Buscar

Anatomia do coração.

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

O CORAÇÃO
TEXTO BASE PARA ESTUDO:
OBJETIVOS:
Descrever a localização do coração
Descrever a estrutura do pericárdio e da parede do coração
Discutir a anatomia (externa e interna) das câmaras do coração
Correlacionar a espessura das câmaras do coração com suas funções.
LOCALIZAÇÃO:
Aproximadamente 12 cm de comprimento e 9 cm de largura e 6 cm de espessura.
Peso: nas mulheres adultas cerca de 250 g e 300 g nos homens adultos.
Repousa sobre o diafragma, 
O coração encontra-se no mediastino, uma região anatômica que se estende do esterno à coluna vertebral, da primeira costela ao diafragma, e entre os pulmões.
= Observe a figura:
Você pode visualizar o coração como um cone deitado de lado. O ápice pontiagudo é formado pela ponta do ventrículo esquerdo (a câmara inferior do coração) e está situado sobre o diafragma. O ápice está direcionado para frente, para baixo e para a esquerda. A base do coração está do lado oposto ao ápice e constitui sua face posterior. É formada pelos átrios (câmaras superiores) do coração, principalmente o átrio esquerdo.
Pericárdio
Membrana que envolve e protege o coração é o pericárdio. 
Restringe o coração à sua posição no mediastino, possibilitando liberdade de movimento suficiente para a contração vigorosa e rápida. 
O pericárdio consiste em duas partes principais: (1) o pericárdio fibroso e (2) o pericárdio seroso, observe a figura abaixo.
O pericárdio fibroso, superficial, é composto por tecido conjuntivo inelástico, resistente, denso e irregular. Assemelha-se a uma bolsa que repousa sobre o diafragma, fixando-se nele; a extremidade aberta está fundida aos tecidos conjuntivos dos vasos sanguíneos que entram e saem do coração. 
O pericárdio fibroso impede a hiperdistensão do coração, fornece proteção e ancora o coração no mediastino. O pericárdio fibroso próximo ao ápice do coração está parcialmente fundido ao tendão central do diafragma; por conseguinte, o movimento do diafragma, como na respiração profunda, facilita a circulação do sangue pelo coração.
O pericárdio seroso, mais profundo, é uma membrana mais fina, delicada, que forma uma dupla camada em torno do coração.
A lâmina parietal do pericárdio seroso mais externa está fundida ao pericárdio fibroso. A lâmina visceral do pericárdio seroso mais interna, que também é chamada epicárdio, é uma das camadas da parede do coração e adere firmemente à sua superfície. 
Entre as camadas parietal e visceral do pericárdio seroso existe uma fina película de líquido seroso lubrificante. Esta secreção das células pericárdicas, conhecida como líquido pericárdico, reduz o atrito entre as camadas do pericárdio seroso conforme o coração se move. O espaço que contém os poucos mililitros de líquido pericárdico é chamado cavidade do pericárdio. É uma secreção lubrificante das células pericárdicas que reduz o atrito entre as membranas enquanto o coração se move. 
CAMADAS DA PAREDE DO CORAÇÃO
A parede do coração é constituída por três camadas): o epicárdio (camada externa), o miocárdio (camada intermediária) e o endocárdio (camada interna). O epicárdio é composto por duas camadas de tecido. A mais externa, como você acabou de ver, é chamada lâmina visceral do pericárdio seroso. Esta camada exterior fina e transparente da parede do coração é composta por mesotélio. Sob o mesotélio existe uma camada variável de tecido fibroelástico delicado e tecido adiposo. O tecido adiposo predomina e torna-se mais espesso sobre as faces ventriculares, onde abriga as principais artérias coronárias e vasos cardíacos. A quantidade de gordura varia de pessoa para pessoa, corresponde à extensão geral de gordura corporal em um indivíduo, e geralmente aumenta com a idade. O epicárdio confere uma textura lisa e escorregadia à face mais externa do coração. O epicárdio contém vasos sanguíneos, vasos linfáticos e vasos que irrigam o miocárdio.
A camada média, o miocárdio, é responsável pela ação de bombeamento do coração e é composto por tecido muscular cardíaco. Compõe aproximadamente 95% da parede do coração. As fibras musculares (células), como as do músculo estriado esquelético, são envolvidas e separadas em feixes por bainhas de tecido conjuntivo compostas por endomísio e perimísio. As fibras musculares cardíacas são organizadas em feixes que circundam diagonalmente o coração e produzem as fortes ações de bombeamento do coração. Embora seja estriado como o músculo esquelético, é preciso lembrar que o músculo cardíaco é involuntário como o músculo liso.
O endocárdio mais interno é uma fina camada de endotélio que recobre uma fina camada de tecido conjuntivo. Fornece um revestimento liso para as câmaras do coração e abrange as valvas cardíacas. O revestimento endotelial liso minimiza o atrito de superfície conforme o sangue passa através do coração. O endocárdio é contínuo ao revestimento endotelial dos grandes vasos sanguíneos ligados ao coração.
	
	CORRELAÇÃO CLÍNICA |
	Miocardite e endocardite
CAMARAS DO CORAÇÃO:
O coração tem quatro câmaras. As duas câmaras de recepção superiores são os átrios, e as duas câmaras de bombeamento inferiores são os ventrículos. O par de átrios recebe sangue dos vasos sanguíneos que retornam o sangue ao coração, as chamadas veias, enquanto os ventrículos ejetam o sangue do coração para vasos sanguíneos chamados artérias. Na face anterior de cada átrio existe uma estrutura saculiforme enrugada chamada aurícula, assim chamada por causa de sua semelhança com a orelha de um cão). Cada aurícula aumenta discretamente a capacidade de um átrio, de modo que ele possa conter maior volume de sangue. Também na superfície do coração existem vários sulcos, que contêm vasos sanguíneos coronarianos e uma quantidade variável de gordura. Cada sulco marca a fronteira externa entre duas câmaras do coração. O profundo sulco coronário circunda a maior parte do coração e marca a fronteira externa entre os átrios acima e os ventrículos abaixo. O sulco interventricular anterior é um sulco raso na face esternocostal do coração que marca a fronteira externa entre os ventrículos direito e esquerdo na face esternocostal do coração. Este sulco continua em torno da face posterior do coração como o sulco interventricular posterior, que marca a fronteira externa entre os ventrículos na face posterior do coração.
ATRIO DIREITO
O átrio direito forma a margem direita do coração e recebe sangue de três veias: a veia cava superior, a veia cava inferior e o seio coronário. As veias sempre levam o sangue para o coração.) O átrio direito tem cerca de 2 a 3 μm de espessura, em média. As paredes anterior e posterior do átrio direito são muito diferentes. O interior da parede posterior é liso; o interior da parede anterior é áspero, por causa de cristas musculares chamadas de músculos pectíneos, que também se estendem até a aurícula. Entre o átrio direito e o átrio esquerdo existe uma partição fina chamada septo interatrial. Uma característica proeminente deste septo é uma depressão oval chamada de fossa oval, o remanescente do forame oval, uma abertura no septo interatrial do coração fetal que normalmente se fecha logo após o nascimento. O sangue passa do átrio direito para o ventrículo direito através da valva atrioventricular direita, porque é composta por três válvulas. Também é denominada valva tricúspide. As valvas cardíacas são compostas por tecido conjuntivo denso recoberto por endocárdio.
VENTRICULO DIREITO:
O ventrículo direito tem cerca de 4 a 5 μm de espessura e forma a maior parte da face esternocostal do coração. O interior do ventrículo direito contém uma série de cristas formadas por feixes elevados de fibras musculares cardíacas chamadas trabéculas cárneas . Algumas das trabéculas cárneas transmitem parte do sistema de condução do coração. As válvulas da valva atrioventricular direita estão conectadas às cordas tendíneas, que por sua vez estão ligadas a trabéculas cárneas em forma de cone chamadas músculos papilares. Internamente, o ventrículo direito é separado do ventrículo esquerdo por umapartição chamada de septo interventricular. O sangue passa do ventrículo direito através da valva do tronco pulmonar para uma grande artéria chamada de tronco pulmonar, que se divide em artérias pulmonares direita e esquerda e levam o sangue até os pulmões. A artérias sempre levam o sangue para longe do coração.
ATRIO ESQUERDO
O átrio esquerdo tem aproximadamente a mesma espessura que o átrio direito e forma a maior parte da base do coração. Ele recebe o sangue dos pulmões, por meio das quatro veias pulmonares. Como o átrio direito, o interior do átrio esquerdo tem uma parede posterior lisa. Como os músculos pectíneos estão restritos à aurícula do átrio esquerdo, a parede anterior do átrio esquerdo também é lisa. O sangue passa do átrio esquerdo para o ventrículo esquerdo através da valva atrioventricular esquerda, antigamente chamada de valva bicúspide ou mitral, a qual tem duas válvulas. O antigo termo mitral se refere à semelhança da valva com a mitra de um bispo, que tem dois lados.
VENTRICULO ESQUERDO
O ventrículo esquerdo é a câmara mais espessa do coração, com uma média de 10 a 15 mm. Forma o ápice do coração. Como o ventrículo direito, o ventrículo esquerdo contém trabéculas cárneas e tem cordas tendíneas que ancoram as válvulas da valva atrioventricular esquerda aos músculos papilares. O sangue passa do ventrículo esquerdo através da valva da aorta na parte ascendente da aorta. Um pouco do sangue da aorta flui para as artérias coronárias, que se ramificam da parte ascendente da aorta e transportam o sangue para a parede do coração. A parte restante do sangue passa para o arco da aorta e parte descendente da aorta (partes torácica e abdominal da aorta). Ramos do arco da aorta e da parte descendente da aorta levam o sangue por todo o corpo.
Durante a vida fetal, um vaso sanguíneo temporário, chamado de ducto ou canal arterial, desvia o sangue do tronco pulmonar para a aorta. Por conseguinte, apenas um pequeno volume de sangue entra nos pulmões fetais não funcionantes. O ducto ou canal arterial normalmente se fecha logo após o nascimento, deixando um remanescente conhecido como ligamento arterial, que liga o arco da aorta e o tronco pulmonar.
ESPESSURA E FUNÇÃO DO MIOCÁRDIO:
A espessura do miocárdio das quatro câmaras varia de acordo com a função de cada uma das câmaras. Os átrios de paredes finas entregam o sangue sob menos pressão aos ventrículos adjacentes. Como os ventrículos bombeiam o sangue sob maior pressão por distâncias maiores, suas paredes são mais espessas. Embora os ventrículos direito e esquerdo ajam como duas bombas separadas que ejetam simultaneamente volumes iguais de sangue, o lado direito tem uma carga de trabalho muito menor. Ele bombeia o sangue a uma curta distância para os pulmões a uma pressão inferior, e a resistência ao fluxo sanguíneo é pequena. O ventrículo esquerdo bombeia sangue por grandes distâncias a todas as outras partes do corpo com uma pressão maior, e a resistência ao fluxo sanguíneo é maior. Portanto, o ventrículo esquerdo trabalha muito mais arduamente do que o ventrículo direito para manter a mesma taxa de fluxo sanguíneo. A anatomia dos dois ventrículos confirma esta diferença funcional – a parede muscular do ventrículo esquerdo é consideravelmente mais espessa do que a parede do ventrículo direito. Observe também que o lúmen do ventrículo esquerdo é mais ou menos circular, em contraste com o do ventrículo direito, cujo formato é discretamente semilunar.
ESQUELETO FIBROSO DO CORAÇÃO
Além do tecido muscular cardíaco, a parede do coração também contém tecido conjuntivo denso que forma o esqueleto fibroso do coração. Essencialmente, o esqueleto fibroso é constituído por quatro anéis de tecido conjuntivo denso que circundam as valvas cardíacas, unidos um ao outro, e que se fundem ao septo interventricular. Além de formar uma base estrutural para as valvas cardíacas, o esqueleto fibroso evita o estiramento excessivo das valvas enquanto o sangue passa por elas. Também serve como um ponto de inserção para os feixes de fibras musculares cardíacas e atua como um isolante elétrico entre os átrios e ventrículos.
VALVAS CARDIACAS E CIRCULAÇÃO DO SANGUE
OBJETIVOS
Descrever a estrutura e a função das valvas cardíacas
Delinear o fluxo sanguíneo através das câmaras do coração e pelas circulações sistêmica e pulmonar
Discutir a circulação coronariana.
Quando cada uma das câmaras do coração se contrai, empurra um volume de sangue a um ventrículo ou para fora do coração a uma artéria. As valvas se abrem e fecham em resposta às mudanças de pressão conforme o coração se contrai e relaxa. Cada uma das quatro valvas ajuda a assegurar o fluxo unidirecional de sangue através da abertura ao possibilitar que o sangue passe e, em seguida, se fechando para impedir o seu refluxo.
FUNCIONAMENTO DAS VALVAS ATRIOVENTRICULARES
Como estão localizadas entre um átrio e um ventrículo, estas valvas são chamadas atrioventriculares (AV) direita e esquerda. Quando uma valva AV está aberta, as extremidades arredondadas das válvulas se projetam para o ventrículo. Quando os ventrículos estão relaxados, os músculos papilares estão relaxados, as cordas tendíneas estão frouxas, e o sangue se move de uma área de maior pressão no átrio para uma de menor pressão nos ventrículos através das valvas AV abertas. Quando os ventrículos se contraem, a pressão do sangue aciona as válvulas para cima até que suas extremidades se encontrem e fechem a abertura. Ao mesmo tempo, os músculos papilares se contraem, o que traciona e retesa as cordas tendíneas. Isso impede que as válvulas das valvas evertam em resposta à alta pressão ventricular. Se as valvas AV ou cordas tendíneas estiverem danificadas, o sangue pode regurgitar para os átrios quando os ventrículos se contraem.
FUNCIONAMENTO DAS VALVAS SEMILUNARES
As valvas da aorta e do tronco pulmonar são compostas por três válvulas semilunares). Cada válvula se insere na parede arterial por sua margem externa convexa. As valvas do tronco pulmonar e da aorta possibilitam a ejeção de sangue do coração para as artérias, mas evitam o refluxo de sangue para os ventrículos. As margens livres das válvulas se projetam parato lúmen da artéria. Quando os ventrículos se contraem, a pressão se acumula nas câmaras. As valvas do tronco pulmonar e da aorta se abrem quando a pressão no ventrículo é superior à pressão nas artérias, possibilitando a ejeção do sangue dos ventrículos para o tronco pulmonar e aorta. Conforme os ventrículos relaxam, o sangue começa a refluir para o coração. Este fluxo sanguíneo retrógrado enche as válvulas da valva, o que faz com que as margens livres das valvas do tronco pulmonar e da aorta se contraiam firmemente uma contra a outra e fechem a abertura entre o ventrículo e a artéria.
CIRCULAÇÃO PULMONAR E SISTÊMICA
Na circulação pós-natal, o coração bombeia o sangue em dois circuitos fechados a cada contração – circulação sistêmica e circulação pulmonar). Os dois circuitos estão dispostos em série: a saída de um torna-se a entrada do outro, como aconteceria ao conectar duas mangueiras de jardim. O lado esquerdo do coração é a bomba para a circulação sistêmica; ele recebe sangue oxigenado (rico em oxigênio) vermelho brilhante dos pulmões. O ventrículo esquerdo ejeta sangue para a aorta. A partir da aorta, o sangue se divide em correntes separadas, entrando progressivamente em artérias sistêmicas menores que o transportam a todos os órgãos do corpo – com exceção dos alvéolos dos pulmões, os quais são irrigados pela circulação pulmonar. Nos tecidos sistêmicos, as artérias dão origem a arteríolas de menor diâmetro, que por fim levam a extensos leitos de capilares sistêmicos. A troca de nutrientes e gases ocorre através das finas paredes capilares. O sangue libera O2 (oxigênio) e capta CO2 (dióxido de carbono). Na maior parte dos casos, o sangue flui por meio de um único capilar e então entra em uma vênula sistêmica. As vênulas transportam o sangue desoxigenado dos tecidos e se fundem para formar veias sistêmicasmaiores. Por fim, o sangue reflui para o átrio direito.
O lado direito do coração é a bomba para a circulação pulmonar; ele recebe todo o sangue desoxigenado vermelho escuro que retorna da circulação sistêmica. O sangue ejetado do ventrículo direito flui para o tronco pulmonar, que se divide em artérias pulmonares que levam o sangue para os pulmões direito e esquerdo. Nos capilares pulmonares, o sangue descarrega o CO2, que é expirado, e capta o O2 do ar inalado. O sangue recentemente oxigenado então flui para as veias pulmonares e retorna ao átrio esquerdo.
CIRCULAÇÃO CORONÁRIA
Os nutrientes não conseguem se difundir rapidamente o suficiente do sangue das câmaras do coração para suprir todas as camadas de células que formam a parede do coração. Por isso, o miocárdio tem a sua própria rede de vasos sanguíneos, a circulação coronariana ou circulação cardíaca. As artérias coronárias ramificam-se da parte ascendente da aorta e cercam o coração como uma coroa circundando a cabeça. Enquanto o coração está se contraindo, pouco sangue flui nas artérias coronárias, porque elas estão bem comprimidas. Quando o coração relaxa, no entanto, a pressão do sangue elevada na aorta impulsiona o sangue ao longo das artérias coronárias até os vasos capilares e, em seguida, às veias coronárias.
ARTÉRIAS DE CORONÁRIAS
Duas artérias coronárias, as artérias coronárias esquerda e direita, ramificam-se da parte ascendente da aorta e fornecem sangue oxigenado para o miocárdio. A artéria coronária esquerda passa inferiormente à aurícula esquerda e se divide nos ramos interventricular anterior e circunflexo. O ramo interventricular anterior encontra-se anteriormente ao sulco interventricular anterior e fornece sangue oxigenado às paredes de ambos os ventrículos. O ramo circunflexo encontra-se no sulco coronário e distribui sangue oxigenado às paredes do ventrículo esquerdo e átrio esquerdo.
A artéria coronária direita emite pequenos ramos (ramos atriais) para o átrio direito. Ela continua inferiormente à aurícula direita e, por fim, se divide em ramos interventricular posterior e marginal direito. O ramo interventricular posterior segue o sulco interventricular posterior e irriga as paredes dos dois ventrículos com sangue oxigenado. O ramo marginal posterior além do sulco coronário corre ao longo da margem direita do coração e transporta sangue oxigenado à parede do ventrículo direito.
A maior parte do corpo recebe sangue de ramos de mais de uma artéria, e onde duas ou mais artérias irrigam a mesma região, elas normalmente se conectam entre si. Essas conexões, chamadas de anastomoses, fornecem vias alternativas, chamadas de circulação colateral, para que o sangue chegue a um órgão ou tecido específico. O miocárdio contém muitas anastomoses que conectam ramos de uma determinada artéria coronária ou se estendem entre os ramos de diferentes artérias coronárias. Elas fornecem desvios para o sangue arterial se uma via principal estiver obstruída. Assim, o músculo cardíaco pode receber oxigênio suficiente, mesmo que uma de suas artérias coronárias esteja parcialmente bloqueada.
VEIAS CORONÁRIAS
Depois de o sangue passar pelas artérias da circulação coronariana, ele flui para os capilares, onde fornece oxigênio e nutrientes ao músculo cardíaco e coleta dióxido de carbono e escórias metabólicas e, em seguida, desloca-se para as veias coronárias. A maior parte do sangue venoso do miocárdio drena para um grande seio vascular no sulco coronário na face posterior do coração, chamado seio coronário. Um seio vascular é uma veia de paredes finas que não tem músculo liso para alterar seu diâmetro. O sangue venoso do seio coronário drena para o átrio direito. As principais tributárias que transportam sangue para o seio coronário são:
•Veia cardíaca magna no sulco interventricular anterior, que drena as áreas do coração irrigadas pela artéria coronária esquerda (ventrículos esquerdo e direito e átrio esquerdo)
•Veia interventricular posterior no sulco interventricular posterior, que drena as áreas irrigadas pelo ramo interventricular posterior da artéria coronária direita (ventrículos esquerdo e direito)
•Veia cardíaca parva no sulco coronário, que drena o átrio direito e o ventrículo direito
•Veias anteriores do ventrículo direito, que drenam o ventrículo direito e drenam diretamente para o átrio direito.
Quando o bloqueio de uma artéria coronária priva o músculo cardíaco de oxigênio, a reperfusão, o restabelecimento do fluxo sanguíneo, pode danificar ainda mais o tecido. Este efeito surpreendente é decorrente da formação de radicais livres de oxigênio a partir do oxigênio reintroduzido. Como você viu no Capítulo 2, os radicais livres são moléculas que apresentam um elétron não pareado). Estas moléculas instáveis, muito reativas, causam reações em cadeia que levam a danos e morte celulares. Para combater os efeitos dos radicais livres de oxigênio, as células do corpo produzem enzimas que convertem os radicais livres em substâncias menos reativas. Duas dessas enzimas são o superóxido dismutase e a catalase. Além disso, os nutrientes – como a vitamina E, a vitamina C, o betacaroteno, o zinco e o selênio – atuam como antioxidantes, que eliminam os radicais livres de oxigênio da circulação. Atualmente estão sendo desenvolvidos fármacos que diminuem a lesão de reperfusão após um infarto agudo do miocárdio (IAM) ou acidente vascular cerebral (AVC) ou encefálico (AVE).
SISTEMAS DE CONDUÇÃO
A atividade elétrica inerente e rítmica é o motivo das contrações cardíacas ao longo da vida. A fonte desta atividade elétrica é uma rede de fibras musculares cardíacas especializadas chamadas fibras autorrítmicas, porque são autoexcitáveis. As fibras autorrítmicas produzem repetidamente potenciais de ação que desencadeiam contrações cardíacas. Elas continuam estimulando o coração a contrair, mesmo após terem sido removidas do corpo – como por exemplo quando o coração é retirado para ser transplantado para outra pessoa – e todos os seus nervos foram seccionados. (Nota: Os cirurgiões não tentam reinserir os nervos cardíacos durante as cirurgias de transplante de coração. Por isso, diz-se que os cirurgiões cardíacos são melhores “encanadores” do que são “eletricistas”.
Durante o desenvolvimento embrionário, apenas aproximadamente 1% das fibras musculares cardíacas tornam-se fibras autorrítmicas; estas fibras relativamente raras têm duas funções importantes:
1.Agem como marca-passo, definindo o ritmo da excitação elétrica que provoca a contração do coração.
2.Formam o sistema de condução do coração, uma rede de fibras musculares cardíacas especializadas que oferecem uma via para que cada ciclo de excitação cardíaca se propague pelo coração. O sistema de condução garante que as câmaras do coração sejam estimuladas de modo a se contrair coordenadamente, o que torna o coração uma bomba eficaz. Como você verá mais adiante neste capítulo, os problemas com as fibras autorrítmicas podem resultar em arritmias, em que o coração se contrai de modo irregular, muito rápido ou muito lento.
Os potenciais de ação cardíacos se propagam ao longo do sistema de condução na seguinte sequência:
A excitação cardíaca normalmente começa no nó sinoatrial (SA), localizado na parede atrial direita, discretamente inferior e lateral à abertura da veia cava superior. As células do nó SA não têm potencial de repouso estável. Em vez disso, elas se despolarizam repetida e espontaneamente até um limiar. A despolarização espontânea é um potencial marca-passo. Quando o potencial marca-passo alcança o limiar, ele dispara um potencial de ação. Cada potencial de ação do nó SA se propaga ao longo de ambos os átrios via junções comunicantes nos discos intercalares das fibras musculares atriais. Após o potencial de ação, os dois átrios se contraem ao mesmo tempo.
Ao ser conduzido ao longo das fibras musculares atriais, o potencial de ação alcança o nó atrioventricular (AV), localizado no septo interatrial, imediatamente anterior à abertura do seio coronário.No nó AV, o potencial de ação se desacelera consideravelmente, como resultado de várias diferenças na estrutura celular do nó AV. Este atraso fornece tempo para os átrios drenarem seu sangue para os ventrículos.
A partir do nó AV, o potencial de ação entra no fascículo atrioventricular (AV) (feixe de His,). Este fascículo é o único local em que os potenciais de ação podem ser conduzidos dos átrios para os ventrículos. (Em outros lugares, o esqueleto fibroso do coração isola eletricamente os átrios dos ventrículos.)
Depois da propagação pelo fascículo AV, o potencial de ação entra nos ramos direito e esquerdo. Os ramos se estendem ao longo do septo interventricular em direção ao ápice do coração.
Por fim, os ramos subendocárdicos calibrosos (fibras de Purkinje) conduzem rapidamente o potencial de ação, começando no ápice do coração e subindo em direção ao restante do miocárdio ventricular. Em seguida, os ventrículos se contraem, deslocando o sangue para cima em direção às válvulas semilunares.
Por conta própria, as fibras autorrítmicas do nó SA iniciariam um potencial de ação a cada 0,6 s, ou 100 vezes por minuto. Assim, o nó SA define o ritmo de contração do coração – é o marca-passo natural. Esta frequência é mais rápida do que a de qualquer outra fibra autorrítmica. Como os potenciais de ação do nó SA se espalham ao longo do sistema de condução e estimulam outras áreas antes que estas sejam capazes de produzir um potencial de ação no seu próprio ritmo, mais lento, o nó SA age como o marca-passo natural do coração. Os impulsos nervosos da divisão autônoma do sistema nervoso (SNA) e hormônios transportados pelo sangue (como a epinefrina) modificam sua sincronização e força a cada batimento cardíaco, mas não estabelecem o ritmo de base. Em uma pessoa em repouso, por exemplo, a acetilcolina liberada pela parte parassimpática do SNA atrasa a estimulação do nó SA para a cada aproximadamente 0,8 s, ou 75 potenciais de ação por minuto.
POTENCIAL DE AÇÃO E CONTRAÇÃO DAS FIBRAS CONTRATEIS
O potencial de ação iniciado pelo nó SA propaga-se pelos sistema de condução e se espalha para excitar as fibras musculares atriais e ventriculares “atuantes”, chamadas de fibras contráteis. Um potencial de ação ocorre em uma fibra contrátil do seguinte modo:
Despolarização. Ao contrário das fibras autorrítmicas, as fibras contráteis têm um potencial de repouso estável, que é de cerca de 90 mV. Quando uma fibra contrátil alcança seu limiar por um potencial de ação de fibras vizinhas, seus canais de Na+ acionados por voltagem se abrem. Estes canais de íons sódio são chamados de “rápidos” porque se abrem muito rapidamente em resposta a despolarização no nível do limiar. A abertura destes canais possibilita a entrada de Na+, porque o citosol das fibras contráteis é eletricamente mais negativo do que o líquido intersticial e a concentração de Na+ é mais elevada no líquido intersticial. O influxo de Na+ abaixo do gradiente eletroquímico produz despolarização rápida. Em alguns milissegundos, os rápidos canais de Na+ se inativam automaticamente e o influxo de Na+ diminui.
Platô. A próxima fase de um potencial de ação em uma fibra contrátil é o platô, um período de despolarização mantida. É em parte decorrente da abertura dos lentos canais de Ca2+ acionados por voltagem do sarcolema. Quando estes canais se abrem, os íons cálcio se movem do líquido intersticial (que tem uma maior concentração de Ca2+) para o citosol. Este influxo de Ca2+ faz com que ainda mais Ca2+ saia do retículo sarcoplasmático para o citosol por canais adicionais de Ca2+ da membrana do retículo sarcoplasmático. O aumento da concentração de Ca2+ no citosol por fim provoca a contração. Vários tipos diferentes de canais de K+ acionados por voltagem também são encontrados no sarcolema de uma fibra contrátil. Pouco antes da fase de platô começar, alguns desses canais de K+ se abrem, possibilitando que os íons potássio saiam da fibra contrátil. Por isso, a despolarização é sustentada durante a fase de platô porque o influxo de Ca2+ equilibra a saída de K+. A fase de platô dura cerca de 0,25 s, e o potencial de membrana da fibra contrátil está próximo de 0 mV. Para comparação, a despolarização em um neurônio ou de fibra muscular esquelética é muito mais breve, de cerca de 1 ms (0,001 s), porque falta uma fase de platô.
Repolarização. A recuperação do potencial de repouso durante a fase de repolarização de um potencial de ação cardíaco lembra o de outras células excitáveis. Após um atraso (que é particularmente prolongado no músculo cardíaco), canais de K+ acionados por voltagem adicionais se abrem. O influxo de K+ restaura o potencial de repouso negativo (–90 mV). Ao mesmo tempo, os canais de cálcio do sarcolema e do retículo sarcoplasmático estão se fechando, o que também contribui para a repolarização.
O mecanismo de contração é semelhante nos músculos cardíaco e esquelético: a atividade elétrica (potencial de ação) leva a uma resposta mecânica (contração) depois de um pequeno atraso. Conforme a concentração de Ca2+ aumenta no interior de uma fibra contrátil, o Ca2+ se liga à proteína reguladora troponina, que possibilita que os filamentos de actina e miosina comecem a deslizar um sobre o outro, e a tensão começa a se desenvolver. Substâncias que alteram o fluxo de Ca2+ através dos lentos canais de Ca2+ influenciam a força das contrações cardíacas. A epinefrina, por exemplo, aumenta a força de contração melhorando o fluxo de Ca2+ para o citosol.
No músculo, o período refratário é o intervalo de tempo durante o qual uma segunda contração não pode ser acionada. O período refratário de uma fibra muscular cardíaca dura mais tempo do que a contração propriamente dita). Como resultado, outra contração não pode começar até que o relaxamento esteja bem encaminhado. Por esta razão, a tetania (contração mantida) não pode ocorrer no músculo cardíaco como no músculo esquelético. A vantagem é evidente, se você considerar como os ventrículos trabalham. Sua função de bombeamento depende da alternância entre contração (quando ejetam sangue) e relaxamento (quando se enchem). Se o músculo cardíaco pudesse sofrer tetania, o fluxo sanguíneo cessaria.
Anatomia Humana de órgãos e sistemas - 2018

Outros materiais