Prévia do material em texto
rificação de Conceitos e um Teste de Verdadeiro ou Falso. Outros exercícios testam a com- preensão de conceitos através de gráficos ou tabelas (consulte os Exercícios 2.7.17, 2.8.35– 40, 2.8.43–46, 9.1.11–13, 10.1.24–27, 11.10.2, 13.2.1–2, 13.3.33–39, 14.1.1–2, 14.1.32–42, 14.3.3–10, 14.6.1–2, 14.7.3–4, 15.1.5–10, 16.1.11–18, 16.2.17–18 e 16.3.1–2). Outro tipo de exercício utiliza a descrição verbal para testar a compreensão de conceitos (consulte os Exercícios 2.5.10, 2.8.58, 4.3.63–64 e 7.8.67). Eu particularmente valorizo pro- blemas que combinam e comparam abordagens gráficas, numéricas e algébricas (consulte os Exercícios 2.6.39-40, 3.7.27 e 9.4.2). EXERCÍCIOS COM DIFICULDADE PROGRESSIVA Cada grupo de exercícios é cuidadosamente clas- sificado, progredindo de exercícios conceituais básicos e problemas que visam ao desenvolvi- mento de habilidades, até problemas mais desafiadores, envolvendo demonstrações e aplicações. DADOS REAIS Eu e minha equipe nos empenhamos em pesquisar dados do mundo real em bi- bliotecas, empresas, órgãos governamentais e na Internet que pudessem apresentar, motivar e ilustrar os conceitos de cálculo. Por esse motivo, muitos exercícios e exemplos lidam com fun- ções definidas por tais dados numéricos ou gráficos. Eles podem ser vistos, por exemplo, na Figura 1 da Seção 1.1 (os sismogramas do terremoto de Northridge), ou no Exercício 2.8.36 (porcentagem da população acima dos 60 anos), Exercício 5.1.16 (velocidade do ônibus es- pacial Endeavour) ou na Figura 4 da Seção 5.4 (consumo de energia elétrica em São Francisco). Funções de duas variáveis são ilustradas por uma tabela de valores do índice de sensação tér- mica como uma função da temperatura do ar e da velocidade do vento (Exemplo 2 da Seção 14.1). Derivadas parciais são introduzidas na Seção 14.3, examinando uma coluna em uma ta- bela de valores do índice de conforto térmico (temperatura percebida do ar) como uma fun- ção da temperatura real e da umidade relativa. Este exemplo é aprofundado em conexão com aproximações lineares (Exemplo 3 da Seção 14.4). Derivadas direcionais são introduzidas na Seção 14.6 por meio de um mapa de contorno da temperatura para estimar a taxa de mudança da temperatura num trajeto para o leste a partir de Chongqing. Integrais duplas são usadas para estimar a precipitação de neve média no Colorado em 20-21 de dezembro de 2006 (Exemplo 4 da Seção 15.1). Campos vetoriais são introduzidos na Seção 16.1 por representações de cam- pos vetoriais de velocidade real mostrando os padrões do vento da Baía de São Francisco. PROJETOS Uma maneira de despertar o interesse dos alunos – e facilitar a aprendizagem – é fazer com que trabalhem (às vezes em grupos) em projetos mais aprofundados, que transmi- tam um verdadeiro sentimento de realização quando completados. Incluí quatro tipos de pro- jetos: os Projetos Aplicados visam despertar a imaginação dos estudantes. O projeto após a Seção 9.3 pergunta se uma bola arremessada para cima demora mais para atingir sua altura má- xima ou para cair de volta a sua altura original (a resposta pode surpreendê-lo). O projeto após a Seção 14.8 utiliza os multiplicadores de Lagrange para determinar as massas dos três está- gios de um foguete de modo a minimizar a massa total ao mesmo tempo permitindo que o fo- guete atinja a velocidade desejada. Os Projetos de Laboratório envolvem tecnologia. O pro- jeto subsequente à Seção 10.2 mostra como usar as curvas de Bézier para desenhar formas que representem letras para uma impressora a laser. Os Projetos Escritos exigem que os estudan- tes comparem os métodos atuais àqueles desenvolvidos pelos fundadores do cálculo – por exemplo, o método criado por Fermat para encontrar as tangentes. Algumas referências são dadas sobre o assunto. Os Projetos de Descoberta antecipam resultados a serem discutidos pos- teriormente ou incentivam a descoberta por meio do reconhecimento de padrões (consulte o projeto após a Seção 7.6). Outros exploram os aspectos da geometria: tetraedros (após a Se- ção 12.4), hiperesferas (após a Seção 15.7) e interseções de três cilindros (após a Seção 15.8). Projetos adicionais podem ser encontrados no Manual do Professor (consulte, por exemplo, o Exercício em Grupo 5.1: Posição de Amostras). O Manual do Professor está disponível, em inglês, na Trilha. RESOLUÇÃO DE PROBLEMAS Os estudantes normalmente têm mais dificuldades naqueles pro- blemas em que não há um único procedimento para se chegar à solução. Acredito que não ocor- reram muitos avanços na área de resolução de problemas após a estratégia em quatro estágios proposta por George Polya. Inseri, portanto, uma versão dessa estratégia após o Capítulo 1. Esse método é utilizado explícita e implicitamente em todo o livro. Depois dos demais capí- tulos, incluí seções denominadas Problemas Quentes, apresentando exemplos de como lidar com problemas de cálculo mais desafiadores. Ao selecionar os diversos problemas nessas se- ções, tentei seguir o conselho dado por David Hilbert: “Um problema matemático deve ser di- PREFÁCIO XI Calculo00vol.II-prefaciais:calculo7 6/10/13 11:04 AM Page XI