fluidas) e de 
arrasto (proporcional à velocidade relativa entre corpo e fluido). 
 
� =
1
2
�����|�̇ − �̇|(�̇ − �̇) + ��
���
4
���̈ − ��
���
4
���̈ (2.7) 
9 
 
Nesta expressão, ρw é a massa específica do fluido, D é a dimensão transversal do 
corpo (usualmente o diâmetro de cilindros) e Cd, Cm e Ca são, respectivamente, 
coeficientes empíricos adimensionais de arrasto, inércia e massa adicionada. Tendo em 
vista a consideração de que os corpos têm dimensões pequenas se comparadas ao 
comprimento da onda atuante, a variação de alguns parâmetros do fluido é desprezada e, 
portanto, �̇ e �̈ são, nesta ordem, velocidade e aceleração do fluido no eixo da seção 
transversal do corpo esbelto; �̇ e �̈ são velocidade e aceleração do corpo. 
Em termos práticos, a formulação de Morison apresenta bons resultados para 
aplicações em membros de plataformas fixas reticuladas (jaquetas), linhas de ancoragem 
e risers, além de (com devidas ressalvas) plataformas Semissubmersíveis, Monoboias e 
TLPs [1]. Normas e recomendações técnicas como a DNV-RP-H103 [11] apresentam 
tabelas para determinação dos coeficientes de arrasto, de inércia e de massa adicionada 
a partir de informações geométricas da estrutura e de direção do movimento. 
 Formulação de Froude-Krylov 
De acordo com a teoria de Froude-Krylov, as forças atuantes num corpo submerso 
oriundas da passagem de uma onda podem ser calculadas a partir de uma integração da 
pressão do fluido na superfície do corpo, também assumindo que a presença deste não 
causa interferências significativas no fluxo. Desta forma, tendo uma expressão para 
pressões, as forças resultantes são dadas pelas equações (2.8) e (2.9): 
 
�� = �� � ����� (2.8) 
 
�� = �� � ����� 
(2.9) 
onde Fx é a força atuando na direção da onda, Fy é a força atuando na direção vertical, nx 
e ny são as componentes horizontal e vertical do vetor normal à superfície do corpo e CH 
e CV são coeficientes de força horizontal e vertical que podem ser calibrados [3]. Cabe 
aqui ressaltar que estes não devem ser confundidos com os coeficientes da formulação 
de Morison. 
10 
 
Campo de pressões 
Neste ponto, fica evidente a necessidade de uma expressão que descreva o 
comportamento das pressões do fluido. Dentre as formulações mais conhecidas, estão a 
teoria linear (de primeira ordem) de Airy e a teoria de Stokes de ordens superiores. Em 
suma, a teoria de Airy se baseia na premissa de que a altura de onda é pequena se 
comparada com o comprimento da onda. Esta premissa permite que as condições de 
contorno de superfície livre sejam satisfeitas no nível médio de águas tranquilas e não no 
nível real de elevação da onda. Para tanto, as condições de contorno são linearizadas, 
desprezando os termos de segunda ordem e de ordens superiores. Na teoria de Stokes, 
estes termos não são desprezados [12]. 
A seguir, estão as expressões de pressão pelas teorias de Airy (2.10) e Stokes de 
segunda ordem (2.11): 
 
�(�, �, �) = ����
���ℎ �(� + �)
���ℎ ��
��� (�� − ��) (2.10) 
 
�(�, �, �) = ����
���ℎ �(� + �)
���ℎ ��
���(�� − ��) +
+
3
4
���
���
�
1
���ℎ 2��
�
���ℎ 2�(� + �) 
���ℎ� ��
−
1
3
� ��� 2(�� − ��) −
−
1
4
���
���
�
1
���ℎ 2��
[��� 2�(� + �) − 1] 
(2.11) 
onde ρ é a massa específica do fluido, g é a aceleração da gravidade, a é a amplitude da 
onda, k é a o número de onda, d é a lâmina d’água, e λ e H são, respectivamente, o 
comprimento e a altura da onda. 
11 
 
Desta maneira, as equações (2.10) ou (2.11) podem ser substituídas nas equações 
(2.8) e (2.9) para o cálculo das forças exercidas pelo fluido. Vale ressaltar que, em suas 
deduções, ambas desprezam efeitos de viscosidade, implicando que, em termos práticos, 
a formulação de Froude-Krylov seja aplicável quando forças de arrasto são pequenas se 
comparadas a efeitos de inércia. Segundo Chakrabarti [3], em muitos casos, as 
expressões resultantes são semelhantes às obtidas pela parcela de inércia da fórmula de 
Morison. Em [3], pode-se encontrar a dedução das expressões de força e coeficientes 
verticais e horizontais para corpos com geometria simples, como semicilindros, cilindros 
e cubos. 
 Formulação de Difração/Radiação 
Por fim, quando as dimensões dos corpos são grandes comparadas ao comprimento 
das ondas, ocasionando em interferências significativas no fluido, as teorias expostas em 
2.4.1 e 2.4.2 não são válidas. Neste caso, um método de cálculo de forças deve ser 
baseado na teoria da Difração/Radiação. 
A formulação deste problema se assemelha ao desenvolvido por Airy e Stokes, 
acrescentando-se duas condições de contorno: 
 a componente da velocidade da partícula de fluido normal às superfície do 
corpo é igual à velocidade da superfície do corpo naquele ponto; 
 ondas irradiadas têmamplitude decrescente e nula no infinito. 
Assim como em 2.4.2, este problema é complexo e altamente não linear e, de modo 
geral, a solução deve ser obtida introduzindo aproximações e/ou utilizando métodos 
numéricos. Utilizando expansão em séries, podem ser obtidas expressões de primeira 
ordem (tal qual Airy) ou de ordens superiores (semelhante a Stokes). Tendo as expressões 
de pressão, procede-se à integração das mesmas na superfície do corpo: 
 
��� = � ������ (2.12) 
onde nj é a componente do vetor normal na direção j. O resultado Fnj é a força de ordem 
n na direção j. 
12 
 
O programa Wamit [13] por exemplo, é uma ferramenta bastante utilizada no 
cômputo de cargas de fluido empregando um modelo de Difração/Radiação. A partir dos 
resultados de primeira ordem, são geradas funções de transferência do corpo 
denominadas Response Amplitude Operator (RAO), nas quais são contabilizados os 
valores de força resultantes para ondas de diversas frequências com amplitude unitária 
atuando em determinadas direções. Utilizando RAOs, parte-se do pressuposto que ondas 
com o dobro de amplitude resultarão em forças duas vezes maiores, e assim por diante. 
Seguindo o mesmo raciocínio, o programa também calcula matrizes de rigidez 
hidrostática com uso semelhante, nas quais os termos são forças restauradoras que 
surgem no corpo quando submetido a deslocamentos (lineares ou angulares) unitários. 
Discussões sobre resultados de segunda ordem podem ser encontrados em [14,15,16]. 
Vale lembrar, por fim, que a teoria de Difração/Radiação também não considera a 
viscosidade do fluido, implicando na ausência de contribuições de forças de arrasto em 
seus resultados. Modelos mais rigorosos que levam em conta este efeito resultam em 
problemas matemáticos ainda mais complexos [17]. 
 Formulações Híbridas 
A partir de propostas apresentadas por Hooft [17] e Pauling [18], forças resultantes 
no corpo oriundas da passagem da onda podem ser calculadas combinando-se 
características positivas das diferentes formulações apresentadas anteriormente. Neste 
modelo híbrido, combinam-se as seguintes forças: 
 Forças de onda de primeira ordem oriundas da viscosidade do fluido, obtidas 
a partir da fórmula de Morison; 
 Forças inerciais de primeira ordem, obtidas por Morison, Froude-Krylov ou 
Difração/Radiação; 
 Forças de onda de segunda ordem, obtidas pelo modelo de 
Difração/Radiação ou Froude-Krylov. 
Neste contexto, esta dissertação aborda um outro tipo de modelo híbrido em que 
parcelas de força de primeira ordem são obtidas a partir da integral de superfície das 
pressões estáticas e dinâmicas sobre as áreas instantaneamente submersas do corpo, 
assumindo que o corpo não perturba as ondas incidentes. 
13 
 
3 IMPLEMENTAÇÃO 
3.1 O SITUA-Prosim 
O Sistema SITUA-Prosim vem sendo desenvolvido pelo LAMCSO em parceria com 
o CENPES-Petrobras. O programa tem o objetivo de efetuar tanto análises de unidades 
flutuantes ancoradas (considerando a interação dos cascos com as linhas de ancoragem e 
risers) quanto de situações de instalação e avaria (incluindo instalação de dutos). 
A plataforma SITUA compõe a interface gráfica para entrada de dados, geração de 
modelos complexos e visualização de resultados, enquanto os módulos de análise estão 
incorporados no programa Prosim. 
O Prosim utiliza modelos hidrodinâmicos para fazer a análise de movimento dos 
cascos da embarcação e, para a análise do comportamento estrutural dos risers, linhas de 
ancoragem e lançamento de dutos, utiliza o Método dos Elementos Finitos de treliça e de 
pórtico, utilizando diferentes algoritmos para a análise, dentre eles o algoritmo implícito 
αβ-Newmark, com propriedade de dissipação numérica, além de algoritmos explícitos 
apropriados para análise de situações transientes. 
Em se tratando dos modelos hidrodinâmicos, o programa permite ao usuário a 
definição do cálculo de parcelas de forças através de diversos “provedores”, como os 
listados a seguir: 
 Modelo de Cilindros: formulação de Morison para o cálculo das forças de 
fluidos em corpos esbeltos; 
 Modelo de Difração 
 Matriz de Restauração Hidrostática 
Desta forma, o usuário pode utilizar as formulações tradicionais de Morison, 
Froude-Krylov e Difração/Radiação, além das formulações híbridas descritas em 2.4.4. 
Na Figura 3.1 é representa a tela do SITUA, na qual estão em destaque um casco e os 
provedores para cálculo de forças hidrostáticas e hidrodinâmicas. 
14 
 
 
Figura 3.1 – Modelo de uma plataforma flutuante no programa SITUA-Prosim 
3.2 Conceitos básicos 
 Definição de vetor normal unitário 
Um vetor normal à área de um triângulo pode ser calculado a partir do produto 
vetorial de dois vetores que correspondam a duas de suas arestas. O vetor �����⃗ na Figura 
3.2 indica o resultado da operação (3.1): 
 ���⃗ = ��������⃗ × �������⃗ (3.1) 
15 
 
 
Figura 3.2 – Definição de vetor normal à superfície do triângulo 
Para torná-lo unitário, as componentes do vetor são dividas pelo seu módulo de 
acordo com a equação (3.2): 
 
���������������⃗ =
���⃗
����⃗ �
 (3.2) 
 Volume e centro de volume de tetraedro 
O volume de um tetraedro pode ser obtido de forma simples através do produto 
vetorial misto dado pela equação (3.3): 
 
������ =
���������⃗ × �������⃗ � ∙ ��������⃗
6
 (3.3) 
 
Figura 3.3 – Tetraedro e seu centro de volume 
Já o seu centro de volume (CV) pode ser facilmente calculado pela média aritmética 
das coordenadas de seus vértices, conforme equações a seguir: 
 
��� =
�� + �� + �� + ��
4
 (3.4) 
 
��� =
�� + �� + �� + ��
4
 
(3.5) 
16 
 
 
��� =
�� + �� + �� + ��
4
 
(3.6) 
3.3 A Integral de Pressões 
Segundo a teoria de cálculo infinitesimal [19], a integral de uma função f(x,y,z) em 
uma área é numericamente igual ao volume compreendido entre o plano que consta o 
domínio da função e a superfície formada pela imagem do intervalo de integração, 
conforme a Figura 3.4: 
 
Figura 3.4 – Integral de uma função numa superfície 
Partindo desta definição, e tornando a área integrada pequena o suficiente para que 
a superfície da função possa ser substituída por um plano, a integral de uma função pode 
ser obtida calculando geometricamente o volume gerado. 
Desta forma, dado um corpo com geometria modelada por painéis planos submetido 
a uma função f(x,y,z) que define um campo de pressões, pode-se realizar a integração da 
função na superfície do corpo. Para isto, cada painel deve ser calculado individualmente, 
atuando como um plano sobre o qual será gerado o volume de pressões que corresponde 
numericamente ao valor da integral. A Figura 3.5 ilustra o início deste processo, no qual 
um painel triangular da malha do corpo foi destacado e indicados seus nós e vetor normal 
unitário. 
17 
 
 
Figura 3.5 – Triângulo destacado da malha com seus nós e vetor normal 
Com intuito de gerar o volume de pressões geometricamente no espaço, são 
calculados os valores da função de pressões f(x,y,z) nos três nós do triângulo e o módulo 
destes valores são multiplicados pelo vetor normal ao triângulo e somados aos seus 
respectivos nós. Vetorialmente, tem-se: 
 �������⃗ = �ó���������⃗ + |�(�ó�)|���⃗ (3.7) 
 �������⃗ = �ó���������⃗ + |�(�ó�)|���⃗ (3.8) 
 �������⃗ = �ó���������⃗ + |�(�ó�)|���⃗ (3.9) 
A Figura 3.6 ilustra o volume gerado, no qual a distância entre os pontos P1, P2 e 
P3 aos seus respectivos nós são numericamente iguais ao módulo da função f(x,y,z) nos 
nós. 
 
Figura 3.6 – Volume de pressões sobre o triângulo 
18 
 
Dado o volume geométrico de pressões correspondente à integral da função, 
procede-se ao cálculo do seu valor numérico. Para isto, ele é subdividido em três 
tetraedros, já que estes têm seu volume e centro de volume facilmente calculados (seção 
3.2.2). A Figura 3.7 elucida o processo de divisão do volume original em tetraedros, na 
qual os traçados em vermelho são planos de corte. 
 
(a) 
 
(b) 
 
(c)Figura 3.7 – Demonstração geométrica do cálculo do volume 
Findo este processo, o volume original é igual à soma dos volumes dos tetraedros, e 
o centro de volume é uma média ponderada dos centros de volumes dos tetraedros por 
seus respectivos volumes, conforme equações a seguir: 
19 
 
 ����������� = ������� + ������� + ������� (3.10) 
 
�������⃗ =
�����������������⃗ + �����������������⃗ + �����������������⃗
������� + ������� + �������
 
(3.11) 
A partir do que foi exposto, pode-se calcular as contribuições de força e momento 
em cada elemento da malha e somá-los para que se encontre força e momento resultantes 
gerados pela função de pressões atuando na superfície do corpo. 
Cabe ressaltar que o cálculo do ponto de aplicação da força no elemento de superfície 
através de médias aritméticas das coordenadas ou médias ponderadas por valores de 
pressão não é recomendado. Um exemplo simples, com resultado amplamente 
conhecido, é o de pressões hidrostáticas atuando numa parede vertical (normalmente 
barragens), no qual a resultante de forças atua a 1/3 da altura da barragem, conforme 
Figura 3.8. Naturalmente, estas aproximações são válidas em elementos infinitesimais. 
No entanto, como um dos objetivos deste trabalho é obter a integral de pressões com o 
menor custo computacional possível, quanto maior o tamanho do elemento, e por sua 
vez, menor o número de elementos no modelo, melhor. Sendo assim, a técnica do cálculo 
do centro de volume de pressões, que é a mais precisa, foi adotada. 
 
(a) – 3D 
 
(b) – 2D 
Figura 3.8 – Campo de pressões hidrostáticas atuando numa barragem 
20 
 
No capítulo 5, dedicado a verificações da integral de pressões, este exemplo de 
campo de pressões hidrostáticas atuando numa barragem será analisado com intuito de 
verificar a adequação do cálculo do ponto de aplicação da força resultante. 
3.4 Descrição do método 
O método desenvolvido consiste em, a partir de expressões analíticas para o cálculo 
de pressões, integrá-las na superfície de um corpo (seguindo a proposta de Froude-
Krylov) com geometria definida por painéis triangulares utilizando a integral de pressões 
apresentada no item 3.3. Somando as parcelas de força e momento geradas em cada um 
dos painéis, tem-se forças e momentos resultantes que integrarão a equação de 
movimento do corpo (daqui em diante também denominado Unidade Flutuante ou UF). 
Para isso, além da geometria da UF, o usuário deve definir as características do mar, 
informando se ele será do tipo regular, com período, direção e amplitude de cada uma 
das componentes de onda que o representam, ou irregular, no qual as ondas são definidas 
por espectros de energia com um número discreto de componentes. 
A partir da definição da geometria do corpo e das características do mar, o algoritmo 
desenvolvido faz um loop nos elementos de superfície e, em seguida, em seus nós, 
calculando pressões através das expressões analíticas de hidrostática (2.3) e pressão de 
onda de primeira ordem (2.4.2). Ao fim do loop, forças e momentos são acumulados e 
aplicados no CG da UF. 
Definido o vetor de forças e momentos, o programa SITUA-Prosim resolve a 
equação de movimento do corpo, calculando translações e rotações. A partir destes 
deslocamentos, a posição do centro de gravidade e dos pontos da malha de superfície são 
atualizadas e o processo se repete até o fim da análise. Cabe ressaltar que esta etapa de 
resolução da equação de movimento não foi desenvolvida neste trabalho, tendo este se 
limitado a calcular as forças e momentos gerados pelo fluido. A Figura 3.9 traz, em forma 
de pseudocódigo, fluxograma explicativo do método aqui exposto. O cálculo das 
parcelas de força será explicado individualmente nas seções seguintes. 
21 
 
 
Figura 3.9 – Fluxograma geral do método desenvolvido 
3.5 Forças hidrostáticas 
O cálculo das forças hidrostáticas está baseado nas definições expostas nas seções 
2.3 e 3.3. Primeiramente, inicia-se um loop de subvolumes da UF (unidade flutuante). 
Em cada subvolume, é feito um loop nos painéis triangulares da malha de superfície. 
Neste ponto, inicia-se uma importante etapa do método: o corte da malha de superfície 
pelo plano gerado pela onda (Figura 3.10). 
22 
 
 
(a) – 3D 
 
(b) – 2D 
 
(c) – 2D 
Figura 3.10 – Cilindro com superfície “cortada” pela onda 
Para cada triângulo, é definido um plano secante que represente localmente a onda 
(Figura 3.11). 
 
Figura 3.11 – Definição do plano secante 
Neste processo, elementos de superfície parcialmente submersos são cortados e 
regerados após cálculo das coordenadas de interseção com o plano da onda (Figura 3.12). 
23 
 
 
(a) – Antes 
 
(b) – Depois 
Figura 3.12 – Corte do triângulo pelo plano secante 
Identificados os triângulos com área submersa, são calculadas as pressões 
hidrostáticas em cada um de seus nós a partir da equação (2.3) definida na seção 2.3. 
Vale ressaltar que a profundidade aqui considerada trata-se da distância da superfície 
instantânea da onda até o nó em questão (Figura 3.13). 
 
Figura 3.13 – Profundidade dos nós do triângulo 
Calculadas as pressões em cada nó do triângulo, são gerados no espaço os pontos 
que comporão o volume de pressões, como descrito em 3.3, e procede-se à integral de 
pressões para cálculo da força hidrostática atuante no triângulo e seu ponto de aplicação. 
A partir deste, é calculado o momento causado pela força no centro de gravidade da UF. 
Findo o loop de elementos de superfície, contribuições de forças e momentos de 
cada triângulo submerso (que foram armazenados em variáveis acumuladoras) são 
aplicados no CG da UF. Este processo se repete até o fim do loop de subvolumes que 
compõem o corpo. 
A Figura 3.14 traz fluxograma explicativo do cálculo de forças hidrostáticas. 
24 
 
 
Figura 3.14 – Fluxograma para cálculo de forças hidrostáticas 
 
Figura 3.15 – Fluxograma para cálculo de forças a partir de pressões hidrostáticas 
25 
 
Na Figura 3.14, define-se as seguintes variáveis: 
 IVOLUME: contador de subvolumes que compõem a UF; 
 ITRIANGULO: contador de triângulos (elementos de superfície) do subvolume 
analisado; 
 NTRIANGULOS: número total de triângulos que compõem a malha de superfície 
do subvolume analisado; 
 NVOLUMES: número total de subvolumes que compõem a UF. 
3.6 Forças hidrodinâmicas 
O cálculo das forças hidrodinâmicas está baseado nas definições expostas nas seções 
2.4.2 e 3.3 e em muito se assemelha ao algoritmo para forças hidrostáticas apresentado 
anteriormente (seção 3.5). Inicialmente, é realizado um loop de subvolumes da UF. Em 
cada subvolume, é feito um loop nos painéis triangulares da malha de superfície. Para 
cada triângulo, é definido um plano secante que represente localmente a onda a fim de 
verificar quais nós do elemento de superfície estão submersos. Identificados os triângulos 
com área submersa, são calculadas as pressões hidrodinâmicas em cada um de seus nós 
a partir da equação (2.10) de Airy definida na seção 2.4.2. 
As demais etapas de cálculo são idênticas aquelas apresentadas na seção anterior, 
podendo-se seguir o mesmo fluxograma de cálculo de forças da Figura 3.14, substituindo 
apenas a pressão hidrostática pela hidrodinâmica. 
A Figura 3.16 traz fluxograma explicativo do cálculo de forças hidrodinâmicas. 
26 
 
 
Figura 3.16 – Fluxograma para cálculo de forças hidrodinâmicas 
 
Figura 3.17 – Fluxograma para cálculo de forças a partir de pressões hidrodinâmicas 
27 
 
Neste ponto, apresentados os fluxogramas para cálculos de forças hidrostáticas e 
hidrodinâmicas, cabe o questionamento acerca da unificação dos algoritmos, tendo em 
vista as semelhanças que há em maior parte do código. A separação em duas rotinas se 
deu devido às expressões de cálculo de pressões: a pressão hidrostática é regida por uma 
expressão linear em função da profundidade do ponto, enquanto a pressão hidrodinâmica 
é dada por uma expressãocom cossenos hiperbólicos, acentuadamente não lineares. 
Desta forma, resultados de hidrostática podem ser obtidos com discretização da malha 
de superfície menos refinada, exigindo menores custos computacionais. Fica permitido 
ao usuário, então, definir duas malhas distintas, uma para cada parcela de força, deixando 
o programa computacional mais genérico. 
28 
 
4 ESTUDO DE REFINAMENTO DE MALHA 
DE SUPERFÍCIE 
4.1 Introdução 
Com o intuito de estabelecer parâmetros que norteassem o refinamento da malha a 
ser usada no método de painéis, levando em conta custo computacional e acurácia dos 
resultados, foram realizadas análises que buscam estabelecer relação entre o 
comprimento λ da onda incidente e a dimensão máxima das arestas dos elementos de 
superfície. 
Para isto, foram fixadas uma profundidade do corpo e uma onda (direção, período, 
amplitude e comprimento), para a qual foi calculado seu comprimento λ. Em seguida, 
estabeleceu-se a relação � �� (sendo n um número inteiro) que define um tamanho 
máximo da aresta dos elementos da malha de superfície. À medida em que é aumentado 
o valor de n, tem-se malhas mais refinadas, e um erro menor associado. 
A fim de elucidar esta proposta, tem-se o exemplo a seguir de um cubo com aresta 
arbitrada � = 12 �, sobre o qual incide uma onda com comprimento também 
arbitrado � = 60 �. A superfície do cubo foi então dividida em elementos cujas arestas 
obedecem a relação � � � , com � = 10, � = 20 e � = 30 (Figura 4.1). É então esperado 
que, com aumento de n, obtenha-se melhores (mais acurados) resultados de forças 
atuando no corpo, porém eleve-se o custo computacional. 
29 
 
� = 10 
�
�� =
60
10� = 6.0 � 
 
 
(a) – Vistas 2 e 3D para n = 10 
� = 20 
�
�� =
60
20� = 3.0 � 
 
 
(b) – Vistas 2 e 3D para n = 20 
� = 30 
�
�� =
60
30� = 2.0 � 
 
 
(c) – Vistas 2 e 3D para n = 30 
Figura 4.1 – Relação λ/n em cubo com aresta L = 12 m e onda com λ = 60 m 
30 
 
Com intuito de obter valores de referência para o cálculo do erro nas forças 
horizontais e verticais atuantes no corpo, foi utilizado o programa comercial Mathcad 
[20], que permite o cálculo de integrais definidas com boa acurácia, tendo em vista que 
este realiza o cálculo numérico dividindo o domínio de integração em um número de 
pontos grande o suficiente para que os critérios de convergência definidos pelo usuário 
sejam satisfeitos. Assim sendo, os resultados do Mathcad foram assumidos como 
corretos e tentou-se melhorar o refinamento das malhas para análises pelo método de 
painéis de modo que os resultados se aproximassem dos obtidos pelo programa 
comercial. 
4.2 Plano horizontal: forças verticais 
Em princípio, a fim de estabelecer uma relação � �� que possa ser extrapolada para 
corpos de diversas formas, foi realizado um estudo de forças hidrodinâmicas verticais 
atuando em um quadrado fixo disposto horizontalmente no espaço (Figura 4.2). Definiu-
se onda, lâmina d’água, profundidade do plano etc. e análises foram realizadas variando-
se o comprimento Larestas das arestas do quadrado, que assumiu valores de acordo com os 
resultados da expressão � �� . 
31 
 
 
 
(a) – 3D (b) – 2D 
Figura 4.2 – Modelo esquemático de um quadrado horizontal fixo no espaço 
submetido a passagem de onda regular 
A seguir, estão listados alguns dados referentes aos modelos e às análises: 
 Período T da onda: 6.00 s 
 Amplitude A da onda: 1.00 m 
 Comprimento de onda λ: 56.18 m (obtido com auxílio de código 
desenvolvido no Mathcad) 
 Coordenada z do plano: -15.00 m 
 Malha da superfície: 4 vértices, 2 triângulos 
 Análise dinâmica com tempo total de 100.00 s e intervalo de integração de 
0.10 s 
 Duração das análises: 0.26 s (em média) 
A seguir, são apresentados trechos das séries temporais das forças hidrodinâmicas 
obtidas pelo método dos painéis e pelo Mathcad para os valores � = 5 (Figura 4.3) e � =
100 (Figura 4.4), a partir dos quais é possível notar melhor acurácia nos resultados para 
valores maiores de n. 
32 
 
 
Figura 4.3 – Trecho de série temporal de forças atuando verticalmente no quadrado 
(n=5) 
 
Figura 4.4 – Trecho de série temporal de forças atuando verticalmente no quadrado 
(n=100) 
Com intuito de quantificar erros nos resultados obtidos, foram identificados valores 
de máximo, mínimo e amplitude nas séries temporais obtidas pelo Mathcad e pelo 
método de painéis e foram calculados os erros relativos. Estes resultados podem ser 
observados na Tabela 4.1. 
33 
 
Tabela 4.1 – Forças em z: máximos, mínimos e amplitudes 
n λ/n (m) Forças Hidrodinâmicas 
Painéis 
(kN) 
Mathcad 
(kN) 
Erro (%) 
5 11.24 
Máximo 176.12 200.84 -12.31% 
Mínimo -209.15 -245.18 14.70% 
Amplitude 192.63 223.01 -13.62% 
6 9.36 
Máximo 130.14 142.10 -8.42% 
Mínimo -156.43 -174.13 10.17% 
Amplitude 143.28 158.12 -9.38% 
7 8.03 
Máximo 99.10 105.57 -6.13% 
Mínimo -120.01 -129.67 7.45% 
Amplitude 109.55 117.62 -6.86% 
8 7.02 
Máximo 77.61 81.41 -4.66% 
Mínimo -94.45 -100.15 5.69% 
Amplitude 86.03 90.78 -5.23% 
9 6.24 
Máximo 62.27 64.64 -3.67% 
Mínimo -76.03 -79.61 4.49% 
Amplitude 69.15 72.12 -4.12% 
10 5.62 
Máximo 50.99 52.54 -2.96% 
Mínimo -62.41 -64.76 3.63% 
Amplitude 56.70 58.65 -3.33% 
11 5.11 
Máximo 42.47 43.54 -2.44% 
Mínimo -52.08 -53.69 3.00% 
Amplitude 47.28 48.61 -2.75% 
12 4.68 
Máximo 35.91 36.65 -2.04% 
Mínimo -44.09 -45.22 2.52% 
Amplitude 40.00 40.94 -2.30% 
13 4.32 
Máximo 30.74 31.28 -1.74% 
Mínimo -37.78 -38.60 2.14% 
Amplitude 34.26 34.94 -1.96% 
14 4.01 
Máximo 26.60 27.00 -1.49% 
Mínimo -32.72 -33.34 1.84% 
Amplitude 29.66 30.17 -1.69% 
 
34 
 
Tabela 4.1 – Forças em z: máximos, mínimos e amplitudes (continuação) 
n λ/n (m) Forças Hidrodinâmicas 
Painéis 
(kN) 
Mathcad 
(kN) 
Erro (%) 
15 3.75 
Máximo 23.24 23.55 -1.29% 
Mínimo -28.61 -29.08 1.60% 
Amplitude 25.92 26.31 -1.47% 
16 3.51 
Máximo 20.48 20.71 -1.14% 
Mínimo -25.22 -25.58 1.41% 
Amplitude 22.85 23.15 -1.29% 
17 3.30 
Máximo 18.17 18.36 -1.00% 
Mínimo -22.39 -22.68 1.24% 
Amplitude 20.28 20.52 -1.14% 
18 3.12 
Máximo 16.24 16.38 -0.89% 
Mínimo -20.02 -20.24 1.11% 
Amplitude 18.13 18.31 -1.01% 
19 2.96 
Máximo 14.59 14.71 -0.80% 
Mínimo -18.00 -18.18 0.99% 
Amplitude 16.30 16.44 -0.91% 
20 2.81 
Máximo 13.19 13.28 -0.72% 
Mínimo -16.27 -16.41 0.90% 
Amplitude 14.73 14.85 -0.82% 
25 2.25 
Máximo 8.47 8.51 -0.45% 
Mínimo -10.46 -10.52 0.56% 
Amplitude 9.47 9.52 -0.51% 
30 1.87 
Máximo 5.90 5.92 -0.30% 
Mínimo -7.28 -7.31 0.39% 
Amplitude 6.59 6.61 -0.35% 
35 1.61 
Máximo 4.34 4.35 -0.22% 
Mínimo -5.36 -5.38 0.28% 
Amplitude 4.85 4.86 -0.25% 
40 1.40 
Máximo 3.32 3.33 -0.17% 
Mínimo -4.11 -4.12 0.21% 
Amplitude 3.72 3.72 -0.19% 
 
35 
 
Tabela 4.1 – Forças em z: máximos, mínimos e amplitudes (continuação) 
n λ/n (m) Forças Hidrodinâmicas 
Painéis 
(kN) 
Mathcad 
(kN) 
Erro (%) 
45 1.25 
Máximo 2.62797 2.63100 -0.12% 
Mínimo -3.24840 -3.25400 0.17% 
Amplitude 2.938185 2.9425 -0.15% 
50 1.12 
Máximo 2.12973 2.1320 -0.11% 
Mínimo -2.63279 -2.6360 0.12% 
Amplitude 2.38126 2.384 -0.11% 
100 0.56 
Máximo 0.53304 0.5330 0.01% 
Mínimo -0.65916 -0.6590 -0.02% 
Amplitude 0.5961 0.596 0.02% 
Conforme o exposto, erros menores que 5% exigem malhas com dimensão 
 �������� = 
�
9 � e erros menores que 1% exigem malhas com �������� = 
�
19 � . A 
Figura 4.5 traz gráficos do comportamento do erro relativo em função da variação de n. 
 
Figura 4.5 – Erro percentual nos valores de máximo, mínimo e amplitude em função 
de n 
36 
 
4.3 Plano vertical: forças na direção da onda 
Seguindo o raciocínio exposto no item anterior (4.2), procedeu-se a um estudo de 
forças hidrodinâmicas na direção da onda (eixo x global do SITUA) atuando em um 
quadrado fixo disposto verticalmente no espaço (Figura 4.6). Os valores de período e 
amplitude da onda, lâmina d’água, profundidade do plano etc. são os mesmosutilizados 
no estudo de forças verticais e, de forma semelhante, as análises foram realizadas 
variando-se o comprimento Larestas das arestas do quadrado, que assumiu valores de 
acordo com os resultados da expressão � � � . 
 
 
(a) – 3D (b) – 2D 
Figura 4.6 – Modelo esquemático de um quadrado vertical fixo no espaço 
submetido a passagem de onda regular 
A seguir, estão listados alguns dados referentes aos modelos e às análises: 
 Período T da onda: 6.00 s 
 Amplitude A da onda: 1.00 m 
 Comprimento de onda λ: 56.18 m (obtido com auxílio de código 
desenvolvido no Mathcad) 
 Coordenada z da base do plano: -15.00 m 
 Malha da superfície: 4 vértices, 2 triângulos 
37 
 
 Análise dinâmica com tempo total de 100.00 s e intervalo de integração de 
0.10 s 
 Duração das análises: 0.26 s (em média) 
A seguir, são apresentados trechos das séries temporais das forças hidrodinâmicas 
obtidas pelo método dos painéis e pelo Mathcad para os valores � = 5 (Figura 4.7) e 
 � = 100 (Figura 4.8), a partir dos quais é possível notar melhor acurácia nos resultados 
para valores maiores de n. 
 
Figura 4.7 – Trecho de série temporal de forças atuando horizontalmente no 
quadrado (n=5) 
38 
 
 
Figura 4.8 – Trecho de série temporal de forças atuando horizontalmente no 
quadrado (n=100) 
Com intuito de quantificar erros nos resultados obtidos, foram identificados valores 
de máximo, mínimo e amplitude nas séries temporais obtidas pelo Mathcad e pelo 
método de painéis e foram calculados os erros relativos. Estes resultados podem ser 
observados na Tabela 4.2. 
39 
 
Tabela 4.2 – Forças em x: máximos, mínimos e amplitudes 
n λ/n (m) Forças Hidrodinâmicas 
Painéis 
(kN) 
Mathcad 
(kN) 
Erro (%) 
5 11.24 
Máximo 597.36 529.00 12.92% 
Mínimo -479.87 -425.59 -12.76% 
Amplitude 538.61 477.29 12.85% 
6 9.36 
Máximo 353.58 324.24 9.05% 
Mínimo -284.42 -261.10 -8.93% 
Amplitude 319.00 292.67 9.00% 
7 8.03 
Máximo 232.95 218.36 6.68% 
Mínimo -187.56 -175.95 -6.60% 
Amplitude 210.25 197.15 6.64% 
8 7.02 
Máximo 164.85 156.80 5.14% 
Mínimo -132.82 -126.41 -5.07% 
Amplitude 148.83 141.60 5.11% 
9 6.24 
Máximo 122.75 117.95 4.07% 
Mínimo -98.94 -95.12 -4.02% 
Amplitude 110.84 106.53 4.05% 
10 5.62 
Máximo 94.93 91.89 3.30% 
Mínimo -76.55 -74.13 -3.26% 
Amplitude 85.74 83.01 3.29% 
11 5.11 
Máximo 75.60 73.59 2.74% 
Mínimo -60.98 -59.38 -2.70% 
Amplitude 68.29 66.48 2.72% 
12 4.68 
Máximo 61.63 60.24 2.30% 
Mínimo -49.73 -48.62 -2.28% 
Amplitude 55.68 54.43 2.29% 
13 4.32 
Máximo 51.21 50.22 1.97% 
Mínimo -41.32 -40.54 -1.94% 
Amplitude 46.26 45.38 1.96% 
14 4.01 
Máximo 43.22 42.50 1.70% 
Mínimo -34.89 -34.31 -1.68% 
Amplitude 39.05 38.41 1.69% 
 
40 
 
Tabela 4.2– Forças em x: máximos, mínimos e amplitudes (continuação) 
n λ/n (m) Forças Hidrodinâmicas 
Painéis 
(kN) 
Mathcad 
(kN) 
Erro (%) 
15 3.75 
Máximo 36.97 36.43 1.48% 
Mínimo -29.85 -29.41 -1.47% 
Amplitude 33.41 32.92 1.48% 
16 3.51 
Máximo 31.99 31.58 1.31% 
Mínimo -25.82 -25.50 -1.29% 
Amplitude 28.91 28.54 1.30% 
17 3.30 
Máximo 27.95 27.63 1.16% 
Mínimo -22.56 -22.31 -1.15% 
Amplitude 25.26 24.97 1.15% 
18 3.12 
Máximo 24.63 24.37 1.04% 
Mínimo -19.89 -19.68 -1.02% 
Amplitude 22.26 22.03 1.03% 
19 2.96 
Máximo 21.87 21.67 0.93% 
Mínimo -17.66 -17.50 -0.92% 
Amplitude 19.76 19.58 0.93% 
20 2.81 
Máximo 19.55 19.38 0.84% 
Mínimo -15.78 -15.66 -0.83% 
Amplitude 17.67 17.52 0.84% 
25 2.25 
Máximo 12.07 12.00 0.55% 
Mínimo -9.75 -9.70 -0.54% 
Amplitude 10.91 10.85 0.54% 
30 1.87 
Máximo 8.19 8.16 0.37% 
Mínimo -6.61 -6.59 -0.37% 
Amplitude 7.40 7.37 0.37% 
35 1.61 
Máximo 5.92 5.90 0.29% 
Mínimo -4.78 -4.77 -0.29% 
Amplitude 5.35 5.33 0.29% 
40 1.40 
Máximo 4.47 4.46 0.23% 
Mínimo -3.62 -3.61 -0.22% 
Amplitude 4.05 4.04 0.23% 
 
41 
 
Tabela 4.2– Forças em x: máximos, mínimos e amplitudes (continuação) 
n λ/n (m) Forças Hidrodinâmicas 
Painéis 
(kN) 
Mathcad 
(kN) 
Erro (%) 
45 1.25 
Máximo 3.50 3.50 0.17% 
Mínimo -2.83 -2.83 -0.19% 
Amplitude 3.17 3.16 0.18% 
50 1.12 
Máximo 2.82 2.81 0.14% 
Mínimo -2.28 -2.27 -0.17% 
Amplitude 2.55 2.54 0.15% 
100 0.56 
Máximo 0.68 0.68 0.00% 
Mínimo -0.55 -0.55 -0.09% 
Amplitude 0.62 0.62 0.04% 
Conforme o exposto, assim como no item anterior (4.2), erros menores que 5% 
exigem malhas com dimensão �������� = 
�
9 � e erros menores que 1% exigem malhas 
com � = � 19 � . A Figura 4.9 traz gráficos do comportamento do erro relativo em função 
da variação de n. 
 
Figura 4.9 – Erro percentual nos valores de máximo, mínimo e amplitude em função 
de n 
42 
 
4.4 Semicilindro 
A partir dos resultados de � �� obtidos nos itens anteriores (4.2 e 4.3), foram 
realizadas análises de forças hidrostáticas e hidrodinâmicas atuando em semicilindros 
fixos no espaço. As dimensões do corpo, assim como profundidade, lâmina d’água, etc. 
estão listados a seguir e podem ser observadas na Figura 4.10. 
 Período T da onda: 6.00 s 
 Amplitude A da onda: 1.00 m 
 Comprimento de onda λ: 56.18 m (obtido com auxílio de código 
desenvolvido no Mathcad) 
 Raio teórico do semicilindro: 5.00 m 
 Altura do semicilindro: 10.00 m 
 Coordenada z da base do semicilindro: -15.00 m 
 
 
(a) – 3D (b) – 2D 
Figura 4.10 – Modelo esquemático de um semicilindro fixo no espaço submetido a 
passagem de onda regular 
43 
 
A princípio, a fim de corrigir erros introduzidos pela discretização da malha no 
volume do corpo submerso, foram realizadas correções nos raios dos semicilindros 
gerados de acordo com o número narestas de arestas do perímetro, conforme Tabela 4.3. A 
partir das correções, garante-se que as forças hidrostáticas (que dependem do volume 
submerso) sejam iguais às atuantes num semicilindro com volume � = ��
��
2� . 
Tabela 4.3 – Raio corrigido em função do número de lados do polígono regular 
narestas Raio corrigido (m) 
3 
 
4 
 
5 
 
6 
 
44 
 
Feitas as correções nos volumes, foram efetuadas análises dinâmicas de 100 s com 
intervalo de integração de 0.10 s. Os modelos com narestas igual a 3, 4 e 5 respeitaram o 
critério de �������� < 
�
9� , e o modelo com narestas igual a 6 respeitou o critério 
de �������� < 
�
19� . 
Como esperado, os valores de força hidrostáticas apresentaram boa acurácia devido 
às correções feitas nos volumes dos semicilindros. Tais resultados podem ser observados 
na Tabela 4.4: 
Tabela 4.4 – Forças de empuxo no semicilindro 
n Empuxo (kN) Mathcad (kN) Erro (%) 
3 3947.34 3947.34 0.000% 
4 3947.34 3947.34 0.000% 
5 3947.34 3947.34 0.000% 
6 3947.34 3947.34 0.000% 
A seguir, são expostos trechos das séries temporais das forças hidrodinâmicas 
atuando em x (Figura 4.11) e z (Figura 4.12) obtidas pelo Mathcad, pelo modelo menos 
refinado (�������� = 3) e pelo modelo mais refinado (�������� = 6). 
 
Figura 4.11 – Trecho de série temporal de forças atuando horizontalmente no 
semicilindro 
45 
 
 
Figura 4.12 – Trecho de série temporal de forças atuando verticalmente no 
semicilindro 
Os valores de máximo, mínimo e amplitude (além de respectivos erros) das forças 
hidrodinâmicas atuantes na direção da onda estão resumidos na Tabela 4.5. 
Tabela 4.5 – Forças em x: máximos, mínimos e amplitudes 
narestas Forças Hidrodinâmicas Painéis (kN) Mathcad (kN) Erro (%) 
3 
Máximo 99.483 103.796 -4.16% 
Mínimo -99.483 -103.796 4.16% 
Amplitude 99.483 103.796 -4.16% 
4 
Máximo 101.503 103.796 -2.21% 
Mínimo -101.503 -103.796 2.21% 
Amplitude 101.503 103.796 -2.21% 
5 
Máximo 102.395 103.796 -1.35% 
Mínimo -102.395 -103.796 1.35% 
Amplitude 102.395 103.796 -1.35% 
6 
Máximo 102.842 103.796 -0.92% 
Mínimo -102.842 -103.796 0.92% 
Amplitude 102.842 103.796 -0.92% 
Valores de máximo, mínimo e amplitude (além de respectivos erros) das forças 
hidrodinâmicas atuantes na direção z estão resumidos na Tabela 4.6. 
46 
 
Tabela 4.6 – Forças emz: máximos, mínimos e amplitudes 
narestas Forças Hidrodinâmicas Painéis (kN) Mathcad (kN) Erro (%) 
3 
Máximo 117.92 113.34 4.04% 
Mínimo -95.36 -91.58 -4.12% 
Amplitude 106.64 102.46 4.08% 
4 
Máximo 118.49 113.34 4.55% 
Mínimo -95.42 -91.58 -4.19% 
Amplitude 106.95 102.46 4.39% 
5 
Máximo 118.64 113.34 4.68% 
Mínimo -95.42 -91.58 -4.19% 
Amplitude 107.03 102.46 4.46% 
6 
Máximo 114.24 113.34 0.80% 
Mínimo -92.32 -91.58 -0.80% 
Amplitude 103.28 102.46 0.80% 
Após o exposto, nota-se que os critérios para arestas �������� < 
�
9� e �������� <
 � 19� dos elementos da malha conduziram, como esperado, a erros menores que 5% e 
1%. Pode-se observar também uma possível inconsistência nos erros na Tabela 4.6, que 
estão aumentando conforme melhora na discretização. Isso ocorre devido à correção no 
raio do semicilindro, feita incialmente com intuito de corrigir erros no cálculo do empuxo 
do corpo. A Tabela 4.7 mostra que os erros seguiriam a tendência de queda caso a 
correção no raio não fosse realizada. 
47 
 
Tabela 4.7 – Forças em z: máximos, mínimos e amplitudes 
narestas Forças Hidrodinâmicas Painéis (kN) Mathcad (kN) Erro (%) 
3 
Máximo 95.78 113.34 -15.49% 
Mínimo -77.31 -91.58 15.59% 
Amplitude 86.55 102.46 -15.53% 
4 
Máximo 105.54 113.34 -6.88% 
Mínimo -84.93 -91.58 7.27% 
Amplitude 95.23 102.46 -7.05% 
5 
Máximo 110.22 113.34 -2.75% 
Mínimo -88.61 -91.58 3.24% 
Amplitude 99.42 102.46 -2.97% 
6 
Máximo 112.83 113.34 -0.45% 
Mínimo -90.66 -91.58 1.00% 
Amplitude 101.75 102.46 -0.70% 
Na Tabela 4.8, tomando como referência o semicilindro com �������� = 3, foram 
obtidas porcentagens indicando aumento ou decréscimo de número de painéis, tempo de 
processamento e erros na amplitude da força hidrodinâmica atuando verticalmente. A 
partir dela, é possível perceber que uma malha com o quádruplo de elementos de 
superfície gera resultados com erro cinco vezes menor, às custas do triplo de tempo de 
processamento. 
Tabela 4.8 – Refinamento x Tempo de processamento x Erro 
narestas Triângulos % Tempo (s) % 
Erro amplitude 
Forca z (%) 
% 
3 26 - 0.33 - 4.08% - 
4 32 123% 0.34 103% 4.39% 108% 
5 38 146% 0.39 118% 4.46% 109% 
6 116 446% 0.92 279% 0.80% 20% 
48 
 
4.5 Cubo 
Seguindo com o estudo da relação de � �� obtidos nos itens anteriores (4.2 e 4.3), 
foram realizadas análises de forças hidrostáticas e hidrodinâmicas atuando em cubos 
fixos no espaço. As dimensões do corpo, assim como profundidade, lâmina d’água, etc. 
podem estão listados a seguir e podem ser observadas na Figura 4.10. 
 Período T da onda: 6.00 s 
 Amplitude A da onda: 1.00 m 
 Comprimento de onda λ: 56.18 m (obtido com auxílio de código 
desenvolvido no Mathcad) 
 Aresta do cubo: 10.00 m 
 Coordenada z da base do cubo: -15.00 m 
 
 
(a) – 3D (b) – 2D 
Figura 4.13 – Modelo esquemático de um cubo fixo no espaço submetido a 
passagem de onda regular 
49 
 
Neste caso, o estudo de refinamento levou em conta o número de divisões ndiv nas 
arestas do cubo (Tabela 4.9), nos quais os modelos com 1 divisão e 2 divisões atendem 
ao critério de arestas �������� < 
�
9� e o modelo com 3 divisões atende ao 
critério �������� < 
�
19� . 
Tabela 4.9 – Discretização da superfície do cubo 
1 divisão 
 
�������� =
10 �
2
= 5� < 
�
9
= 6.24� 
2 divisões 
 
�������� =
10 �
3
= 3.33� < 
�
9
= 6.24� 
3 divisões 
 
�������� =
10 �
4
= 2.5� < 
�
19
= 2.96� 
50 
 
Foram então realizadas análises dinâmicas com tempo total de 100.00 s e intervalo 
de integração de 0.10 s e, como esperado, os valores obtidos de força hidrostáticas 
apresentaram boa acurácia posto que, independentemente do número de divisões, a 
superfície gerada representa fielmente o volume do cubo. Tais resultados podem ser 
observados na Tabela 4.10: 
Tabela 4.10 – Forças de empuxo no cubo 
Divisões Empuxo (kN) Mathcad (kN) Erro (%) 
1 10051.82 10051.82 0.000% 
2 10051.82 10051.82 0.000% 
3 10051.82 10051.82 0.000% 
A seguir, são expostos trechos das séries temporais das forças hidrodinâmicas 
atuando em x (Figura 4.14) e z (Figura 4.15) obtidas pelo Mathcad, pelo modelo menos 
refinado (���� = 1) e pelo modelo mais refinado (���� = 3). 
 
Figura 4.14 – Trecho de série temporal de forças atuando horizontalmente no cubo 
51 
 
 
Figura 4.15 – Trecho de série temporal de forças atuando verticalmente no cubo 
Os valores de máximo, mínimo e amplitude (além de respectivos erros) das forças 
hidrodinâmicas atuantes na direção da onda estão resumidos na Tabela 4.11. 
Tabela 4.11 – Forças em x: máximos, mínimos e amplitudes 
Divisões Forças Hidrodinâmicas Painéis (kN) Mathcad (kN) Erro (%) 
1 
Máximo 383.24 373.71 2.55% 
Mínimo -383.24 -373.71 -2.55% 
Amplitude 383.24 373.71 2.55% 
2 
Máximo 377.86 373.71 1.11% 
Mínimo -377.86 -373.71 -1.11% 
Amplitude 377.86 373.71 1.11% 
3 
Máximo 375.97 373.71 0.60% 
Mínimo -375.97 -373.71 -0.60% 
Amplitude 375.97 373.71 0.60% 
Valores de máximo, mínimo e amplitude (além de respectivos erros) das forças 
hidrodinâmicas atuantes na direção z estão resumidos na Tabela 4.12. 
52 
 
Tabela 4.12 – Forças em z: máximos, mínimos e amplitudes 
Divisões Forças Hidrodinâmicas Painéis (kN) Mathcad (kN) Erro (%) 
1 
Máximo 396.68 408.26 -2.84% 
Mínimo -322.21 -330.08 2.38% 
Amplitude 359.45 369.17 -2.63% 
2 
Máximo 403.16 408.26 -1.25% 
Mínimo -326.60 -330.08 1.05% 
Amplitude 364.88 369.17 -1.16% 
3 
Máximo 405.41 408.26 -0.70% 
Mínimo -328.14 -330.08 0.59% 
Amplitude 366.77 369.17 -0.65% 
Após o exposto, nota-se que os critérios para arestas �������� < 
�
9� e �������� <
 � 19� dos elementos da malha conduziram, como esperado, a erros menores que 5% e 
1%. 
Na Tabela 4.13, tomando como referência a superfície do cubo com 1 divisão, foram 
obtidas porcentagens indicando aumento ou decréscimo de número de painéis, tempo de 
processamento e erros na amplitude da força hidrodinâmica atuando verticalmente. A 
partir dela, é possível perceber que uma malha com o quádruplo de elementos de 
superfície gera resultados com erro quatro vezes menor, às custas do dobro de tempo de 
processamento. 
Tabela 4.13 – Refinamento x Tempo de processamento x Erro 
Divisões Triângulos % Tempo (s) % 
Erro amplitude 
Forca z (%) 
% 
1 48 - 0.58 - 2.63 - 
2 108 225% 0.77 133% 1.16 44% 
3 192 400% 1.20 207% 0.65 25% 
53 
 
4.6 Cilindro 
Dando sequência no estudo dos resultados de � �� obtidos nos itens anteriores (4.2 e 
4.3), foram realizadas análises de forças hidrostáticas e hidrodinâmicas atuando em 
cilindros fixos no espaço. As dimensões do corpo, assim como profundidade, lâmina 
d’água etc. estão listados a seguir e podem ser observadas na Figura 4.10. 
 Período T da onda: 6.00 s 
 Amplitude A da onda: 1.00 m 
 Comprimento de onda λ: 56.18 m (obtido com auxílio de código 
desenvolvido no Mathcad) 
 Raio teórico do cilindro: 5.00 m 
 Altura do cilindro: 10.00 m 
 Coordenada z da base do cilindro: -15.00 m 
 
 
(a) – 2D (b) – 3D 
Figura 4.16 – Modelo esquemático de um cilindro fixo no espaço submetido a 
passagem de onda regular 
54 
 
Assim como em 4.6, a fim de corrigir erros introduzidos pela discretização da malha 
no volume do corpo submerso, foram realizadas correções nos raios dos cilindros gerados 
de acordo com o número narestas de arestas do perímetro, conforme Tabela 4.14. A partir 
das correções, garante-se que as forças hidrostáticas (que dependem do volume 
submerso) sejam iguais às atuantes num cilindro com volume � = ���� . 
Tabela 4.14 – Raio corrigido em função do número de lados do polígono regular 
narestas Raio corrigido (m) 
6 
 
8 
 
10 
 
12 
 
55 
 
Feitas as correções nos volumes, foram efetuadas análises dinâmicas de 100 s com 
intervalo de integração de 0.10 s. Os modelos com narestas igual a 6, 8 e 10 respeitaram o 
critério de �������� < 
�
9� , e o modelo com narestas igual a 12 respeitou

Outros materiais