Prévia do material em texto
Dada a integral indefinida , verifique que a função integranda é um produto entre uma função polinomial e a função seno. No entanto, sabemos que só é possível integrá-la pelo método por substituição de variável se conseguirmos fazer uma escolha adequada. Nesse sentido, resolva a integral e assinale a alternativa correta. Atividade 4 (A4): Revisão da tentativa https://ambienteacademico.com.br/mod/quiz/review.php?attempt=42... 1 of 8 15/05/2024, 20:35 Uma partícula move-se em uma linha reta, segundo a equação horária do movimento em metros, em segundos, velocidade instantânea e aceleração . Conhecendo-se a função velocidade, é possível determinar as funções espaço-tempo (s) e a função aceleração por meio do cálculo diferencial e integral. Nesse contexto, considere a função e seu gráfico como suporte (figura a seguir) e analise as afirmativas a seguir. Fonte: Elaborada pela autora. I. Sabendo que e quando , a equação de s em função do tempo é dada por . II. O deslocamento da partícula é igual entre o tempo e , se, para , é igual a integral III. A função aceleração da partícula no instante inicial é igual a . .IV. A distância percorrida pela partícula é igual ao seu deslocamento entre os instantes e , em que . É correto o que se afirma em: Atividade 4 (A4): Revisão da tentativa https://ambienteacademico.com.br/mod/quiz/review.php?attempt=42... 2 of 8 15/05/2024, 20:35 O conceito da primitiva de uma função está interligado à definição de integral indefinida, assim como ao conceito de derivada de uma função. A integral indefinida de uma função é igual a uma família de primitivas. Apenas usando esse conceito é possível determinar a função integranda. Assim, considere as função e , contínuas, e analise suas derivadas ou integrais em relação à variável x. Nesse contexto, analise as asserções a seguir e a relação proposta entre elas. I. é primitiva da função . Pois: II. . A seguir, assinale a alternativa correta. O método de integração por partes é aplicado principalmente quando a função integranda é composta de produtos de funções distintas, como, por exemplo, a integral . Para resolver essa integral, utilizam-se as variáveis como suporte para reescrevermos a integral da seguinte forma: . Nesse sentido, resolva a integral e assinale a alternativa correta. Atividade 4 (A4): Revisão da tentativa https://ambienteacademico.com.br/mod/quiz/review.php?attempt=42... 3 of 8 15/05/2024, 20:35 O cálculo de área de regiões planas é possível por meio do cálculo integral definido. Entre as regiões, podemos encontrar o valor exato da área de regiões limitadas por duas curvas, como, por exemplo, a região limitada simultaneamente pelas curvas e . Nesse sentido, encontre a área proposta, usando como suporte o gráfico da figura a seguir, e assinale a alternativa correta. Figura 4.1 - Região limitada pelas funções e Fonte: Elaborada pela autora. Atividade 4 (A4): Revisão da tentativa https://ambienteacademico.com.br/mod/quiz/review.php?attempt=42... 4 of 8 15/05/2024, 20:35 Considere o gráfico da função , mostrado na figura abaixo, que servirá de suporte para resolução da questão. Verifique a região sombreada no gráfico e determine os pontos de interseção do gráfico da função com o eixo x. Avalie também de que forma é possível calcular a área limitada por integração. Figura 4.3 - Região limitada pela função e o eixo x Fonte: Elaborada pela autora. Considerando o contexto apresentado, sobre cálculo de área e integrais definidas, analise as afirmativas a seguir. I. A integral definida . II. A área hachurada no gráfico abaixo do eixo x é igual a III. Os pontos de interseção da curva e o eixo x são . IV. A área limitada pela curva e o eixo x ao 1º quadrante é igual a u.a. É correto o que se afirma em: Atividade 4 (A4): Revisão da tentativa https://ambienteacademico.com.br/mod/quiz/review.php?attempt=42... 5 of 8 15/05/2024, 20:35 Segundo a terceira lei de Newton, quaisquer dois objetos exercem uma atração gravitacional um sobre o outro de igual valor e sentido oposto. A velocidade mínima necessária para que um objeto escape da força gravitacional da Terra é obtida da solução da equação Nesse contexto, analise as afirmativas a seguir. I. Integrando-se ambos os lados da equação eq. 1 e adicionando a constante arbitrária no lado direito, obtemos . II. Considerando (raio da terra) e , obtemos a equação . III. A velocidade pode ser escrita como , em que C é uma constante arbitrária. IV. Derivando-se a função velocidade, encontra-se a função espaço-tempo É correto o que se afirma em: Para resolver a integral , é necessário aplicar o método de integração por partes. Nesse caso, devemos resolver a integral por meio da fórmula: , em que uma das partes é nomeada e a outra parte, . Nesse sentido, faça as escolhas adequadas, resolva a integral e assinale a alternativa correta. Atividade 4 (A4): Revisão da tentativa https://ambienteacademico.com.br/mod/quiz/review.php?attempt=42... 6 of 8 15/05/2024, 20:35 O conceito da primitiva de uma função explica a definição da integral de uma função. Portanto, conhecendo-se a primitiva de uma função, é possível determinar qual a função que se deseja integrar. Seja uma primitiva de uma função , se , determine a função integranda e assinale a alternativa correta. O deslocamento depende apenas das condições finais e iniciais de uma partícula em movimento, pois o deslocamento é a medida da linha reta que une a posição inicial e a posição final em que a partícula se encontra nesses instantes. Portanto, o valor do deslocamento só depende dessas posições, não depende da trajetória. Tomando-se como base essa informação, resolva a situação problema a seguir. Considere a função velocidade de um ponto material que se desloca ao longo de uma reta, em que a velocidade é expressa em metros por segundo e o tempo em segundos. A condição inicial do espaço-tempo é . Com essas informações e o gráfico da figura a seguir, analise as asserções e a relação proposta entre elas. Fonte: Elaborada pela autora. I. O deslocamento do ponto material do tempo inicial até é igual a - 60 m Pois: II. O deslocamento é igual a integral a A seguir, assinale a alternativa correta. Atividade 4 (A4): Revisão da tentativa https://ambienteacademico.com.br/mod/quiz/review.php?attempt=42... 7 of 8 15/05/2024, 20:35 ◄ ► Atividade 4 (A4): Revisão da tentativa https://ambienteacademico.com.br/mod/quiz/review.php?attempt=42... 8 of 8 15/05/2024, 20:35