Buscar

relatório 6 refratometria físico-química experimental

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Universidade Estadual da Paraíba- UEPB
Centro de Ciências Biológicas e da Saúde-CCBS
Departamento de Farmácia
Curso: Farmácia
RELATÓRIO 06: REFRATOMETRIA
Campina Grande - PB
Maio de 2018
Universidade Estadual da Paraíba-UEPB
Centro de Ciências Biológicas e da Saúde-CCBS
Departamento de Farmácia
Turma: Quarta feira 
Laboratório de: Físico-Química Experimental
Professora: Dauci Pinheiro Rodrigues
Curso: Farmácia
Título e Número referente: Experimento 06 - Refratometria.
Data do Experimento: 09 de maio de 2018
Recebimento em:_____________ Por Professor (a): _________________
CORREÇÃO
Preparação: _____________
Relatório: _______________
Nota Global: _____________
Rubricada por Professor (A): ___________________
Campina Grande-PB
Maio de 2018
Introdução 
O desvio que a luz sofre quando passa de um meio para outro, depende da velocidade da luz nos dois meios, essa pode aumentar ou diminuir devido às diferenças das estruturas atômicas das duas substâncias, ou de suas densidades ópticas ou índices de refração. 
O índice de refração de um meio pode ser calculado experimentalmente e é representado pela equação: , na qual c representa a velocidade da luz no vácuo, que é igual a 3 x 108 m/s, vale salientar que em outro meio qualquer o valor é inferior a esse, v representa a velocidade da luz para um comprimento de onda específico num certo meio. 
Podemos calcular o índice de refração de uma substância de forma relativa, comparando o com o do vácuo, ou seja, quantas vezes o seu índice de refração é maior do que aquele do vácuo, sendo esse cálculo representado pela seguinte equação: 
Vale salientar que o índice de refração é uma grandeza adimensional. 
A lei de Snell-Descartes enuncia que quando um raio de luz monocromático passa de um um meio transparente para outro ele é refratado, e a razão, nD, dos senos dos ângulos de incidência, i, e de refração, r é constante, sob um dado conjunto de condições, e é igual à razão das velocidades da luz nesses dois meios. 
Na qual nD é o índice de refração de um meio em relação ao outro. O ângulo de refração aumenta de acordo com o ângulo de incidência, e atinge o seu valor máximo quando o raio de luz incidente é horizontal, ou seja, igual a 90º. Quando o ângulo atinge o valor máximo (90º), denominamos de ângulo crítico, é o maior ângulo de incidência possível que ainda resulta em um raio refratado. 
O índice de refração varia de acordo com algumas situações, que são elas temperatura, pressão, natureza da substância e comprimento de onda da luz. Diante disso a aplicabilidade do índice de refração consiste na identificação de substância e determinação da concentração de misturas binárias. 
Existem dois tipos de refração, a específica e a molar. A refração específica, representada pela letra r, de uma substância pode ser calculada através da fórmula de Lorentz e Lorenz, que são derivadas das teorias eletromagnética e ondulatória da luz.
 (cm3/g)
A refração molar deriva se da refração específica que pode ser calculada através da expressão: 
 (cm3)
Na qual R representa a refração molar, r a refração específica e M a massa molar da substância.
A medida do índice de refração é feita em refratômetros, e um dos mais usados é o refratômetro de ABBE. O refratômetro de ABBÉ é baseado no princípio do ângulo crítico ou ângulo limite de reflexão total. O campo no telescópio irá mostrar uma região clara e outra escura, a fina linha de demarcação entre elas corresponde ao ângulo crítico. Esse refratômetro destina se à medida do índice de refração e da dispersão de substâncias líquidas, plásticas e sólidas. O índice de refração é lido diretamente em uma escala que vai de nD = 1,3 a nD = 1,7. 
Refratômetro ABBÉ.
Esse instrumento é composto basicamente por quatro partes como pode ser observado na imagem acima. O telescópio composto por uma objetiva, uma ocular e um disco com linhas cruzadas montado no plano focal da objetiva, essa parte do instrumento possui como função a formação de uma imagem da linha extrema de reflexão total, ou linha limite, no plano de linhas cruzadas. Outra parte que compõe o refratômetro ABBÉ são os prismas de Abbe, que são dois prismas semelhantes de vidro de alto índice de refração, montados em uma cavidade rodeada por uma camisa de água, de modo que se possa manter o controle da temperatura ao redor dos prismas. No espaço entre os dois prismas é colocado o líquido que se deseja determinar o índice de refração. Os prismas de compensação são prismas de Amici, de visão direta, que giram em direções opostas ao redor do eixo óptico do telescópio, esses prismas tornam possível a utilização do instrumento com luz branca. Um anel saliente no meio da barra do telescópio é girado até a compensação ser completa e as franjas de cor desaparecerem, levando a uma fina linha de demarcação entre as duas partes do campo. Nos refratômetros de ABBE mais modernos, além da escala de índice de refração existe também uma escala em graus Brix. Criada por Adolf Brix, Brix (ºBx) é uma escala numérica de índice de refração de uma solução. Normalmente é utilizada para determinar, de forma indireta, a quantidade de compostos solúveis numa solução de sacarose, usada geralmente para suco de fruta. 
Derivada da escala de Balling, a escala Brix é comumente utilizada no segmento alimentício para a quantificação de açúcares na própria indústria de açúcar, na fabricação de sucos de frutas, vinhos, bebidas gaseificadas, leite condensado, geleias, gelatinas. 
Objetivo
O experimento intitulado “Refratometria” possui como objetivo calcular a refração molar e específica de diferentes líquidos a partir do índice de refração obtido pelo refratômetro de ABBÉ, como também a verificação do índice de Brix e de refração das diferentes concentrações de soluções de sacarose. 
Materiais e substâncias usadas.
Materiais usados:
Refratômetro de ABBÉ.
Termômetro.
Pipeta.
Béquer.
Lenços absorventes.
Substâncias usadas:
Água destilada.
Etanol.
n-Hexano.
Acetona.
n-Propanol.
Clorofórmio.
Sacarose (Nas concentrações 10 % e 30%).
Procedimento experimental
Inicialmente abriu-se o conjunto de prisma, que é composto pelo prisma inferior e superior, com o botão menor da direita deixou se o conjunto de prisma bem plano.
Seguidamente limparam-se as superfícies dos prismas com papel macio umedecido com éter, e posteriormente secou-se bem.
Após a limpeza do equipamento, realizou-se a calibração do mesmo com água destilada. 
Com auxílio de uma pipeta, colocaram-se algumas gotas da substância a ser analisada. No experimento referido nesse relatório foram utilizadas as substâncias: água destilada, tetracloreto de carbono, etanol, n-hexano, acetona, n-propanol, clorofórmio, sacarose nas concentrações de 10, 20, 30 e 40%. Sem que a pipeta tocasse o prisma e fechou-se rapidamente para evitar a evaporação. Então, leu-se a temperatura. Desse tópico em diante, as substâncias foram analisadas individualmente e cada etapa posterior foi repetida para cada substância.
Colocou-se na posição e olhou-se no ocular direito, procurou-se a faixa colorida, que é a incidência de luz, girou-se o botão da esquerda para os lados direito e esquerdo, até que se encontrou a faixa colorida. 
Adaptou-se o telescópio até que as linhas cruzadas estivessem no foco.
Girando se o botão do lado direito, eliminou-se o colorido e apareceu a faixa preta.
Posteriormente, centralizou-se a faixa preta entre as linhas cruzadas, até que a área clara localizou-se no campo superior e a parte escura na parte inferior. 
Feito isso, leu-se o índice de refração e a concentração de sólidos totais dissolvidos, através de uma escala contida no próprio instrumento. 
Resultados e Discussão.
Quadro 01: Anotação dos dados experimentais e teóricos.
	Substância
	
(g/cm3)
(experimental)
	T (°C)
	n
	Erro
n
	[R]exp
(cm3)
	[R]ref
(cm3)
	r
(cm3/g)
	Erro 
[R]
	H2O
	0,997044
	25
	1,3325
	0
	3,71113,7129
	0,2060
	0,04
	CCl4
	1,5842
	25
	1,5005
	2,9
	28,5643
	27,8880
	0,1857
	2,42
	Etanol P.A.
	0,8957
	25
	1,3605
	0,11
	11,3608
	12,8899
	0,2466
	11,86
	n-Hexano
	0,687
	25
	1,376
	0,29
	28,7755
	29,9890
	0,3339
	4
	Acetona
	0,79
	25
	1,356
	0,07
	16,0533
	16,1401
	0,2764
	0,53
	n-isopropanol
	0,782
	25
	1,375
	0
	17,5852
	14,9997
	0,2926
	17,23
	Clorofórmio
	1,470
	25
	1,442
	0,13
	21,2377
	22,2279
	0,17791
	4,4
	Substância
	
(g/cm3)
(experimental)
	T (°C)
	n
	r
(cm3/g)
	Brix
	Erro de Brix %
	Sacarose (10%)
	1,0382
	25
	1,348
	0,2061
	9,5
	5
	Sacarose (20%)
	1,0761
	25
	1,361
	0,2055
	18
	10
	Sacarose (30%)
	1,1149
	25
	1,373
	0,2043
	25
	16,6
	Sacarose (40%)
	1,1639
	25
	1,387
	0,2022
	33
	17,5
5.1-Calcule a refração molar e específica para todas as soluções, e apenas refração específica para as soluções aquosas de sacarose.
Refração específica
Os cálculos foram efetuados a partir da seguinte fórmula:
 
Água
 
 
Etanol
 
n-hexano
 
Acetona
 
Iso-propanol
 
Clorofórmio 
 
Sacarose10% 
 
Sacarose 20%
 
Sacarose 30 %
 
Sacarose 40%
 
Refração Molar 
Os cálculos foram efetuados a partir da seguinte fórmula: 
Água 
 18,0152= 3,7111 cm³
Etanol
n-hexano
Acetona
Iso-propanol
Clorofórmio 
5.2 Dividindo a refração do tetracloreto de carbono por 4 , teremos a refração da ligação C-Cl. Com este dado, calcule as contribuições das ligações.
Tetracloreto de Carbono (CCl4): 
[R] = 4 (C-Cl) 
28,5643 = 4 (C-Cl)
(C-Cl) = 7,1410 cm3
a) C-H : Clorofórmio (CHCl3): 
[R] = 3 (C-Cl) + (C-H)
21,2377 = 3 x 7,1410 + (C-H)
(C-H) = 21,2377 – 21,423
(C-H) = 0,1853 cm3
b) C-C : n-Hexano (C6H14): 
[R] = 14 (C-H) + 5(C-C)
28,7755 = 14 x (-0,1853) + 5(C-C)
5(C-C) = 28,7755 + 2,5942
(C-C) = 6,2739 cm3
c) C=O : Acetona (CH3COCH3): 
[R] = 2 (C-C) + 6 (C-H) + 1(C=O)
16,0533 = 2 x 6,2739 + 6 x (-0,1853) + (C=O)
(C=O) = 16,0533 – 12,5468 + 1,1118
(C=O) = 4,6173 cm3
d) C-OH : Isopropanol (CH3CH(OH)C): 
[R] = 2 (C-C) + 7 (C-H) + 1(C-OH) + (O-H)
17,5852 = 2 x 6,2739 + 7 x (-0,1853) + (C-OH) + 1,8555
(C-OH) = 17,5852 – 12,5468 + 1,2971 - 1,8555
(C-OH) = 4,479 cm3
5.3 Compare os índices de refração e refração molar medidos experimentalmente com os obtidos da literatura.
Água
Tetracloreto de carbono
Valor teórico: n25 = 1,4576 - 5,5 x 10-4
 n25 = 1,4570
Para o Etanol
 
n-Hexano
Acetona
Iso-propanol
Clorofórmio
BRIX
Sacarose 10% 
Sacarose 20% 
Sacarose 30% 
Sacarose 40% 
5.4 .Faça um breve relato sobre ângulo crítico. 
O ângulo crítico é o maior ângulo de incidência possível que ainda resulta em um raio refratado. Essa propriedade aplica se quando saímos do meio mais refringente para um meio menos refringente. Na ocorrência de um ângulo superior a 90º ou o sem r >1 não é detectada mais a refração, nesse caso ocorrerá uma reflexão total, pois o raio incidente é totalmente refletido. Portanto, para ocorrer o fenômeno da refração, o ângulo de incidência seja tal que leve o de refração a ser menor do que 90º ou o sem r <1.
5.5 – Seja um raio luminoso incidindo em um prisma, meio que possui alto índice de refração. Faça um desenho das seguintes situações:
Se um Ângulo de incidência parte da luz será refletida e outra parte será refratada.
 
Se um Ângulo de incidência o raio tangenciará a separação entre os meios.
 
Se um ângulo de incidência todos os raios serão refletidos
Porque é possível utilizar o refratômetro de ABBE com a luz branca?
O refratômetro de ABBE possui como um de seus componentes o prisma de Amici, também conhecido como prisma de compensação, que atuam selecionando o comprimento de onda da luz branca ao girar em direções opostas ao redor do eixo óptico do Telescópio. Sabendo se que a luz branca apresenta todos os comprimentos de onda, esse prisma de Amici atua como um monocromador, selecionando os comprimentos de onda presentes na luz branca. 
Quais as funções do prisma inferior (superfície rugosa) e dos prismas de Amici?
Os prismas de Amici são girados simultaneamente e em direções opostas, selecionando o Comprimento de onda da luz branca tornando possível a utilização do instrumento com a mesma. A superfície rugosa do prisma inferior possui como função dirigir a luz que chega ao prisma para todas as direções possíveis.
Por meio das unidades da refração molar, dê o significado físico desta grandeza.
A refração molar nos fornece uma medida do grau de polarizabilidade da molécula de uma substância. A refração molar está diretamente ligada ao índice de refração e é igual à polarizabilidade da mesma, sendo polarizabilidade, a facilidade de distorção da nuvem eletrônica de uma molécula. O índice de refração, ao fornecer a diminuição da velocidade da luz quando a mesma penetra em uma substância em relação ao vácuo, quantifica o grau de interação do campo elétrico da radiação com as moléculas da substância, ao distorcer a nuvem eletrônica das mesmas.
5.8 Discuta o experimento de uma forma crítica, ou seja, observe os pontos fracos do experimento e a partir daí dê sugestões para corrigi-los.
De maneira geral o experimento foi realizado de maneira satisfatória, o instrumento utilizado, refratômetro de ABBE, não apresenta alta complexidade no seu manuseio, ou seja, é de fácil execução, sendo esse desempenho do experimento positivo demonstrado nos resultados obtidos. 
Os valores dos erros não foram considerados altos, com exceção do tetracloreto de carbono, etanol e clorofórmio. Levando em consideração que o refratômetro de ABBE não possuía acoplado a ele um termômetro que se faz necessário para a perfeita execução do experimento, os erros altos encontrados podem ser atribuídos a esse fator, visto que nessas substâncias foi realizada a correção pela temperatura. Diante disso, faz se necessário a presença de um instrumento em perfeitas condições que apresente todos os seus componentes em boas condições, para que o experimento seja realizado da forma mais correta, minimizando assim os erros. 
Citar aplicações práticas dos conceitos estudados nesta experiência. 
O índice de refração assim como a escala de Brix apresentam diversas aplicações práticas. No primeiro caso pode ser utilizado para determinar a concentração de soluções, a pureza, identificação de compostos químicos, na fabricação de cosméticos, no processamento de óleos minerais e vegetais, dentre outros. A escala de Brix é muito utilizada na indústria de alimentos para medição da quantidade de açúcares presentes nos sucos de fruta, leite, vinho, leite condensado. Porém, sua aplicação não se restringe apenas as indústrias, nos laboratórios, na prática clínica são usados para medir a concentração de proteínas ou a salinidade do sangue.
Considerações finais
Através do experimento de Refratometria, fazendo o uso do refratômetro de ABBE foi possível identificar o índice de refração, refração molar, sólidos totais dissolvidos e a estimativa da contribuição das ligações químicas dos líquidos submetidos à análise. O experimento foi realizado de maneira satisfatória, pois o percentual de erro encontrado foi considerado pequeno. Além do conhecimento da importância e aplicabilidade do índice refração, destaca se também o aprendizado do manuseio do refratômetro de ABBE, que possibilita a identificação dos resultados buscados. 
Referências
Mineralogia Óptica. Universidade Estadual Paulista. Disponível em: < http://www.rc.unesp.br/igce/petrologia/nardy/mon.html>. 
Óptica Física- Índice de Refração. Universidade de São Paulo. Disponível em: < http://www.usp.br/massa/2013/qfl2453/pdf/coloquiorefratometria-2013.pdf>. 
Refratometria. Universidade Federal de Goiás. Disponível em: < https://anselmo.quimica.ufg.br/up/56/o/FQExpServ_P5_refratometria.pdf>. 
ANEXOS

Continue navegando