Prévia do material em texto
Pesquisa Operacional Aula 1 Dentre as alternativas abaixo, assinale a que não corresponde as vantagens de utilização de modelos: Dificulta a visualização da amplitude das variáveis sem alterar a essência; Dentre as fases do estudo em Pesquisa Operacional temos a formulação do problema, e nesta fase é correto afirmar que: O administrador e o responsável pelo estudo em Pesquisa Operacional, discutem para colocar o problema de maneira clara e coerente, definindo os objetivos a alcançar e quais os possíveis caminhos para que isso ocorra. Além disso, são levantadas as limitações técnicas do sistema, a fim de criticar a validade de possíveis soluções. Nas alternativas a seguir assinale a que representa a aplicação da pesquisa operacional na industris de alimento: ração animal (problema da mistura). Analise as afirmativas a seguir e marque a alternativa correta. O processo de descoberta das estruturas de um sistema envolve as seguintes tarefas: I - formulação do problema. II - identificação das variáveis de decisão da situação. III - o desenho do comportamento dessas variáveis em um gráfico. Em que consiste um estudo de Pesquisa Operacional consiste? Um estudo de Pesquisa Operacional consiste, basicamente, em construir um modelo de um sistema real existente como meio de analisar e compreender o comportamento dessa situação, com o objetivo de levá-lo a apresentar o desempenho que se deseja. Quais são as cinco fases num projeto de PO? Formulação do problema; Construção do modelo; Obtenção da solução; Teste do modelo e avaliação da solução e Implantação e acompanhamento da solução (manutenção) Assinale a alternativa que representa a organização das etapas do processo de modelagem. Definição Formulação Solução Validação Implementação Assinale a alternativa que não corresponde as problemas que podem ser resolvidos através da Pesquisa Operacional (PO) PROGRAMAÇÃO BIOLÓGICA Aula 2 Uma empresa fabrica dois produtos que utilizam os seguintes recursos produtivos: Prensa, Torno e Matéria Prima. Cada unidade de P1 exige 6 horas de Prensa, 4 h de Torno e utiliza 40 unidades de matéria prima. Cada unidade de P2 exige 3 horas de Prensa, 4 h de Torno e 50 unidades de matéria-prima. O lucro unitário obtido com a venda do P1 é 20 u.m. e de P2, 40 u.m. Todos os produtos fabricados tem mercado garantido. As disponibilidades dos recursos estão assim distribuídas: 60 h de Prensa; 80 h de Torno e 400 unidades de matéria prima, por dia. Considerando o modelo para a solução do problema, indique qual destas Restrições estão corretas. 4x1 + 4x2 ≤ 80 Certa empresa escolheu três produtos P1, P2 e P3 para investir no próximo ano, cujas demandas previstas são: P1 - 500 unidades, P2 - 300 unidades e P3 - 450 unidades Para fabricar uma unidade de P1, P2 e P3 são necessárias, respectivamente, 4, 6 e 2 Horas/Homem. Os 3 produtos passam por uma máquina de pintura cujo processo tem a duração de 8 horas para P1, 6 horas para P2 e 4 horas para P3. A empresa só pode contar com 3.800 Horas/Homem e 5.200 Horas/Máquina para esta família de produtos. Sabendo que o lucro unitário de P1 é R$ 800,00, de P2 R$ 600,00 e de P3 R$ 300,00, estabeleça um programa ótimo de produção para o período. Faça a modelagem desse problema. Max Z = 800x1 + 600x2 + 300x3; Sujeito a: 4x1 + 6x2 + 2x3 ≤ 3.800; 8x1 + 6x2 + 4x3 ≤ 5.200; x1 ≤ 500; x2 ≤ 300; x3 ≤ 450; x1 ≥ 0; x2 ≥ 0; x3 ≥ 0 Um fabricante produz bicicletas e motonetas, devendo cada uma delas ser processada em duas oficinas. A oficina 1 tem um máximo de 120 horas de trabalho disponível e a oficina 2 um máximo de 180 h. A fabricação de uma bicicleta requer 6 horas de trabalho na oficina 1 e 3 horas na oficina 2. A fabricação de uma motoneta requer 4 horas na oficina 1 e 10 hora na oficina 2. Se o lucro é de $ 45,00 por bicicleta e de $ 55,00 por motoneta. Determine o Lucro Máximo, de acordo com as informações abaixo: Max L = 45x1 + 55x2 Sujeito a: 6x1 + 4x2 ≤ 120 3x1 + 10x2 ≤ 180 x1 ≥ 0 x2 ≥ 0 Após a análise gráfica podemos afirmar que o vértice que aponta o Lucro Máximo. Este Lucro máximo é: Max L: 1275 Uma pessoa precisa de 10, 12 e 12 unidades dos produto s químico s A, B e C,respectivamente, para o seu jardim. Um produto líquido contém : 5, 2 e 1 unidades d e A, B e C , respectivamente , por vidro . Um produto em pó contém : 1, 2 e 4 unidades d e A, B e C , respectivamente , p o r caixa . Se o produto líquido custa R $ 3,00 p o r vidro e o produto e m p ó custa R $ 2,00 por caixa , quantos vidros e quanta s caixas ele deve comprar para minimizar o custo e satisfazer as necessidades ? Para poder responder a esta pergunta , utilizando-s e o método gráfico , em qual ponto solução s e obterá o custo mínimo ? (1; 5) Seja o seguinte modelo de PL: Max L = 2x1 + 3x2 sujeito a -x1 + 2x2 ≤ 4 x1 + 2x2 ≤ 6 x1 + 3x2 ≤ 9 x1, x2 ≥ 0 O valor de L máximo é: 12 Uma determinada empresa deseja produzir dois produtos, um produto P1 e um produto P2, que dependem de duas matérias primas A e B, que estão disponíveis em quantidades de 8 e 5 toneladas, respectivamente. Na fabricação de uma tonelada do produto P1 são empregadas 1 tonelada da matéria A e 1 tonelada da matéria B, e na fabricação de uma tonelada do produto P2 são empregadas 4 toneladas de A e 1 toneladas de B. Sabendo que cada tonelada do produto P2 é vendido a R$8,00 reais e do produto P1 a R$5,00 reais. O modelo de programação linear abaixo possibilita determinar o lucro máximo da empresa na fabricação desses produtos. Max Z = 5x1 + 8x2 Sujeito a: x1 + 4x2 ≤ 8 x1 + x2 ≤ 5 x1, x2 ≥ 0 O valor ótimo da função-objetivo é: 28 Um marceneiro produz armários e camas. As margens de lucro são R$ 320,00 para os armários e R$ 240,00 para os camas. Os armários requerem 5 horas para o corte das madeiras, 7 horas para a montagem e 6 horas para o polimento. As camas requerem 3 horas para o corte das madeiras, 2 horas para a montagem e 3 horas para o polimento. O marceneiro trabalha sozinho e dispõe mensalmente de 40 horas para o corte das madeiras, 70 horas para a montagem e 48 horas para o polimento. De acordo com os dados acima, a restrição técnica para montagem dos produtos é: 7x1 + 2x2 ≤ 70 O modelo de programação linear indicado abaixo possui uma única solução ótima. Com o objetivo de determinar tal solução, foi traçado um rascunho do gráfico. Com base nestas informações determine a solução ótima do problema. Função Objetivo: Max Z = 40x1 + 20x2 Restrições: x1 + x2 ≤ 5 10x1 + 20x2 ≤ 80 X1 ≤ 4 x1 ; x2 ≥ 0 Zmáx = 180 Seja o seguinte modelo de PL: Max L = 2x1 + 3x2 sujeito a -x1 + 2x2 ≤ 4 x1 + x2 ≤ 6 x1 + 3x2 ≤ 9 x1, x2 ≥ 0 O valor de L máximo é: 13,5 No programa de produção para o próximo período, a empresa Beta Ltda., escolheu três produtos P1, P2 e P3. O quadro abaixo mostra os montantes solicitados por unidade na produção. Os preços de venda foram fixados por decisão política e as demandas foram estimadas tendo em vista esses preços. A firma pode obter um suprimento de 4.800 horas de trabalho durante o período de processamento e pressupõe-se usar três máquinas que podem prover 7.200 horas de trabalho. Estabelecer um programa ótimo de produção para o período. Faça a modelagemdesse problema. Max Z=2100x1+1200x2+600x3 Sujeito a: 6x1+4x2+6x3≤4800 12x1+6x2+2x3≤7200 x1≤800 x2≤600 x3≤600 x1≥0 x2≥0 x3≥0 Uma fábrica tem em seu portfólio dois produtos principais P1 e P2. A fábrica utiliza 15 horas para produzir uma unidade de P1 e de 20 horas para fabricar uma unidade de P2 e tem disponibilidade de apenas 350 horas por mês. A demanda máxima mensal esperada para o produto P1 é de 50 unidades e para P2 e de 30 unidades. O lucro unitário de P1 é de R$ 80,00 e de P2 é de R$ 100,00. Qual é o plano de produção para que a empresa maximize seu lucro nesses itens? Construa o modelo de programação linear para esse caso. Max Z = 80x1 + 100x2 Sujeito a: 15x1+ 20x2 ≤ 350; x1 ≤ 50; x2 ≤ 30; x1 ≥ 0; x2 ≥ 0 Para o problema de programação descrito abaixo foi traçado um rascunho da resolução gráfica. Considerando estas duas informações, determine qual das opções apresenta uma Solução Viável para o problema. Função Objetivo: Max Z = 2x1 + 3x2 Restrições: 5x1 + 10x2 ≤ 40 x1 + x2 ≤ 6 x1 ≤ 5 3x1 + 4x2 ≥ 6 x1 ; x2 ≥ 0 x1 = 3 e x2 = 2 Utilizando o modelo abaixo, calcule os valores ótimos das Variáveis e Decisão e da Função Objetivo utilizando o Método Gráfico. Função Objetivo: Max Z = 40x1 + 20x2; Sujeito a: x1 + x2 ≤ 5; 10x1 + 20x2 ≤ 80; x1 ≤ 4; x1 ≥ 0; x2 ≥ 0 Z=180; X1=4 e X2=1 Considerando o modelo de programação linear de uma empresa: Maximizar Z = 2x1 + x2 Sujeito a x2 ≤ 1 x1 - x2 ≤ 1 x1, x2 ≥0 Tem-se uma região viável formada por um polígono , a partir daí , determine o valor da solução ótima Z: Z=5 Para o Modelo apresentado abaixo, assinale a alternativa que indica o valor correto de Z: Função Objetivo: Max Z = 40x1 + 20x2 x1 + x2 ≤ 5 10x1 + 20x2 ≤ 80 X1 ≤ 4 x1 ; x2 ≥ 0 180 Um fazendeiro possui uma propriedade e quer dividi-la em três partes, A, B e C. A parte A seria dedicada à atividade de arrendamento, com um aluguel de 300 u.m. por alqueire por ano. A parte B seria dedicada à pecuária, que necessitaria de 100 kg/alq de adubação e 100.000 l/alq de água para irrigação por ano, sendo o lucro estimado de 400 u.m./alq por ano. A parte C seria dedicada ao plantio, que necessitaria de 200kg/alq de adubação e 200.000l/alq de água para irrigação por ano, sendo o lucro estimado de 500 u.m./alq por ano. A disponibilidade de recursos por ano é 12.750.000 l de água, 14.000 kg de adubo e 100 alqueires de terra. No modelo de PL, a restrição referente à adubação é representada por: 100x2+200x3 ≤ 14.000 Analisando o modelo de programação linear de uma empresa abaixo: Maximizar L = 1000x1 +1800x2 Sujeito a 20x1 + 30x2 ≤1200 x1 ≤ 40 x2 ≤ 30 x1, x2 ≥0 Verificou-se a formação de um pentágono ABCDE, onde A(0,0), B(40,0) e E(0,30), desta forma encontre as coordenadas dos vértices C e D e a solução ótima do modelo: C(40,40/3), D(15,30) e L = 69000 Resolvendo graficamente o Problema de Programação Linear (PPL) abaixo, obtemos como solução ótima: minimizar -x1 + 3x2 sujeito a: x1 + x2 = 4 x2 2 x1, x2 0 x1=4, x2=0 e Z*=-4 Um carpinteiro dispõe de 90, 80 e 50 metros de compensado, pinho e cedro, respectivamente. O produto A requer 2, 1 e 1 metro de compensado, pinho e cedro, respectivamente. O produto B requer 1, 2 e 1 metros, respectivamente. Se A é vendido por $120,00 e B por $100,00, quantos de cada produto ele deve fazer para obter um rendimento bruto máximo? Elabore o modelo. Max Z=120x1+100x2 Sujeito a: 2x1+x2≤90 x1+2x2≤80 x1+x2≤50 x1≥0 x2≥0 Resolvendo graficamente o Problema de Programação Linear (PPL) abaixo, obtemos como solução ótima: minimizar -2x1 - x2 sujeito a: x1 + x2 5 -6x1 + 2x2 6 -2x1 + 4x2 -4 x1, x2 0 x1=4, x2=1 e Z*=-9 Uma empresa apresenta o seguinte modelo de programação linear: Maximizar Z = 3x1 +2x2 Sujeito a 2x1 + x2 ≤8 x1 + 2x2 ≤ 7 - x1 + x2 ≤2 x2≤5 x1, x2 ≥0 Esse modelo representado graficamente forma um pentágono, a partir daí, considerando que o ponto ótimo é sempre um vértice, determine o ponto ótimo que maximiza o modelo: Ótimo em (3,2) com Z =13 Resolvendo graficamente o Problema de Programação Linear (PPL) abaixo, obtemos como solução ótima: minimizar x1 - 2x2 sujeito a: x1 + 2x2 4 -2x1 + 4x2 4 x1, x2 0 x1=1, x2=1,5 e Z*=-2 Sejam as seguintes sentenças: I) A região viável de um problema de programação linear é um conjunto convexo II) Um problema de PL pode não ter solução viável III) Na resolução de um problema de PL, as variáveis definidas como zero são chamadas de variáveis básicas IV) Em um problema padrão de PL, não pode haver uma equação no lugar de uma desigualdade do tipo ≤ Assinale a alternativa errada: III é verdadeira A Esportes Radicais S/A produz pára-quedas e asa-deltas em duas linhas de montagem. A primeira linha de montagem tem 100 horas semanais disponíveis para a fabricação dos produtos, e a segunda linha tem um limite de 42 horas semanais. Cada um dos produtos requer 10 horas de processamento na linha 1, enquanto que na linha 2 o pára-quedas requer 3 horas e a asa-delta requer 7 horas. Sabendo que o mercado está disposto a comprar toda a produção da empresa e que o lucro pela venda de cada pára-quedas é de R$60,00 e para cada asa-delta vendida é de R$40,00, encontre a programação de produção que maximize o lucro da Esportes Radicais S/A. Elabore o modelo. Max Z=60x1+40x2 Sujeito a: 10x1+10x2≤100 3x1+7x2≤42 x1≥0 x2≥0 Aula 3 Sejam as seguintes sentenças: I) Se S é a região viável de um problema de programação linear, e S é um conjunto limitado, a função objetiva z = ax + by assume tanto um valor de máximo como um valor de mínimo em S. II) Um problema de PL pode não ter valor máximo ou mínimo na região viável. III) Um problema de PL pode ter uma única solução. IV) Na resolução de um problema de PL, as variáveis definidas como zero são chamadas de variáveis não básicas. Assinale a alternativa errada: II ou III é falsa Considerando que essa é a primeira tabela do método simplex para o calculo da solução de um problema de PL. base X1 X2 X3 X4 X5 X3 3 1 1 0 0 10 X4 1 4 0 1 0 25 X5 0 2 0 0 1 8 F. O. -30 -5 0 0 0 0 Qual é a função objetivo? 30X1 + 5X2 +0X3 + 0X4 + 0X5 Considerando que essa é a primeira tabela do método simplex para o calculo da solução de um problema de PL. base X1 X2 X3 X4 X5 X3 3 1 1 0 0 10 X4 1 4 0 1 0 25 X5 0 2 0 0 1 8 MAX -30 -5 0 0 0 0 Quanto vale X5 nessa situação da tabela? 8 Considerando que essa é a primeira tabela do método simplex para o calculo da solução de um problema de PL. base X1 X2 X3 X4 X5 X3 1 0 1 0 0 4 X4 0 1 0 1 0 6 X5 3 2 0 0 1 18 MAX -3 -5 0 0 0 0 Qual variável sai na base? X4 Seja a primeira tabela do método simplex para cálculo da solução de um problema de PL: z x1 x2 xF1 xF2 xF3 b 1 -3 -5 0 0 0 0 0 2 4 1 0 0 10 0 6 1 0 1 0 20 0 1 -1 0 0 1 30 Qual é a variável que entra na base? x2 Uma empresa fabrica dois modelos de cintos de couro. O modelo M1, de melhor qualidade, requer o dobro do tempo de fabricação em relação ao modelo M2. Se todos os cintos fossem do modelo M2,a empresa poderia produzir 1000 unidades por dia. A disponibilidade de couro permite fabricar 800 cintos de ambos os modelos por dia. Os cintos empregam fivelas diferentes, tipos A e B, cuja disponibilidade diária é de 400 para M1 (tipo A) e 700 para M2 (tipo B). Os lucros unitários são de R$ 4,00 para M1 e R$ 3,00 para M2. A quantidade que sobra de fivelas tipo B é: 100 Sejam as seguintes sentenças: I - Em um problema padrão de PL, toda desigualdade relativa a uma restrição do problema deve ser do tipo ≤ II - A região viável de um problema de PL é um conjunto convexo. III - Na resolução de um problema de PL, as variáveis definidas como zero são chamadas de variáveis não básicas. IV - Um problema de PL não pode ter uma única solução. Assinale a alternativa errada: IV é verdadeira Seja a última tabela do método simplex para cálculo da solução de um problema de PL: z x1 x2 xF1 xF2 xF3 b 1 0 0 1,23 0,09 0 14,09 0 0 1 0,27 -0,09 0 0,91 0 1 0 -0,05 0,18 0 3,18 0 0 0 0,32 -0,27 1 27,73 Qual o valor da variável xF1? 0 Seja a seguinte sentença: "A última tabela obtida pelo método Simplex para a resolução de um problema de PL apresenta a solução ótima PORQUE a linha objetiva da tabela tem elementos negativos nas colunas rotuladas com variáveis." A partir das asserções acima, assinale a opção correta: A primeira asserção é uma proposição verdadeira, e a segunda é uma proposição falsa. Seja a última tabela do método simplex para cálculo da solução de um problema de PL: z x1 x2 xF1 xF2 xF3 b 1 0 0 1,23 0,09 0 14,09 0 0 1 0,27 -0,09 0 0,91 0 1 0 -0,05 0,18 0 3,18 0 0 0 0,32 -0,27 1 27,73 Qual o valor da variável xF3? 27,73 Seja o seguinte modelo de PL: Max L = 2x1 + 3x2 sujeito a -x1 + 2x2 ≤ 4 x1 + x2 ≤ 6 x1 + 3x2 ≤ 9 x1, x2 ≥ 0 No ponto de L máximo, os valores para as variáveis x1 e x2 são, respectivamente: 4,5 e 1,5 Considerando que essa é a primeira tabela do método simplex para o calculo da solução de um problema de PL. base X1 X2 X3 X4 X5 X3 3 1 1 0 0 25 X4 1 4 0 1 0 10 X5 0 2 0 0 1 8 MAX -30 -5 0 0 0 0 Quais são as equações das restrições? 3X1 + X2 + X3 <=25 X1+ 4X2 + X4 <=10 2X2+ X5 <=8 Marque a alternativa correta. As variáveis básicas são aquelas que apresentam zeros e uns. Seja a última tabela do método simplex para cálculo da solução de um problema de PL: z x1 x2 xF1 xF2 xF3 b 1 0 0 1,23 0,09 0 14,09 0 0 1 0,27 -0,09 0 0,91 0 1 0 -0,05 0,18 0 3,18 0 0 0 0,32 -0,27 1 27,73 Qual o valor da variável x2? 0,91 Considerando que essa é a primeira tabela do método simplex para o calculo da solução de um problema de PL. base X1 X2 X3 X4 X5 X3 3 1 1 0 0 10 X4 1 4 0 1 0 25 X5 0 2 0 0 1 8 F. O. -30 -5 0 0 0 0 Quantas variáveis de folga tem esse modelo? 3 Considerando que essa é a primeira tabela do método simplex para o calculo da solução de um problema de PL. base X1 X2 X3 X4 X5 X3 1 0 1 0 0 4 X4 0 1 0 1 0 6 X5 3 2 0 0 1 18 MAX -3 -5 0 0 0 0 Qual variável entra na base? X2 Seja a seguinte sentença: "A última tabela obtida pelo método Simplex para a resolução de um problema de PL apresenta a solução ótima PORQUE a linha objetiva da tabela não tem elementos negativos nas colunas rotuladas com variáveis." A partir das asserções acima, assinale a opção correta: As duas asserções são verdadeiras, e a segunda é uma justificativa correta da primeira. Seja a primeira tabela do método simplex para cálculo da solução de um problema de PL: z x1 x2 xF1 xF2 xF3 b 1 -3 -5 0 0 0 0 0 2 4 1 0 0 10 0 6 1 0 1 0 20 0 1 -1 0 0 1 30 Qual o valor da solução nesta estapa? 0 Seja a tabela do método Simplex para cálculo da solução de um problema de PL: Base Z X1 X2 X3 f1 f2 f3 C Z 1 2 1 0 4 0 0 400 X3 0 1 1 1 1 0 0 100 f2 0 2 1 0 0 1 0 210 f3 0 1 0 0 0 0 1 80 Analisando os resultados apresentados nesta tabela, assinale a resposta correta. O valor de f3 é 80 Seja a tabela do método simplex para cálculo da solução de um problema de PL: Base Z X1 X2 f1 f2 f3 C Z 1 -60 -100 0 0 0 0 f1 0 4 2 1 0 0 32 f2 0 2 4 0 1 0 22 f3 0 2 6 0 0 1 30 Analisando os resultados apresentados nesta tabela, assinale a resposta correta. O valor de f1 é 32 Considerando que essa é a primeira tabela do método simplex para o calculo da solução de um problema de PL. base X1 X2 X3 X4 X5 X3 3 1 1 0 0 10 X4 1 4 0 1 0 25 X5 0 2 0 0 1 8 MAX -30 -5 0 0 0 0 Quanto vale X5 nessa situação da tabela? 8 Considerando que essa é a primeira tabela do método simplex para o calculo da solução de um problema de PL. base X1 X2 X3 X4 X5 X3 3 1 1 0 0 10 X4 1 4 0 1 0 25 X5 0 2 0 0 1 8 F. O. -30 -5 0 0 0 0 Qual é a função objetivo? 30X1 + 5X2 +0X3 + 0X4 + 0X5 Seja a primeira tabela do método simplex para cálculo da solução de um problema de PL: z x1 x2 xF1 xF2 xF3 b 1 -3 -5 0 0 0 0 0 2 4 1 0 0 10 0 6 1 0 1 0 20 0 1 -1 0 0 1 30 Qual é a variável que entra na base? x2 Considerando que essa é a primeira tabela do método simplex para o calculo da solução de um problema de PL. base X1 X2 X3 X4 X5 X3 1 0 1 0 0 4 X4 0 1 0 1 0 6 X5 3 2 0 0 1 18 MAX -3 -5 0 0 0 0 Qual variável sai na base? X4 Aula 4 Uma empresa fabrica dois modelos de cintos de couro. O modelo M1, de melhor qualidade, requer o dobro do tempo de fabricação em relação ao modelo M2. Se todos os cintos fossem do modelo M2, a empresa poderia produzir 1000 unidades por dia. A disponibilidade de couro permite fabricar 800 cintos de ambos os modelos por dia. Os cintos empregam fivelas diferentes, tipos A e B, cuja disponibilidade diária é de 400 para M1 (tipo A) e 700 para M2 (tipo B). Os lucros unitários são de R$ 4,00 para M1 e R$ 3,00 para M2. A quantidade que sobra de fivelas tipo A é: 200 Considere o relatório de respostas do SOLVER para um problema de Programação Linear abaixo. Com relação a este relatório é SOMENTE correto afirmar que(II) O SOLVER utilizou o método do Gradiente Reduzido. (III) O problema consiste em 3 variáveis de decisão e cinco restrições não negativas. Seja a primeira tabela do método simplex para cálculo da solução de um problema de PL: z x1 x2 xF1 xF2 xF3 b 1 -3 -5 0 0 0 0 0 2 4 1 0 0 10 0 6 1 0 1 0 20 0 1 -1 0 0 1 30 Quais são as variáveis básicas? xF1, xF2 e xF3 Analise as alternativas abaixo sobre o Solver do Excel: I- O Solver faz parte de um pacote de programas conhecido como ferramentas de testes e hipóteses.II- Com o Solver é possível encontrar um valor ideal ( máximo ou mínimo) para uma fórmula em uma célula chamada célula de objetivo. III- O Solver trabalha com um grupo de células, chamadas variáveis de decisão que participam do cálculo das fórmulas nas células de objetivo e de restrição. Considere o relatório de respostas do SOLVER para um problema de Programação Linear abaixo. Com relação a este relatório é SOMENTE correto afirmar que (I) A solução ótima para a função objetivo é 11000. (II) O SOLVER utilizou o método simplex. (III) O problema consiste em 3 variáveis de decisão e quatro restrições não negativas. Analise o relatório de respostas do SOLVER para um problema de Programação Linear e a partir daí, marque a opção correta: A solução ótima para função objetivo equivale a 11000. Considere o relatório de respostas do SOLVER para um problema de Programação Linear, e a partir daí, é correto afirmar que: O problema consiste em duas variáveis de decisão e duas restrições não negativas. Considere o relatório de respostas do SOLVER para um problema de Programação Linear abaixo. Com relação a este relatório é SOMENTE correto afirmar que O problema possui 2 variáveis de decisão e duas restrições não negativas. Aula 5 Considere o modelo C de programação de dois itens P e Q , onde x1 e x2 são decisões de produção no intervalo determinado: Maximizar C = 30x1 +40x2 Sujeito a x1 + 2x2 ≤100 5x1+3x2 ≤ 300 x1, x2 ≥0 Minimizar D= 100y1+300y2 Sujeito a y1 + 5y2 ≥ 30 2y1 + 3y2 ≥ 40 y1, y2 ≥0 Analisando o Dual do modelo Primal abaixo apresentado, assinale a resposta correta: Max Z = 50x1+ 60x2 + 70x3 S. a: 8x1+ 6x2 + 4x3 ≥ 32 x1+ 5x2 + x3 ≥ 15 x1; x2; x3≥0 O valor do coeficiente de y2 na primeira Restrição será 1 Sejam as seguintes sentenças: I) O coeficiente da variável de decisão na função objetivo primal é o valor da variável de folga correspondente na solução dual. II) Os valores das funções objetivo dos problemas primal e dual são diferentes. III) A cada solução viável básica primal não ótima corresponde uma solução básica inviável dual. IV) Dado um problema original, o dual de seu problema dual é o problema original. Assinale a alternativa errada II e IV são falsas Estabelecendo o problema dual do problema de maximização abaixo, obtemos Max Z=5x1+2x2 Sujeito a: x1≤3 x2≤4 −x1−2x2≤−9 x1≥0 x2≥0 Min 3y1+4y2−9y3 Sujeito a: y1−y3≥5 y2−2y3≥2 y1≥0 y2≥0 y3≥0 Analisando o Dual do modelo Primal abaixo apresentado, assinale a resposta correta: Max Z = 70x1+ 90x2 S. a: 6x1+ 4x2 ≥ 22 2x1+ 3x2 ≥ 16 3x1+ 5x2 ≥ 18 x1; x2≥0 A Função Objetivo terá 3 Variáveis de Decisão Dado o modelo abaixo, considere o teorema da dualidade e encontre o modelo dual correspondente inserindo as variáveis de folga: Minimizar C =20x1+15x2 Sujeito a 3x1 + x2 ≥ 5 2x1 + 2x2 ≥ 3 4x1 + 5x2 ≥ 2 x1,x2≥0 Maximizar D= 5y1+3y2+2y3 Sujeito a 3y1 + 2y2 + 4y3 + y4 =20 y1 + 2y2 + 5y3 + y5=15 y1, y2,y3,y4,y5 ≥0 Estabelecendo o problema dual do problema de maximização abaixo, obtemos: Max Z=x1+2x2 Sujeito a: 2x1+x2≤6 x1+x2≤4 −x1+x2≤2 x1≥0 x2≥0 Min 6y1+4y2+2y3 Sujeito a: 2y1+y2−y3≥1 y1+y2+y3≥2 y1≥0 y2≥0 y3≥0 Estabelecendo o problema dual do problema de maximização abaixo, obtemos: Max Z=5x1+2x2 Sujeito a: x1≤3 x2≤4 x1+2x2≤9 x1≥0 x2≥0 Min 3y1+4y2+9y3 Sujeito a: y1+y3≥5 y2+2y3≥2 y1≥0 y2≥0 y3≥0