Buscar

ESPAÇOS VETORIAIS EUCLIDIANOS

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 15 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 15 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 15 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 1 
 
ESPAÇOS VETORIAIS EUCLIDIANOS 
 
Produto interno em espaços vetoriais 
Estamos interessados em formalizar os conceitos de comprimento de um vetor e 
ângulos entre dois vetores. Esses conceitos permitirão uma melhor compreensão do que 
seja uma base ortogonal e uma base ortonormal em um EV e, principalmente, nos darão 
a noção de “medida” que nos leva a precisar conceitos como o de área, volume, 
distância, etc. 
Consideremos inicialmente o plano R
2
, munido de um referencial cartesiano 
ortogonal (eixos perpendiculare0 e um ponto P(x,y). Vamos calcular a distância do 
ponto P à origem O (0,0) 
 
Observando a figura e utilizando o teorema de Pitágoras, temos que d = 
. Podemos também, interpretar este resultado dizendo que o comprimento 
(que passaremos a chamar de norma) do vetor (x,y) é: 
 
Por outro lado, se tivéssemos dois vetores u = (x1,y1) e v =(x2, y2), podemos 
definir um “produto” de u por v assim: 
<u,v> = x1x2 + y1y2, 
produto este chamado de produto escalar interno usual e que tem uma relação 
importante com a norma de um vetor v = (x,y). 
 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 2 
 
Se, ao invés de trabalharmos no R
2
, estivéssemos trabalhando no R
3
 (munidos de 
um referencial cartesiano ortogonal), teríamos encontrado uma expressão similar para o 
produto escalar: 
 
E a mesma relação com a norma de um vetor v = (x,y,z) 
 
Voltando ao caso do plano, se tivéssemos trabalhando com um referencial não 
ortogonal (eixos não perpendiculares), e quiséssemos calcular a distância da origem até 
um ponto P (cujas coordenadas em relação ao referencial fossem (x,y)), teríamos, 
usando o Teorema de Pitágoras: 
 
 
Obseve que, se usássemos o produto escalar = 
neste caso não valeria a relação = , mas ela passaria a valer se usássemos a 
seguinte regra para o produto: 
 
Portanto, novamente a noção de distância poderia ser dada a partir de um 
produto interno de vetores. Concluímos destes exemplos, que o processo usado para se 
determinar “medidas” num espaço pode variar e, em cada caso, precisamos ser bem 
claros sobre qual produto interno estamos trabalhando. 
 
 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 3 
 
Definição: Seja V um EV real. Um produto sobre V é uma função f: VxV  R 
que a cada par de vetores v1 e v2, associa um número real, denotado por <v1, v2>, e que 
satisfaz as seguintes propriedades: 
P1 u.v = v.u 
P2 u. (v + w) = u.v + u. w 
P3 (αu).v = α(u.v) para todo real α 
P4 u.u ≥ 0 e u.u = 0 se, e somente se, u = 0. 
Exemplo: 
1) No espaço vetorial V = R2, a função que associa a cada par de vetores 
 u = (x1, y1) e v= (x2, y2) o número real u.v = 3x1x2 + 4y1y2 é um produto interno. 
 
 
 
 
 
 
 
 
 
 
 
2) O número u.v = 2x1x2 + y1
2
y2
2
 sendo u = (x1, y1) e v = (x2, y2) não define no R
2
 
um produto interno. 
 
 
 
 
 
 
 
 
 
 
 
 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 4 
 
Exercícios: 
1) Em relação ao produto interno usual do R2, calcular u.v, sendo dados: 
a) u = (-3,4) e v = (5,-2) 
b) u = (6,-1) e v = (1/2, -4) 
c) u = (2,30 e v =(0,0) 
 
2) Para os mesmos vetores do exercício anterior, calcular u.v em relação ao 
produto interno: u.v = 3x1x2 + 4y1y2. 
 
3) Consideremos o R3 munido do produto interno usual. Sendo v1 = (1,2,-3), v2 
=(3,-1,-1) e v3 = (2,-2,0) do R
3
, determinar o vetor u tal que u.v1 = 4, u.v2 = 6 
e u.v3 = 2. 
 
4) Seja V = {f: [0,1]  R; f é contínua} o EV munido do produto interno: 
 
 
Determinar h1. h2 e h1.h1, tais que h1, h2 ∈ V e h1(t) = t e h2(t) = t
2
. 
 
 
Espaço Vetorial Euclidiano 
Um EV real, de dimensão finita, no qual está definido um produto interno é um 
EV euclidiano. 
 
Módulo de um Vetor 
Dado um vetor v de um EV euclidiano V, define-se módulo, normal ou 
comprimento de v o número real não-negativo, indicado por |v|, definido por: 
|v| = 
Se u = (x1,y1,z1) ∈ R3 , tem-se: 
|u| = = 
 
Distância entre dois vetores 
Chama-se de distância entre dois vetores (ou pontos) u e v o número real 
representado por d(u,v) e definido por: 
d(u,v) = |u-v| 
Sendo u = (x1,y1,z1) , v = (x2,y2,z2)∈ R3 com produto interno usual, tem-se: 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 5 
 
d(u,v) = |x1 – x2, y1-y2, z1 – z2| 
d(u,v) = 
Observações: 
 1) Se |v| = 1 , isto é, v.v = 1, o vetor v é chamado vetor unitário, diz-se que V 
está Normalizado. 
2) Todo vetor não nulo v ∈ V pode ser normalizado, fazendo: 
 
Observemos que: 
 
 
E, portanto, 
 
 é unitário. 
 
Exemplo: Considerando V = R
3
 com o produto interno v1.v2 = 3x1x2 + 2y1y2 + 
z1z2, sendo v1= (x1, y1,z1) e v2= (x2, y2,z2). Dado o vetor v = (-2,1,2) ∈ R3, em 
relação a esse produto interno, determine o vetor u, normalizando v: 
 
 
 
 
 
 
 
 
 
 
 
 
Propriedades do Módulo de um Vetor 
 
Seja V um EV euclidiano, tem-se: 
 
I. │ v│≥ 0, ∀ v ∈ V e │v= 0, se, e somente se, v = 0. 
II. │αv│= │α││v│, ∀v∈ V, ∀α∈ R 
 
Demonstração: 
| αv| = = = |α|. = |α|.|v| 
 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 6 
 
III. │u.v│≤│u││v│, ∀u,v∈ V 
Se u ou v = 0 vale a igualdade: 
|uv| = |u|.|v| = 0 
Se nem u, nem v são nulos, para qualquer α R vale a desigualdade: 
(u + αv).(u + αv) 0 
Pelo axioma P4, Efetuando o produto interno, vem: 
u.u + u.( αv) + (αv.u) + α2(v.v) 0 
ou, 
|v|
2
 α2 + 2(u.v) α + |u|2 0 
Obtivemos assim, um trinômio do 2º grau em α (pois |v|2 ≠ 0), que deve ser 
positivo para qualquer valor de α. Como o coeficiente de α2 é sempre positivo, o 
discriminante deve ser negativo ou nulo. 
(2u.v)
2
 – 4|v|2 |u|2 0 
4(u.v)
2
 - 4|v|
2
 |u|
2
 0 
(u.v)
2
 |v|
2
 |u|
2
 
Considerando a raiz quadrada positiva de ambos os membros dessa 
desigualdade, vem: 
│u.v│≤│u││v│ 
Essa desigualdade é conhecida com o nome de Desigualdade de Schwarz ou 
Inequação de Cauchy-Schwarz. 
 
IV. │u+v│≤│u│+│v│,∀u,v ∈ V 
Demonstração 
|u+v| = 
|u + v| = 
|u+v|
2
 = |u|
2
 +2(u.v) + |v|
2
 
Mas: 
u.v ≤│u.v│≤│u││v│ 
logo, 
|u+v|
2 ≤ |u|2 +2|u||v| + |v|2 
Ou: 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 7 
 
|u+v|
2
 ≤ (|u| + |v|)2 
Ou ainda, 
│u+v│≤│u│+│v│ 
 
Ângulos de dois Vetores 
Seja V um EV munido com um produto interno. O ângulo θ entre dois vetores 
u, v ∈ V é tal que: 
 
 
 
Exercícios: 
1. Consideremos o R3 com o produto interno usual. Determinar a componente c do 
vetor v = (6, -3,c) tal que |v| = 7. 
 
 
2. Seja o produto interno usual no R3 e no R4. Determinar o ângulo entre os seguintes 
pares de vetores: 
a) u = (2,1,-5) e v = (5,0,2) 
b) u =(1,-1,2,3) e v = (2,0,1,-2) 
 
 
5. Seja V um EV euclidiano e u, v ∈ V. Determinar o cosseno do ângulo entre os 
vetores u e v, sabendo que|u| = 3, |v| = 7 e |u +v| = 4 . 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 9 
 
Vetores ortogonais 
 
 Seja v um EV euclidiano. Diz-se que dois vetores u e v de V são ortogonais, e se 
representa por u v, se, e somente se, u.v = 0. 
Exemplo: Seja V = R
3
 um EV euclidiano em relação ao produto interno (x1, y1).(x2, y2) 
= x1x2 +2y1y2. Em relação a este produto interno, os vetores u = (-3,2) e v = (4,3) são 
ortogonais, pois: 
u.v = -3.(4) +2.(2).(3) = 0 
Observações: 
1) O vetor 0 ∈ V é ortogonal a qualquer v ∈ V. 
0.v = 0 
2) Se u v, então α u v para todo α∈ R. 
3) Se u1 v e u2 v, então (u1 + u2) v. 
 
Conjunto Ortogonal de Vetores 
 Seja V um EV euclidiano. Diz-se que um conjunto de vetores {v1, v2, ...,vn} V 
é ortogonal se dois vetores quaisquer, distintos, são ortogonais, isto é, vi. vj = 0 para i≠j. 
Exemplo: 
No R
3
, o conjunto {(1,2,-3), (3,0,1), (1,-5,-3)} é ortogonal em relação ao produto 
interno usual, pois: 
(1,2,-3). (3,0,1) = 0 
(1,2,-3) .(1,-5,-3) = 0 
(3,0,1) . (1,-5,-3) = 0 
 
 
 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 10 
 
 
 
Teorema: 
Um conjunto ortogonal de vetores não-nulos A = {v1, v2,...,vn} é Linearmente 
Independente (LI). 
De fato: 
Considerando a igualdade: 
a1v1 + a2v2 + ...+ avn = 0 
Multiplicando o produto interno de ambos os lados da igualdade, temos: 
 (a1v1 + a2v2 + ...+ avn) vi = 0vi 
Ou, 
a1(v1.vi) + ...ai(vi.vi) + ...+ a(vn.vi)= 0 
Como A é ortogonal, vj . vi = 0 para j≠ i e vi.vi ≠ 0, pois vi ≠ 0. Então ai(vi.vi) = 0 implica 
ai = o para i = 1, 2,3...n. Logo, A = {v1, v2,...,vn} é LI. 
 
Base Ortogonal 
Uma base {v1, v2,...,vn} de V é ortogonal se os seus vetores são dois a dois 
ortogonais. 
 Assim, se dimV = n, qualquer conjunto de n vetores não-nulos e dois a dois 
ortogonais, constitui uma base ortogonal. 
Poe exemplo, o conjunto do exemplo {(1,2,-3), (3,0,1), (1,-5,-3)} é uma base ortogonal 
do R
3
. 
 
 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 11 
 
Base Ortonormal 
 Uma base B = {v1, v2,...,vn} de um EV euclidiano V é ortonormal se B é 
ortogonal e todos seus vetores são unitários, isto é: 
 
Exemplo: 
Em relação ao produto interno usual, o conjunto: 
1) B = {(1,0), (0,1)} é uma base ortonormal do R2 (é a base canônica). 
2) B= {( , } é também uma base ortonormal do R2. 
3) B = {(1,0,0), (0,1,0), (0,0,1)} é uma base ortonormal do R3 (é a base canônica). 
4) B = {u1, u2, u3} sendo u1 = ( , ; u2 = ( , , u3= (0, , é 
também uma base ortonormal do R
3
. 
 
Como vimos, o processo que transforma V em chama-se normalização de v. 
Assim, uma base ortonormal sempre pode ser obtida de uma base ortogonal, 
normalizando cada vetor. 
Exemplo: 
A base B = {v1, v2,v3}sendo v1 = (1,1,1), v2 = (-2,1,1) e v3 – (0,-1,1) é ortogonal em 
relação ao produto interno usual. Normalizando cada vetor, obtemos: 
 
 
 
 
 
 
 
 
 
 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 12 
 
Processo de Ortogonalização de Gram-Schmidt 
Para entendermos o processo de ortogonalização de Gram-Schmidt é necessário, termos 
uma noção de projeção ortogonal. 
 Projeções ortogonais de vetores 
 Em muitas aplicações é importante “decompor” um vetor u na soma de dois 
componentes, um paralelo a um vetor não-nulo especificado a e o outro perpendicular a 
a. Se u e a são posicionados com seus pontos iniciais coincidindo com um ponto Q, 
podemos decompor o vetor u, da seguinte forma: Baixamos uma perpendicular da ponto 
de u para a reta ao longo de a e construímos o vetor w1 de ao pé desta perpendicular. 
Em seguida tomamos a diferença 
w2 = u – w1 
 
Conforme indicado na figura, o vetor w1 é paralelo ao vetor a e w2 é perpendicular ao 
vetor a e 
w1 + w2 = w1 + (u – w1) = u 
O vetor w1, chamdo projeção ortogonal de u sobre a, ou então componente vetorial 
de u ao longo do vetor a, é denotado por proja u. 
O vetor w2 é chamado componente vetorial de u ortogonal ao vetor a. Como 
w2 = u – w1 , este vetor pode ser escrito com a notação: 
w2 = u – proja u. 
Teorema: Se u e a são vetores em R
2
 ou R
3
 e se a≠ 0, então: 
 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 13 
 
 
Demonstração: 
Sejam w1 = proja u e w2 = u – proja u. Como w1 é paralelo a a, deve ser um múltiplo 
escalar de a, e portanto pode ser escrito na forma w1 = ka. Assim: 
u = w1+ w2 = ka + w2 
Tomando o produto escalar de a, com ambos os lados da equação anterior, temos: 
u .a = ( ka + w2).a = k + w2.a 
Mas w2.a = 0, pois w2 é perpendicular a a; portanto dá: 
 
Como proja u = w1 = ka, obtemos: 
 
Seja W um subespaço de dimensão finita de um espaço com produto interno V. 
a) Se {v1, v2,...,vr} é uma base ortonormal de W e u é um vetor qualquer de V, 
então: 
projw u = 
b) Se {v1, v2,...,vr} é uma base ortogonal de W e u é um vetor qualquer de V, então: 
projw u = 
Encontrando uma base ortogonal 
Teorema: Cada espaço vetorial não-nulo de dimensão finita possui uma base 
ortonormal. 
Prova: Seja V um espaço vetorial não-nulo de dimensão finita com produto interno e 
suponha que {u1, u2,...,un} é uma base de V. É suficiente mostrar que V tem uma base 
ortogonal, pois os vetores da base ortogonal podem ser normalizados para produzir uma 
base ortonormal de V. A seguinte sequencia de passos irá produzir uma base ortogonal 
{v1,v2,...,vn} de V. 
Passo 1: Seja v1 = u1. 
Passo2: Conforme ilustrado, nós podemos obter um vetor v2 que é ortogonal a v1 
tomando a componente de u2 que é ortogonal ao espaço W1 gerado por v1: 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. Adriana Biscaro Página 14 
 
 
v2 = u2 – projw1u2 = u2 - 
 
Passo 3: Para construir um vetor v3 que é ortogonal a ambos v1 e v2, calculamos a 
componte de u3 que é ortogonal ao espaço W2 gerado por v1 e v2. 
v3 = u3 – projw2 u3 = u3 - 
 
Passo 4: Para determinarmos um vetor v4 que é ortogonal a v1, v2 e v3, calculamos a 
componente de u4 que é ortogonal ao espaço W3 gerado por v1, v2, e v3. 
v4 = u4 – projw3 u4 = u4 - - 
Continuando desta maneira, nós iremos obter, depois de n passos, um conjunto 
ortogonal de vetores {v1, v2,...,vn}. Como V trem dimensão n e conjuntos ortogonais são 
LI, o conjunto {v1, v2,...,vn} é uma base ortogonal de V. 
A construção passo a passo acima para converter uma base arbitrária numa base 
ortogonal é chamada processo de Gram-Schmidt. 
Exemplo: 
Considere o espaço vetorial R
3
 com o produto interno euclidiano. Aplique o processo de 
Gram-Schmidt para transformar os vetores de base u1 = (1,1,1), u2 = (0,1,1), u3 = 
(0,0,1) em uma base ortogonal {v1, v2,v3}; depois normalize os vetores da base 
ortogonal para obter uma base ortonormal {q1, q2, q3}. 
UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL – UEMS 
Álgebra Linear - Produto Interno - Profª. AdrianaBiscaro Página 15 
 
 
 
 
 
 
 
 
 
 
 
Exercícios: 
1. Suponha que R3 tem o produto interno euclidiano. Use o processo de Gram-
Schmidt para transformar a base {u1, u2,u3} em uma base ortonormal. 
a) u1 = (1,1,1) u2 = (-1,1,0) e u3 = (1,2,1) 
2. Seja V = R3 e o produto interno (x1, y1, z1).(x2, y2,z2) = 2x1x2 + 3y1y2 + z1z2. 
Determinar um vetor unitário simultaneamente ortogonal aos vetores u = (1,2,1) 
e v = (1,1,1). 
3. Construir, a partir do vetor v1 = (1,-2,1), uma base ortogonal do R
3
 relativamente 
ao produto interno usual e obter, a partir dela, uma base ortonormal. 
4. O conjunto B = {(1,-1), (2,b)} é uma base ortogonal do R2 em relação ao 
produto interno: (x1, y1).(x2, y2) = 2x1x2 + y1y2. Calcular o valor de b e 
determinar , a partir de B, uma base ortonormal. 
5. Em relação ao produto interno usual, determinar uma base ortonormal do 
seguinte subespaço vetorial do R
3
: S = {(x,y,z) ∈R3/ x + y- z = 0} 
6. Mostre que se f = f(x) e g = g(x) duas funções contínuas em C[a,b] e defina 
= é um produto interno em C[a,b].

Outros materiais