Buscar

unidade2 02 elipses

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 3 páginas

Prévia do material em texto

INTRODUÇÃO À FÍSICA A – CMT 
 
UNIDADE 2 - 7 
 
Texto complementar – Cônicas: A elipse 
 
A elipse é uma das curvas cônicas – uma curva que é obtida através da interseção de um cone 
com um plano. Como indicado na Figura 1, quando uma superfície cônica é interceptada por um 
plano cuja direção é tal que a sua normal faz um ângulo α com o eixo de simetria tal que α > 0 e 
α < θ (o ângulo entre a geratriz da superfície cônica e o eixo), a linha correspondente à 
interseção das duas superfícies é uma elipse. (Se o plano for colocado com outras inclinações, 
podemos gerar as demais curvas cônicas: a parábola e a hipérbole; o círculo é um caso particular 
em que a direção do plano é perpendicular ao eixo de simetria). 
 
Figura 1 – a elipse como interseção da superfície de um cone com um plano 
 
 
 
A elipse também é a curva num plano definida como o lugar geométrico dos pontos cuja 
soma das distâncias a dois pontos fixos – os focos – é constante. 
Vamos agora trabalhar com as propriedades da elipse. 
Separe duas tachinhas (de prender papel em quadros de cortiça) ou dois alfinetes, um 
pedaço de barbante, um lápis, uma régua e uma folha de papel. 
Trace no papel, com a régua, um segmento de reta de cerca de 20 cm. Marque o extremo 
desses segmentos com as letras F e F’ – os focos da elipse. 
Prenda no papel as duas tachinhas (ou alfinetes) nos dois extremos do segmento traçado, 
os pontos F e F’. 
Pegue um pedaço de barbante com cerca de 40 cm. Faça dois nós em suas extremidades e 
prenda esses dois nós às tachinhas, como mostra a Figura 2a. 
Figura 2 
(a) (b) 
PLANO
direção perpendicular
ao plano
eixo de simetria
CONE
θ
F 'F F 'F
 
INTRODUÇÃO À FÍSICA A – CMT 
 
UNIDADE 2 - 8 
 
Com um lápis, estique o fio, como mostra a Figura 2b. Agora trace com o lápis uma 
volta completa, mantendo o barbante esticado. 
A figura que você traçou é uma elipse. Como o barbante tem comprimento fixo, a soma 
dos comprimentos de qualquer ponto da linha que você traçou aos pontos F e F’ é constante. 
 Na Figura 3 representamos a elipse desenhada por você. Chamamos o tamanho do semi-
eixo maior de a, o tamanho do semi-eixo menor de b e a distância entre o centro geométrico da 
elipse e cada um dos focos de c, também chamada distância focal. 
Figura 3 
 
Observe a Figura 4. A distância OA vale a, a distância OB vale b e a distância OF vale c. 
Agora lembre-se do fio de barbante. Coloque o lápis no ponto A. O tamanho do fio vale 
a)ca()ca(A'FFA 2=++−=+=l 
Figura 4 
F∗A
B
O• •
•
∗'F
 
Então o tamanho do eixo maior da elipse é o comprimento do fio: l = 2a. 
 Se considerarmos agora o lápis no ponto B, podemos escrever para o comprimento do fio 
(que já sabemos que vale 2a) 
FBB'FFBa 22 =+==l 
pois os triângulos FBO e F'BO são congruentes. 
 
F 'F∗ ∗
a2
b2
c2
a = semi-eixo maior 
b = semi-eixo menor 
c = distância focal 
INTRODUÇÃO À FÍSICA A – CMT 
 
UNIDADE 2 - 9 
 
O triângulo FOB é retângulo, como mostra a Figura 5, e seus lados valem a, b e c, e 
portanto 
222 cba += 
Figura 5 
A excentricidade de uma elipse é definida como sendo 
a/c=ε 
Esta excentricidade assume um valor entre 0 e 1. Se ε=0, isto é, c=0, temos que b=a e a elipse 
reduz-se a um círculo. Se ε=1, b=0 e a elipse reduz-se a um segmento de reta. Os valores 
intermediários correspondem a elipses: quanto mais próximo de 1 o valor da excentricidade, 
mais achatada é a elipse. 
 
Exercícios 1 
a) Trace uma elipse de excentricidade 1. 
b) Trace uma elipse de excentricidade 0,5. 
c) Trace uma elipse de excentricidade 0,1. 
d) Com os valores da excentricidade da órbita da Terra em torno do Sol (0,02) e o tamanho do 
semi-eixo maior dessa órbita (1 UA = 1,5 x 108 km). Trace, em papel milimetrado e em escala, 
uma órbita elíptica com essa excentricidade. 
Trace agora um círculo, em outra cor, com raio igual ao semi-eixo maior da órbita. Olhe para os 
dois traçados e verifique se você consegue distingui-los. A partir daí, você acha razoável 
considerar que a órbita da Terra é uma órbita circular? 
Exercícios 2 
Considere um sistema de coordenadas fixo ao centro O da elipse (veja a figura). Obtenha, a 
partir da definição da elipse (lugar geométrico) a equação que descreve os pontos que pertencem 
a ela: 1
b
y
a
x
2
2
2
2
=+ 
O
x
y
)y,x(
F'F
 
 
F
∗
B
O•
•
∗
'F
a b
c

Outros materiais