Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.

Prévia do material em texto

Escola Estadual de
Educação Profissional - EEEP
Ensino Médio Integrado à Educação Profissional
Curso Técnico em Química
 Química Geral Aplicada
Governador
Vice Governador
Secretária da Educação
Secretário Adjunto
Secretário Executivo
Assessora Institucional do Gabinete da Seduc
Coordenadora da Educação Profissional – SEDUC
Cid Ferreira Gomes
Domingos Gomes de Aguiar Filho
Maria Izolda Cela de Arruda Coelho
Maurício Holanda Maia
Antônio Idilvan de Lima Alencar
Cristiane Carvalho Holanda
Andréa Araújo Rocha
- 2 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
 
 
Escola Estadual de 
Educação Profissional - EEEP 
Ensino Médio Integrado à Educação Profissional 
Curso Técnico em Química 
 
 
 
 
 
 
 
 
 
 
 
 
QUÍMICA GERAL 
TEXTOS DE APOIO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fortaleza – Ceará 
 2011 
 
 
 
 
- 3 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SUMÁRIO 
 
CAPÍTULO 1 : DISSOCIAÇÃO ELETROLÍTICA 
CAPÍTULO 2 : ÓXIDOS 
 
 
 
 
 
CAPÍTULO 3 : ÁCIDOS 
 
 
 
CAPÍTULO 4 : HIDRÓXIDOS OU BASES 
 
 
 
CAPÍTULO 5 : SAIS 
 
 
 
 
 
 
 
CAPÍTULO 6 : ESTUDO DE REAÇÕES 
CAPÍTULO 7 : REAÇÕES DE OXI-REDUÇÃO 
 
 
 
 
CAPÍTULO 8 : GRANDEZAS E UNIDADES 
 
 
 
 
 
CAPÍTULO 9 : CÁCULO ESTEQUIOMETRICO 
 
 
 
 
 
 
 
 
REFERÊNCIAS BIBLIOGRÁFICAS 
- 4 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
 
 
 
 
CAPÍTULO 1 
 
DISSOCIAÇÃO ELETROLÍTICA 
 
A teoria da dissociação, desenvolvida por Svante Arrhenius, defendia a idéia de que 
algumas substâncias, quando dissolvidas em água, são capazes de dar origem a íons positivos (cátions) e íons 
negativos (ânions), o que possibilita a condução de corrente elétrica através delas. 
 
As soluções devem apresentar, 
obrigatoriamente, íons, sendo denominadas soluções iônicas ou eletrolíticas. As substâncias capaz 
de 
produzir soluções iônicas são: substâncias iônicas substâncias moleculares polares 
 
produzindo soluções que , e que 
denominadas soluções não-eletrolíticas ou moleculares. Na dissolução dessas substâncias 
ocorre 
simplesmente uma separação das moléculas que as constituem e estas soluções são formadas a 
partir de 
substâncias moleculares apolares. 
 
Convém ressaltar que, na época dos estudos de Arrhenius, não existia o conceito de substância iônica e, 
portanto, todas as substâncias eram consideradas moleculares. A teoria de Arrhenius, à luz dos conhecimentos 
atuais, possui explicações distintas para os dois tipos de substâncias (iônica e molecular), 
 
 
DISSOCIAÇÃO 
 
A dissociação iônica é uma propriedade característica de substâncias iônicas. 
 
Estas substâncias, formadas por um aglomerado de íons unidos por força eletrostática, ao interagirem 
com água têm seus íons separados e hidratados. Os íons, agora livres, possuem a capacidade de se movimentar e 
se orientar quando sujeitos à ação de um campo elétrico externo. 
 
Veja, por exemplo, o que ocorre quando dissolvemos cloreto de sódio (NaCl ) em água. 
 
 
 
(Na
+
 
 
Na+Cl (sólido) 
Cl ) 
 
 
Solução aquosa de NaCl 
 
 
 
 
 
 
 
 
 
A água é uma substância formada por moléculas polares, cujo pólo negativo está situado no átomo de 
oxigênio e o pólo positivo está nos átomos de hidrogênio. 
 
= = = 
 
 
 
 
+ + + + + + 
 
Como as partículas de sinais opostos se atraem, os pólos positivos das moléculas de água exercerão 
atração sobre os íons Cl do NaCl, enquanto os pólos negativos das moléculas de água exercerão atração sobre 
os íons Na
+
. O resultado dessas interações será a obtenção de uma solução iônica. 
- 5 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
 
 
+ 
molécula de água ânion cloro 
 
 
 
 
 
cátion sódio 
 
 
 
 
 
Observação 
 
As moléculas que envolvem os íons são denominadas água de solvatação. 
 
A equação que representa todo o processo é dada por: 
 
H2O 
NaCl Na+ + Cl 
 
Há também outra maneira de equacionar a dissociação, um pouco mais detalhada: 
 
NaCl(s) Na+ (aq) + Cl (aq) 
 
Outros exemplos: 
KBr (s) ? K
+
(aq) + Br (aq) 
2
 
Al2(SO4)3 (s) ? 2 Al
3+
(aq) + 3 SO4 
 
Fe(NO3)3 (s) ? Fe 
3+
(aq) + 3 NO3 
 
 
 
IONIZAÇÃO 
 
A ionização é uma propriedade característica de algumas substâncias moleculares que, ao entrarem 
em contato com a água, interagem dando origem a íons. 
 
Vejamos, por exemplo, o gás clorídrico ( HCl ) que é formado por moléculas, em seu estado natural. 
Observe que o hidrogênio está ligado ao ametal cloro e que há diferença de eletronegatividade entre o H e o Cl, 
caracterizando uma polaridade na molécula. Quando esta molécula é dissolvida em água, os dipolos da 
água podem enfraquecer suficientemente a ligação covalente, ocasionando a divisão da molécula. Na divisão, 
o par eletrônico fica com o cloro, que é mais eletronegativo que o hidrogênio. A molécula HCl é 
transformada em íons H
+ 
e Cl pela ação da água , e dizemos que o HCl sofreu ionização. 
 
 
 
 
HCl 
Água 
H
+ 
+ Cl 
 
 
 
Na verdade, essa equação é uma representação simplificada. O fenômeno da ionização do HCl ( e 
de outros ácidos ) ocorre, de fato, através da interação entre as moléculas de HCl e de água, e, o cátion H
+ 
não 
fica livre na solução, ocorrendo uma ligação química entre ele e a água, com formação do cátion H3O
+
, 
chamado de 
 
 
 
H2O + HCl H3O + Cl 
+ 
- 6 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
3 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Como as espécies formadas são íons de carga oposta, tendem normalmente a recombinar-se, isto é, 
tende a ocorrer também: 
+ 
H3O + HCl + 
Dizemos então que o processo é reversível e a representamos: 
 
 
+ 
HCl + H3O + 
 
 
 
Assim, quando moléculas polares são dissolvidas em água, os dipolos da água podem enfraquecer a 
ligação covalente, ocasionando a ionização das mesmas. 
 
Outros exemplos da representação da ionização: 
+ 
HCl + H2O 
 
HNO3 + H2O 
H3O + Cl 
H O 
+ 
+ NO 
 
+
 
H2SO4 + 
2H2O 
2 H3O 
+ 
3 H3O 
+ SO4 
2
 
 
+ PO4 
3
 
 
 
A ionização é um processo em que coexistem moléculas e íons num equilíbrio dinâmico denominado 
equilíbrio químico. O equilíbrio químico é estabelecido quando a velocidade de formação dos íons se iguala à 
velocidade de regeneração das moléculas.Esse equilíbrio pode ser estabelecido em momentos diferentes para as diversas substâncias: 
no momento do equilíbrio, há mais moléculas do que íons, dizemos que o eletrólito é fraco; se houver mais 
ío do que moléculas, o eletrólito é forte. 
 
O coeficiente que mede a extensão da ionização é denominado grau de ionização e é representado pela 
letra a (alfa). 
 
= número de moléculas ionizadas 
número de moléculas dissolvidas 
 
O grau de ionização, que é tabelado, varia entre 0 e 1 ou entre 0 e 100 %. Quando está próximo de 
zero, a substância está pouco ionizada e é um eletrólito fraco; quando se aproxima de 1 (ou 100 %), a substância 
está bastante ionizada e é um eletrólito forte. 
 
Exemplos: 
 
HCl : = 92 / 100 = 0,92 ou 92 % ( eletrólito forte ) 
HF : = 8 / 100 = 0,08 ou 8 % ( eletrólito fraco ) 
 
 
ATENÇÃO 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- 7 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
3 4 
 
 
3 H 
Conceito de ácido e base, segundo Arrhenius 
 
Em suas experiências, Arrhenius, que trabalhava com soluções aquosas de diversas 
substâncias analisando seu comportamento quanto à condutibilidade elétrica, observou certos grupos de 
substâncias que se comportavam de maneira semelhante (possuíam propriedades químicas 
semelhantes) e dividiu-as em dois grupos: ácidos e bases. 
 
Segundo ele, ácido seria toda a substância que, em solução aquosa, liberaria o cátion H+ 
(próton) e 
base, toda substância que, em solução aquosa, liberaria o ânion OH (hidroxila). Com esse tipo de abordagem 
ele incluiu dentro desses dois grupos, substâncias que hoje enquadramos em funções que possue 
 
 
 
FUNÇÕES INORGÂNICAS 
 
Baseando-se nos estudos de Arrhenius, as substâncias ditas inorgânicas foram divididas em 
grupos, chamados funções químicas, que apresentam propriedades químicas semelhantes ou 
semelhanças na constituição de seus compostos. As principais funções são: ácidos, hidróxidos (ou bases), sais 
e óxidos. 
 
A seguir definiremos cada uma das funções, levando-se em consideração, além dos 
conceitos de 
Arrhenius, conceitos existentes atualmente. 
+ 
ÁCIDOS: 
 
SubstâncHiaNsOq3ue, e+m sHo2lOução aquosa, liberamHc3oOmo c+átioNnsOs3omente íons H O (hidrônio). 
 
+
 
H2CO3 + 2 2 H3O + CO3 
2
 
 
H3PO4 
 
+ 3 3 H O 
+
 
 
+ PO 
3
 
De acordo com Arrhenius, apenas se pode definir uma substância como ácido se, em solução aquosa, 
ela produzir, como cátions, somente íons H O
+ 
(ou simplificadamente 
+ 
) . 
 
Como as substâncias que se enquadram nesta classificação são moleculares, a produção 
íons ocorre através do processo de ionização 
 
BASES: 
 
Bases são substâncias que, em solução aquosa, liberam um único tipo de ânion: o ío 
OH , chamado hidroxila ou oxidrila. 
 
As principais bases inorgânicas são hidróxidos, que são iônicos e possuem cátions de 
metais ligados ao grupamento OH ; consequentemente, em solução aquosa, sofrem dissociação iônica 
+ 
NaOH (s) ? Na (aq) + OH 
(aq) 
Ca(OH)2(s) ? Ca (aq) + 2 OH 
(aq) 
Al(OH)3 (s) ? Al (aq) + 3 OH 
 
 
Observação 
 
 
 
 
 
OH em 
- 8 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
SAIS: 
Substâncias que, em solução aquosa, produzem pelo menos um cátion diferente do H 
+ 
e pelo 
menos um ânion diferente do OH . 
 
Assim como os hidróxidos, os sais também são compostos formados por aglomerados de íons e 
água provoca, simplesmente, a separação destes íons, ou seja, sua dissociação 
Exemplos: 
 
NaCl(s) ? 
KNO3(s) ? 
NaHSO4(s) ? 
Na 
+
(aq) 
K 
+ 
(aq) 
Na 
+
 
 
+ C l 
(aq) 
 
 
+ HSO4 (aq) 
 
CaOHCl(s) ? 
Fe2(SO4)3(s) ? 
(CaOH) 
+
(aq) 
2 Fe 
3+ 
(aq) 
+
 
 
+ Cl (aq) 
 
+ 3 SO4
2
 
Na3PO4(s) ? 3 Na (aq) + PO4
3 
(aq 
 
 
ÓXIDOS: 
 
Substâncias binárias (formadas por dois elementos) de oxigênio, onde o oxigênio é o element 
mais eletronegativo entre eles. 
 
Não se consegue um comportamento único dos óxidos em solução aquosa e, em decorrência 
disso, Arrhenius não conseguiu caracterizar os óxidos como uma função. O comportamento que 
cada um assume depende do elemento que está ligado ao oxigênio. 
 
Exemplos: Na2O, CaO, ZnO, N2O3, P2O5 
 
 
 
Função 
 
Tipo de ligação 
 
Em água 
 
Íon característico em água 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CARÁTER ÁCIDO E BÁSICO DE UMA SOLUÇÃO 
 
Entre uma solução muito ácida e uma solução muito básica, a acidez e a basicidade (ou alcalinidade) 
podem variar gradativamente. 
 
Existem certas substâncias, capazes de adquirir diferentes colorações se colocadas em soluções ácidas 
ou em soluções básicas e que são denominadas de indicadores ácido – base. São utilizadas para que se possa 
reconhecer o caráter de uma solução. 
 
A medida quantitativa da acidez ou da alcalinidade de uma solução pode ser feita 
através da comparação com uma escala, denominada de escala de pH, introduzida na química pelo dinamarquê 
Sörensen, 
em 1909. Nessa escala, que vai de zero até quatorze, uma solução neutra tem pH = 7, uma solução ácida tem pH 
 
 
Q uanto maior for a acidez, menor será o pH ; por outro lado, quanto maior for a alcalinidade, 
maior será o pH. 
- 9 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
soluções ácidas água pura e soluções neutras soluções básicas 
 
pH 0 pH 7 pH 14 
 
Acidez crescente 
 
Alcalinidade crescente 
 
 
Os indicadores são ácidos ou bases (orgânicos) muito fracas, de estrutura complexa, que mudam de cor 
em determinados intervalos de pH, denominados zonas (ou intervalos) de viragem. 
 
Na tabela abaixo temos alguns desses indicadores e suas respectivas zonas de viragem. 
 
 
Indicador 
 
zona de 
viragem( pH) 
cor abaixo da zona de 
viragem 
cor acima da zona de 
viragem 
 
 
 1,2 a 
 
 
 
 
Vermelho do congo 
 3,0 a 5,2 Azul 
 
 Alaranjado e Metila 
 
 3,1 a 4, 
 
 
 
 
 
 3,8 a 5,4 
 
 azul 
 
 
 4,4 a 6,2 
 
 
 
 
 
 5,0 a 8,0 
 
 azul 
 Púrpura de Bromocresol 
 
 5,2 A 6,8 
 
 
 
 
 
 6,0 A 7,6 
 
 Azul 
 
 
 6,4 a 8,2 
 
 
 
 
 
 7,0 a 8,8 
 
 
 
 
 
 8,0 a 9,6 
 
 Azul 
 
 
 8,2 a 9,8 incolor 
 
 
 
 9,3 a 10,5 incolor azul 
 
 
 10,0 a 12,1 
 
 Pardo 
 
 Azul de Épsilon 
 11,6 a 13 
 alaranjado 
 violeta 
 
Além dos indicadores em solução, existem papéis impregnados com indicador. O papel de 
tornassol 
vermelho e o papel de tornassol azul são exemplos desses papéis. O tornassol vermelho permanece vermelho 
em soluções ácidas ou neutras e muda para azulem soluções básicas e o tornassol azul permanece azul em 
 
 
 
Meio ácido 
 
Meio básico 
 
Meio neutro 
 
Tornassol azul 
 
vermelho 
 
azul 
 
azul 
 
Tornassol vermelho 
 
vermelho 
 
azul 
 
vermelho 
 
 
 
Existe um papel, denominado papel indicador universal, impregnado com uma mistura de indicadores e 
que adquire diferentes colorações para cada pH. Mergulhando-se esse papel indicador numa solução-problema e 
comparando-se a cor adquirida com a de uma escala de cores, pode-se avaliar o valor numérico 
pH da 
- 10 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
EXERCÍCIOS 
 
1) Faça a fórmula estrutural dos compostos abaixo. Indique quais sofrem dissociação e quais sofrem ionização 
em solução aquosa? Equacione os processos. 
 
a) H2S b) Na2S c) NH3 d) NaOH e) CaCl2 
 
2) Faça a associação: 
 
( a ) conduz corrente elétrica 
 
( b ) não conduz corrente elétrica 
 
( ) solução eletrolítica ( ) solução iônica ( ) solução não – eletrolítica ( ) solução molecular 
 
 
3) Identifique as afirmações verdadeiras: 
 
a) Numa solução iônica, o composto dissolvido é sempre iônico. 
b) Numa solução iônica, o composto dissolvido pode ser iônico ou molecular. 
c) Numa solução molecular, o composto dissolvido é sempre molecular. 
d) Numa solução molecular, o composto dissolvido pode ser molecular ou iônico. 
 
4) Sabendo que o gás clorídrico possui como fórmula HCl, identifique a(s) afirmativa(s) correta(s): 
 
a) HCl (puro) nas condições ambientes conduz corrente elétrica. 
b) HCl (puro) liqüefeito conduz corrente elétrica. 
c) HCl em solução aquosa conduz corrente elétrica. 
d) HCl (puro) no estado sólido conduz corrente elétrica. 
 
5) Considere as afirmações a seguir a respeito do etanol (C2H5OH), um composto molecular que 
quando dissolvido em água, produz uma solução molecular. Verifique se as afirmativas estão 
corretas ou não e 
justifique sua resposta. 
 
a) O etanol puro conduz eletricidade. 
 
 
 
6) Identifique quais das afirmativas a seguir, a respeito do composto NaOH, estão corretas e 
justifique sua 
resposta. 
 
a) NaOH puro conduz corrente elétrica nas condições ambientes. 
b) NaOH em solução aquosa conduz corrente elétrica. 
c) NaOH no estado de vapor conduz corrente elétrica. 
 
7) Com base na informação: ―O sal de cozinha pode ser extraído do mar e é constituído principalmente pelo 
cloreto de sódio (NaCl) ― . 
 
a) Em quais condições o NaCl conduz corrente elétrica ? 
b) Por que a água do mar é um bom eletrólito? 
 
8) Dadas as informações: 
A fórmula do ácido sulfúrico é H2SO4 e ele é líquido nas condições ambientes. 
Ao ser dissolvido em água, origina uma solução iônica. 
Analise as afirmações abaixo e diga se são corretas ou não? Justifique sua resposta. 
a) Ácido sulfúrico puro conduz corrente elétrica 
b) Ácido sulfúrico dissolvido em água conduz corrente elétrica. 
 
9) Dadas as informações: 
A glicose (C6H12O6) é um composto sólido nas condições ambientes. 
Dissolvida em água resulta em solução molecular. 
- 11 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
Analise as afirmações a seguir e diga se são corretas ou não? Justifique sua resposta. 
 
a) Glicose pura, no estado sólido, conduz corrente elétrica. 
b) Glicose, quando fundida, conduz corrente elétrica 
c) Glicose conduz corrente elétrica em solução aquosa 
 
10) Quais das afirmações estão corretas: 
 
a) O HCl liqüefeito conduz corrente elétrica. 
b) O HCl em solução aquosa conduz corrente elétrica. 
c) O HNO3 puro (anidro ou 100 % puro) conduz corrente elétrica . 
d) O HNO3 em solução aquosa conduz corrente elétrica . 
e) O H2SO4 puro (anidro ou 100 %puro) conduz corrente elétrica, no estado líquido 
f) O NaCl conduz corrente elétrica no estado sólido. 
g) O NaCl (anidro ou 100 %puro) conduz corrente elétrica, quando no estado líquido. 
h) O NaCl em solução aquosa conduz corrente elétrica. 
i) O NaOH conduz corrente elétrica no estado sólido 
j) O NaOH (anidro ou 100 %puro) conduz corrente elétrica quando fundido. 
k) O NaOH conduz corrente elétrica em solução aquosa . 
 
11) Dê a fórmula estrutural das substâncias abaixo. Represente a ação da água sobre elas, indicando onde ocorre 
dissociação e onde ocorre ionização: 
 
a) HNO2 
 
e) Fe2(SO4)3 
 
i) MgCl2 
 
b) HI 
 
f) KClO3 
 
j) 
 
c) KOH 
 
g) Ca(OH)2 
 
l) 
 
d) HClO4 
 
h) H2S 
 
m) HF 
 
12) Dissolvendo-se 600 moléculas de uma substância em água, verificou-se que delas, 15 moléculas sofreram 
ionização. 
Qual o grau de ionização da substância em questão? Ela poderá ser considerada um eletrólito forte ou 
fraco? Por quê? 
 
13) O que distingue um eletrólito forte de um fraco é: 
 
a) O grau de ionização 
b) O forte é sempre iônico e o fraco sempre molecular 
c) O eletrólito só é forte quando fundido 
d) O eletrólito só é forte quando em solução 
e) O caráter ácido do eletrólito forte 
 
14) Qual dos itens abaixo representa o eletrólito mais forte? 
a) = 40 % 
b) = 0,85 % 
c) Metade das moléculas se ionizou 
d) Existem 40 moléculas ionizadas em cada 200 moléculas totais 
e) 3 / 4 das moléculas estão ionizadas 
 
15) Identifique a que função pertence cada uma das substâncias abaixo. 
O tipo de interação que ocorre entre elas e a água é: 
Ionização ( I ); 
Dissociação ( D ); 
A interação com a água depende do caráter da substância ( C ) 
 
a) HBrO3 
 
e) Na2CO3 
 
i) 
Fe(OH)3 
 
n) K2O2 
 
b) Pb(OH)2 
f) SO3 
j)KNO3 
o) PbO2 
 
s) Na O
 
 
c) HCN 
g) BaO 
l) I2O5 
p)H3BO3 
 
t)
 
 
d) BaOHBr 
h)H4SiO4 
m)Ca3(PO4)2 
q) NaH2PO4 
u) N O
 
2 2 3 
- 12 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
3 
16) Dados os compostos: KF; HClO2; C2H6O (o O está entre átomos de C) 
a) Faça a fórmula estrutural de cada um deles; 
b) Qual deles em água pode sofrer dissociação iônica? Mostre a equação do processo. 
c) Qual deles em água pode sofrer ionização? Equacione o processo. 
d) Qual deles não tem condições de ser um condutor eletrolítico? Justifique. 
 
17) Assinale a equação na qual está representado um processo em que o produto formado é um bom condutor de 
eletricidade. 
 
a) HI (l ) 
b) HI (g) 
c) HI (s) 
d) HI (aq) 
 
e) HI (g) 
+ energia 
 
energia 
 
+ energia 
água 
+ água 
 
HI (g) 
HI (s) 
HI (l ) 
HI (g) 
HI (aq) 
 
18) Indique, na afirmação a seguir, o que é correto ou incorreto, justificando sua resposta em poucas palavras. 
―Uma solução aquosa de cloreto de hidrogênio (HCl ) apresenta o número de cátions H O 
+ 
igual ao de ânions 
Cl .Portanto, é eletricamente neutra e não conduz a eletricidade.‖ 
 
 
19) A facilidade com que os hidrogênios ionizáveis saem de uma molécula está associada à 
polarização da ligação que ele faz. Quanto mais polarizada, mais facilmente a ligação é rompida e mais íons 
H
+ 
existirão em solução. Partindo-se desse princípio, coloque os seguintes ácidos: HCl ; HClO4; 
HCN; HBr em ordem crescente de força, justificando sua resposta. 
 
20) Considerando os indicadorescitados na tabela fornecida na teoria, que colorações devem adquirir quando 
estiverem em seus intervalos de viragem? 
 
21) Sabendo-se que o término da reação entre o hidróxido férrico e o ácido clorídrico se dá em torno de pH 2, 
qual dos indicadores citados na tabela seria o mais indicado para podermos visualizar o término da reação? 
 
22) A adição de um único indicador a uma solução é o suficiente para determinarmos seu pH? Por quê? 
 
23) Associe, considerando o caráter da solução: 
 
a) É uma solução ácida 
b) É uma solução básica 
c) É uma solução neutra 
) Pode ser uma solução ácida ou neutra 
e) Pode ser uma solução básica ou neutra 
 
( ) Torna azul o papel vermelho de tornassol 
 
( ) Mantém a cor azul do papel de tornassol 
 
( ) Torna vermelho o tornassol azul 
 
( ) Mantém a cor vermelha do papel de tornassol 
 
( ) Adicionando-se gotas de fenolftaleína (incolor) à solução, ela fica avermelhada 
 
( ) Descora a fenolftaleína previamente avermelhada por uma base 
 
( ) Mantém a coloração da fenolftaleína previamente avermelhada por uma base 
- 13 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
2 
2 
3 
2 
3 + 
2 
2+ 
l) óxido ( C ) m) sal ( D ) 
n) óxido ( C ) o) óxido ( C ) 
p) ácido ( I ) q) sal ( D ) 
 
RESPOSTAS 
 
 
 
1) a) H - S - H b) [Na
+
] S2 
 
 
c) H - N - H 
¦ H 
11) Procurar as estruturas na apostila do 1º período 
 
Ionização – I ; Dissociação – D 
 
+ 
d) Na
+ 
[O - H] e) Ca
2+
[Cl ] a) HNO2 + H2O H3O + NO2 ( I ) 
b) HI + H O H O 
+ 
 
+ I ( I )
 
Dissociação: os iônicos 2 3 
+
 
Na2S(s) ? 2 Na (aq) + S 
2 
(aq) 
c) KOH(s) ? K 
+ 
(aq) + OH ( D ) 
NaOH(s) Na 
+ 
(aq) + (aq) 
 
 
d) HClO 
 
+ H O H O 
+
 
 
 
+ ClO 
 
 
( I ) CaCl2(s) ? Ca 
2+(aq) + 2 Cl (aq) 4 2 3 4 
e) Fe (SO ) (s) ? 2 
3+ 
+3 SO 
2
 
(aq) ( D)
 
Ionização : os moleculares 2 4 3 
Fe (aq) 4 
 
H2S + 2 
 
2 H3O + S 
2
 
f) KClO (s) ? K 
+ 
(aq) + ClO (aq) ( D ) 
H2O + NH4 
 
+ OH g) Ca(OH) (s) ? Ca 
2+
(aq) +2 OH (aq) ( D ) 
 
h) H S + 2 H O 2 H O 
+ 
+ S 
2 
( I )
 
2) a, a, b ,b 
 
3) b ,c 
2 2 3 
i) MgCl (s) ? Mg
2+
(aq) + 2 Cl (aq) ( D ) 
 
4) c 
 
5) As afirmativas não estão corretas, pois, 
j) Na2SO4(s) ? 
 
l) Ba(NO3)2(s) ? 
2 Na 
+ 
(aq) + 
SO4 
2
 
(aq) ( D ) 
(aq) ( 
sendo um composto molecular, não
 
m) HF + H O H O 
+ 
+ F ( I )
 
2 3 
pode conduzir corrente quando puro e, 
sua solução, por ser também molecular, não 
possui íons, logo, não pode conduzir corrente. 
 
6) b ,d: NaOH : iônico. Conduz corrente 
fundido ou em solução aquosa,pois a água 
ou a fusão separam íons previamente existentes. 
 
 
7) a) Sendo um composto iônico, conduz fundido e 
em solução aquosa. 
 
b) Pois há vários sais dissolvidos no mar, 
todos iônicos e, portanto, há muitos íons que 
permitem a condução da corrente elétrica. 
 
 
8) a) A afirmativa não é verdadeira pois, 
pquaon,dosó há moléculas no ácido o 
12) = 2,5 % ou 0,25. Eletrólito fraco, 
pois há uma pequena quantidade de íons 
formados em solução. 
 
13) letra a 14) letra e 
 
15) a) ácido ( I ) b) 
base ( D ) c) ácido ( I ) 
d) sal ( D ) e) sal 
( D ) f) óxido ( C ) 
g) óxido ( C ) h) ácido ( I ) 
i) base ( D ) j ) sal ( D ) 
 
 
 
 
r) base ( D ) s)óxido ( C ) 
t) sal ( D ) u) óxido ( C 
 
impede a condução de eletricidade. 
 
íbo)nsQueandeosteds isspoelrvmidiotemema ágcuoan,duhçáão fodrme ação 
) 
 
16) b) KF(s) ? K 
(aq) + F 
 
+ 
de 
c) HClO
 
+ H O H O 
+ 
 
+ ClO
 
2 2 3 2 
elétrica. 
 
9) Nenhuma. Compostos moleculares que originam 
soluções moleculares não conduzem eletricidade e 
sólidos (exceto os metais) não conduzem 
eletricidade. 
 
10) b, d, g, h, j, k 
- 14 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
d) C2H6O, pois é um composto apolar. 
 
17) Letra e 
- 15 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à 
Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
3 
 
 
 
 
18) Uma solução aquosa de cloreto de hidrogênio (HCl ) apresenta o 
número de c
+
átions H O igual ao de ânions Cl : correto. A proporção de 
hidrogênios e cloros 
no ácido clorídrico é de 1:1, logo , em sua ionização o número de cátions será igual 
ao número de ânions. 
 
Portanto, é eletricamente neutra e não conduz a eletricidade: errado. Se há íons, há 
condutividade. Mesmo tendo as cargas positivas sendo neutralizadas eletricamente 
pelas negativas, isso não impede a migração dos íons e dos elétrons na solução. 
 
 
19) HCN < HBr < HCl < HClO4 
Considerando-se a polarização da ligação do hidrogênio com outro 
elemento, a 
ligação menos polarizada é a que ele faz com o carbono (? = 0,4), seguida da 
ligação com o bromo (? = 0,7), com o cloro (? = 0,9) e, finalmente com o oxigênio 
(? = 1,4). 
Não esqueça que nos ácidos oxigenados (salvo exceções), o hidrogênio encontra-se 
ligado ao oxigênio! 
 
20) As cores resultantes das misturas, por ex: 
Azul de timol - laranja 
Vermelho do Congo - roxo 
Alaranjado de metila - laranja 
Vermelho de metila - laranja 
Azul de bromotimol - verde 
Azul de timol - verde 
Fenolftaleína - rosa 
Timolftaleína - azul claro 
 
21) Azul de timol 
 
22) Não. A adição de um só indicador nos dá o intervalo de pH onde a solução se 
encontra, e não o pH específico. 
 
23) 
( b ) Torna azul o papel vermelho de tornassol 
( e ) Mantém a cor azul do papel de tornassol 
( a ) Torna vermelho o tornassol azul 
( d ) Mantém a cor vermelha do papel de tornassol 
( b ) Adicionando-se gotas de fenolftaleína incolor à solução, ela fica avermelhada 
( a ) Descora a fenolftaleína previamente avermelhada por uma base 
( e ) Mantém a coloração da fenolftaleína previamente avermelhada por uma base 
- 16 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
MAIS EXERCÍCIOS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BaBr2 
 
 
KI 
 
FeO 
 
H3BO3 
 
 
KOH 
 
NH3 
 
 
CO 
 
HClO3 
 
 
MgCl2 
 
 
HI 
 
Rb2CO3 
 
 
Al2O3 
 
 
Na2S 
 
 
Ca(OH)2 
 
 
Na3PO4 
 
 
CuO 
 
HBr 
 
CO2 
 
 
Al2(SO4)3 
 
 
H2Se 
 
 
CuI 
 
KClO3 
 
 
Fe(NO3)2 
 
 
N2O3 
 
 
(NH4)3PO4 
 
 
Al(OH)3 
 
 
Ag2O 
 
 
AgNO3 
 
- 17 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BaBr2 
 
 
X 
 
SAL 
2+ 
Ba [Br ]2 
 
X BaBr2(s)?Ba 
2+(aq) +2 Br (aq) 
 
KI 
 
 
X 
 
SAL K
+
I 
 
X KI(s) ? K
+
(aq) + I (aq) 
 
FeO 
 
 
X 
 
ÓXIDO Fe
2+
O
2
 
 
-- 
 
-- 
 
------------------------------------- 
 
 
H3BO3 
 
 
X 
 
 
ÁCIDO 
 
H-?O-?B-?O-?H 
¦ 
O-?H 
 
 
X 
 
 
H BO +3H O 3 H 
+ 
+BO 
3 
3 3 2 3O 3 
 
KOH 
 
 
X 
 
BASE K
+
OH 
 
X KOH(s) ? K
+
(aq) + OH (aq) 
 
 
NH 
 
 
X 
 
 
BASE 
 
H-?N-?H 
¦ H 
 
 
X 
 
NH + NH 
+ 
+ 3 4 
 
CO 
 
X 
 
ÓXIDO 
 
C - O 
 
-- 
 
-- 
 
-------------------------------------- 
 
HClO3 
 
X 
 
ÁCIDO H?O ? Cl? O 
? 
O 
 
 
X 
 
HClO + H O H O 
+ 
+ ClO 3 2 3 3 
 
MgCl2 
 
 
X 
 
SAL 2+ Mg [Cl 2] 
 
X MgCl (s) ?Mg 
2+
(aq) +2 Cl (aq) 2 
 
HI 
 
X 
 
ÁCIDO 
 
H ? 
I 
 
 
X 
 
HI + H O H O 
+ 
+ I 2 3 
 
Rb2CO3 
 
 
X 
 
SAL + 2 [Rb ]2[CO3] 
 
X Rb CO (s) ?2 Rb
+ 
(aq)+ CO 2 (aq) 2 3 3 
 
Al2O3 
 
 
X 
 
ÓXIDO 3+ [Al ]2[ O
2 
]3 
 
-- 
 
-- 
 
------------------------------- 
 
Na2S 
 
 
X 
 
SAL [Na
+
] [S]2 
 
X 
 
 
Na S (s) ?2 
+ 
(aq)+ S2 (aq) Na 
 
Ca(OH)2 
 
 
X 
 
BASE 
 
2+ 
Ca [ OH ]2 
 
X Ca(OH) (s) ? Ca
2+ 
(aq) +2OH 2 
 
Na3PO4 
 
 
X 
 
SAL 
 
[Na
+
]3 [PO4]
3 
 
X Na PO (s) ?3 Na
+ 
(aq)+ PO 3 (aq) 3 4 4 
 
CuO 
 
 
X 
 
ÓXIDO 
 
Cu
2+
O
2 
 
-- 
 
-- 
 
--------------------------------------- 
 
HBr 
 
X 
 
ÁCIDO 
 
H ? Br 
 
 
X 
 
HBr + H O 
+ 
+ Br 3 
 
CO2 
 
X 
 
ÓXIDO 
 
O - C - O 
 
-- 
 
-- 
 
------------------------------ 
 
Al2(SO4)3 
 
 
X 
 
SAL 
 
2 
[Al
3+
]2[ SO4 ]3 
 
X Al (SO ) (s)?2 Al3
+
(aq)+3SO 2 (aq) 2 4 3 4 
 
H2Se 
 
X 
 
ÁCIDO 
 
H?Se?H 
 
 
X H Se + 2 H O 2 H O 
+ 
+ S 
2 
2 2 3 
 
CuI 
 
 
X 
 
SAL 
 
Cu
+
I 
 
X CuI(s) ? Cu
+
(aq) + I (aq) 
 
KClO3 
 
 
X 
 
SAL 
 
K
+ 
[ClO3] 
 
X KClO (s) ? 
+ 
(aq)+ ClO (aq) 3 K 3 
 
Fe(NO3)2 
 
 
X 
 
SAL 
 
Fe
2+
[ NO ] 
 
X Fe(NO ) (s)? Fe2
+ 
(aq)+ 2NO (aq) 
 
N2O3 
 
X 
 
ÓXIDO 
 
O - N?O ?N - O 
 
-- 
 
-- 
 
-------------------------------- 
 
(NH4)3PO4 
 
 
X 
 
SAL 
 
[NH4
+
]3 [PO4]
3 
 
X (NH4)3PO4(s)?3 NH4
+ 
(aq)+PO 
3 
4 
 
Al(OH)3 
 
 
X 
 
BASE 
 
3+ 
Al [OH ]3 
 
X Al(OH) (s) ? Al
3+ 
(aq) +3OH 3 
 
Ag2O 
 
 
X 
 
ÓXIDO 
 
[Ag
+
]2O
2 
 
-- 
 
-- 
 
--------------------------------------- 
 
AgNO3 
 
 
X 
 
SAL 
 
+ 
Ag [NO3 ] 
 
X AgNO (s) ? Ag
+ 
(aq) +NO (aq) 3 3 
 
RESPOSTAS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 2 3 3 
- 18 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
 
 
 
 
 
 
 
CAPÍTULO 2 
 
ÓXIDOS 
Os óxidos são substâncias presentes no nosso dia-a-dia. Um bom exemplo de óxido é o gás carbônico, 
expelido na respiração, principal responsável pelo efeito estufa. Outro óxido muito comum é a areia, utilizado 
na fabricação de vidro e cimento. 
 
 
Definição 
 
 
 
. 
 
 
 
 
 
 
Caráter de um óxido 
 
O caráter de um óxido está relacionado diretamente à eletronegatividade do elemento ligado ao oxigênio. 
 
Óxidos de caráter iônico: o elemento ligado ao oxigênio possui 
eletronegatividade baixa 
(caracteristicamente metais alcalinos e alcalino-terrosos). 
 
Óxidos de caráter covalente ou molecular: o elemento ligado ao oxigênio possui 
eletronegatividade alta (caracteristicamente ametais). 
 
Óxidos de caráter intermediário entre o covalente e o iônico: o elemento 
 
 
caráter ácido caráter básico 
caráter anfótero 
 
 
 
 
Classificação e reações os ó xidos 
 
Como conseqüência das características apresentadas, podemos classificar os óxidos em: 
 
Óxidos básicos 
 
São óxidos iônicos sólidos, formados por metais alcalinos, alcalino-terrosos e por metais que 
apresentam número de oxidação baixo (+1 e +2). 
 
Como exceção a essa regra, temos o óxido formado pelo zinco que, apesar de possuir nox fixo +2, forma óxido 
anfótero. Os óxidos de estanho e chumbo (quando estes apresentam nox +2 ) também possuem caráter anfótero. 
 
Ex: Na2O, MgO, K2O, CaO, CrO, FeO, Ag2O 
 
 
Os óxidos básicos fazem as seguintes reações características: 
 
Reagem com água produzindo hidróxido 
 
K2O + 
H2O 
 
CaO + 
H O 
 
? 2 KOH 
 
? Ca(OH)2 
 
? Fe(OH)2 
 
Reagem com ácidos produzindo sal e água 
- 19 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Observação 
 
 
 
 
 
 
 
 
Não existe o íon O 2 em solução aquosa já que ele reage com a água, gerando íons OH . 
 
H 
O 2 + O OH + OH 
H 
 
CuO + H2O ? 
 
Cu(OH)2 
 
Ag2O + H2O 2AgOH 
 
 
 
 
 
CuO 
(insolúvel) 
Ag2O 
(insolúvel) 
 
 
 
 
Óxidos ácidos ou anidridos 
 
São óxidos moleculares gasosos formados por ametais, boro, silício 
que apresentem número de oxidação elevado (+5, +6, +7). 
 
 
metais de transição 
 
Também são chamados de anidridos de ácidos por serem compostos que podem ser 
obtidos pela 
eliminação total de água de um ácido oxigenado. 
 
 
 
Importante: 
 
CO, N2O e NO são formados por ametais, mas são classificados como óxidos neutros ou indiferentes, pois 
não reagem com água, ácidos ou bases. Sendo assim, na identificação do caráter de um óxido, 
 
 
 
Os óxidos ácidos fazem as seguintes reações características: 
 
Reagem com água produzindo ácidos oxigenados 
CO2 + 
H2O Cl2O3 + 
H2O 
 
? H2CO3 (aq) 
 
? 2 HClO2 (aq) 
 
? H2CrO4(aq) 
 
Reagem com base produzindo sal e água 
 
 
Reagem com óxidos básicos produzindo sal 
 
CO2 + CaO ? CaCO3 
 
SO3 + MgO ? MgSO4 
- 20 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
 
 
 
 
 
 
 
 
Observação 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Óxidos Anfóteros 
São óxidos de caráter intermediário entre o iônico e o covalente, tendendo para o covalente. 
São formados por elementos de eletronegatividade média que podem ser metais 
 ou semimetais 
 
São, em geral, sólidos, insolúveis em água. 
 
Ex: ZnO, PbO, PbO2, As2O3, As2O5, Al2O3, Sb2O3, Sb2O5, SnO, SnO2, Fe2O3 
 
Os óxidos anfóteros possuem um comportamento ambíguo, pois ora agem como óxidos básicos, 
ora como óxidos ácidos. O que determina o comportamento que terão em uma reação é a substância com a qual 
estiverem em contato. Assim: 
 
N ão reagem coma água 
 
Reagem com ácidos fortes produzindo sal e água (comportamento básico) 
Reagem com bases fortes produzindo sal e água (comportamento ácido) 
 
Óxidos Duplos, Mistos ou Salinos 
 
São óxidos de fórmula geral M3O4 ( sendo M um metal dos grupos III e IVA ou de transição 
), formados pela associação de dois óxidos diferentes do elemento M. Correspondem aos minérios onde óxidos 
do mesmo metal, com nox diferentes, encontram-se misturados e cristalizados numa proporção constante. 
 
São óxidos metálicos, iônicos e sólidos nas condições ambientes. 
- 21 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
 
 
O exemplo mais comum desse tipo de óxido é o Fe3O4, constituído pelos óxidos FeO + Fe2O3. O 
Fe3O4 é denominado magnetita, pois é a "pedra-ímã natural‖. 
 
Um outro exemplo é o Pb3O4, constituído pelos óxidos 2 PbO + PbO2. O Pb3O4 é conhecido 
como zarcão e é normalmente utilizado para pintura de fundo em superfícies metálicas, com a finalidade de 
evitar a formação de ferrugem. 
 
A equação da reação dos óxidos salinos pode ser dada como a soma das equações de cada óxido do 
qual é formado. 
 
 
 
 
 
 
 
terrosos. 
Peróxidos 
 
São compostos que apresentam a estrutura ( O2 )
2 
, chamada de estrutura peróxido . 
 
Os peróxidos mais comuns envolvem o hidrogênio, os metais alcalinos e os metais alcalino - 
 
 
Peróxido de hidrogênio: H2O2 
 
É líquido e molecular 
 
Quando está dissolvido em água, o H2O2 origina uma solução conhecida por água oxigenada, muito 
comum em nosso cotidiano. 
 
Peróxido de metal alcalino: 
 
São sólidos e iônicos. Ex: Li2O2, Na 2O2, K2O2 
 
 
Peróxido de metal alcalino - terroso : 
 
São sólidos e iônicos. Ex: MgO2, CaO2, BaO2 
 
 
Os peróxidos metálicos fazem as seguintes reações características: 
 
Reagem com água produzindo hidróxido e peróxido de hidrogênio 
 
2 Na2O2 + 4 H2O ? 4 NaOH + 2H2O2 
 
2H2O + O2 
 
Observação 
 
 
 
 
 
Reagem com ácidos produzindo sal e peróxido de hidrogênio 
 
 
 
Resumindo 
 
 
 
 
 
 
 
 
 
 
 
M3O4 M 
- 22 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
 
 
Nomenclatura 
 
Regra geral 
 
Usada para qualquer tipo de óxido, independente do seu caráter 
 
Leva em conta o número de átomos presente no óxido. Através de prefixos, é indicado o número de 
átomos de oxigênio e o número de átomos do elemento ligado a ele. 
 
 
 
 
 
Exemplos: 
---- ------------------------ óxido de nome do elemento 
mono, di, tri, tetra, etc. mono, di, etc. 
 
P2O5 – pentóxido de difósforo 
 
Fe3O4 – tetróxido de triferro 
 
Cu2O – monóxido de 
dicobre 
 
 
Usada para onde o nox do elemento ligado ao oxigênio é 
independente do seu caráter. 
 
O número de oxidação do elemento ligado ao oxigênio é indicado por algarismos romanos. 
 
 
 
 
 
Exemplos: 
Óxido de 
nome do elemento nox do elemento em alg. romano 
 
MnO2 – óxido de manganês IV Mn2O7 – óxido de manganês VII Fe2O3 – óxido de ferro II 
P2O5 – óxido de fósforo V Cl2O – óxido de cloro I SnO – óxido de estanho I 
 
 
Regras que levam em conta o caráter do óxido 
 
 
Regra para óxidos básicos e anfóteros 
 
 
Se o elemento ligado ao oxigênio tem nox fixo 
 
 
 
 
 
Exemplos: 
Óxido de 
nome do elemento 
 
BaO – óxido de bário 
 
Na2O – óxido de sódio 
 
Li2O – óxido de lítio 
 
ZnO – óxido de zinco 
 
Al2O3 – óxido de alumínio 
 
Ag2O – óxido de prata 
 
 
Se o elemento tem nox variável 
 
 
O número de oxidação do elemento ligado ao oxigênio é indicado por algarismos romanos. 
 
 
Óxido de 
nome do elemento nox do elemento em alg. romano 
- 23 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
Exemplos: 
FeO – óxido de ferro II 
Fe2O3 – óxido de ferro 
 
 
Mn2O3 – óxido de manganês II 
Cu2O – óxido de cobre I 
 
Além da regra geral já vista para óxidos de elementos com nox variável, há também uma 
regra que 
denota o elemento de e o sufixo ico, o de 
 
 
 
Óxido ------------------------------------------------- 
nome do elemento oso (menor nox) ou ico (maior nox) 
 
 
Exemplos: 
 
FeO – óxido ferroso; Fe2O3 – óxido férrico 
 
Au2O – óxido auroso; Au2O3 – óxido áurico 
 
Sb2O3 – óxido antimonioso; Sb2O5 – óxido 
antimônico 
 
 
PbO – óxido plumboso; PbO2 – óxido plúmbico 
 
SnO – óxido estanoso; SnO2 – óxido estânico 
 
 
Regra para óxidos neutros 
 
CO 
 
Usam-se as duas regras gerais já vistas. 
 
N 2O e NO 
 
Podem ser nomeados pelas regras gerais já vistas ou podemos distingui-los através do o sufixos oso 
(menor nox) e ico (maior nox). Logo: 
 
N2O – Monóxido de dinitrogênio , óxido de nitrogênio I ou óxido nitroso 
 
NO – Monóxido de nitrogênio , óxido de nitrogênio II ou óxido nítrico 
 
 
Regra para óxidos ácidos (anidridos) 
 
 
O elemento ligado ao oxigênio forma um único óxido ácido 
 
 
 
 
 
 
Exemplos: 
Anidrido ico 
 
nome do elemento 
 
CO2 – anidrido carbônico CrO3 – anidrido crômico B2O3 – anidrido bórico SiO2 – anidrido silícico 
 
 
O elemento ligado ao oxigênio forma dois óxidos ácidos 
 
 
 
Anidrido 
oso ( menor nox ) 
 
 
nome do elemento ico ( maior nox ) 
 
 
Exemplos: 
 
SO2 – anidrido sulfuroso; SO3 – anidrido sulfúrico N2O3 – anidrido nitroso; N2O5 – anidrido nítrico 
 
P2O3 – anidrido fosforoso; P2O5 – anidrido fosfórico 
- 24 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
Téc. Em Química – Química Geral Aplicada 
O elemento ligado ao oxigênio forma mais de dois óxidos ácidos 
 
 
Hipo ------------------------------ oso 
--------------------------------- oso aumento do nox 
Anidrido --------------------------------- ico 
Per ------------------------------ 
ico nome do elemento 
 
 
Nos anidridos, o prefixo per associado ao sufixo ico indica sempre que o nox do elemento é +7. 
 
Exemplos: 
 
Cl2O – anidrido 
hipocloroso 
 
Cl2O3 – anidrido 
cloroso 
 
Cl2O5 – anidrido clórico 
 
MnO3 – anidrido mangânico 
 
Mn2O7 – anidrido permangânico 
 
 
 
 
 
 
 
Exemplos: 
 
 
 
 
 
 
 
 
 
 
 
 
Exemplos: 
O elemento forma anidridos mistos 
 
 
 
NO2 – anidrido nitroso – nítrico 
Cl2O4 – anidrido cloroso - clórico 
Cl2O6 – anidrido clórico - perclórico 
 
 
Regra para óxidos duplos 
 
Leva em conta a presença das duas valências (nox). 
 
 
Fe3O4 – Óxido ferroso - férrico 
 
Mn3O4 – Óxido manganoso - mangânico 
Pb3O4 – Óxido plumboso - plúmbico 
Co3O4 – Óxido cobaltoso - cobáltico 
 
 
Regra para peróxidos 
 
 
Peróxido de -------------------------------- 
nome do elemento 
 
 
Exemplos : 
 
Na2O2 – peróxido de sódio 
CaO2 – peróxido de cálcio 
 
H2O2 – peróxido de hidrogêni 
 
BaO2 – peróxido de bário 
- 25 - 
Escola Estadual de Educação Profissional [EEEP]Ensino Médio Integrado à Educação 
Profissional 
Téc. Em Química – Química Geral Aplicada 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o 
 
o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o 
 
 
 
Cr+2O 
 
óxido básico 
Cr2+3O3 
 
óxido anfótero 
Cr+6O3 
 
óxido ácido 
 
 
 
Mn+2O Mn+32O3 Mn+4O2 Mn+6O 3 Mn+72O7 
 
óxidos básicos óxido anfótero óxidos ácidos 
 
 
 
 
 
 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OCORRÊNCIA DOS ÓXIDOS NA NATUREZA 
 
Os óxidos são muito abundantes na crosta terrestre. As substâncias encontradas naturalme 
crosta terrestre são chamadas de minerais. Alguns deles podem ser aproveitados pel de 
indústria 
 
 
Minério é o nome dado a um mineral a partir do qual é economicamente viável a extração de um 
elemento químico. 
 
A seguir, estão alguns minérios e os elementos que podem ser obtidos a partir deles: 
 
 
hematita 
magnetita 
pirolusita 
cassiterita 
bauxita 
b lenda 
galena 
calcosita 
quartzo, sílica 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ÓXIDOS MAIS COMUNS 
 
ÓXIDOS BÁSICOS 
 
Óxido de cálcio - CaO 
 
Também conhecido como cal vi va ou cal vi rgem, não é encontrado na natureza e 
por isso é obtido pela decomposição térmica do carbonato de cálcio (CaCO3), que existe em 
grande quantidade na natureza (mármore ou calcário). 
 
É usado pelos pedreiros no preparo da argamassa, misturando-o com água. Essa reação 
provoca grande liberação de calor e produz a cal extinta ou cal apagada (Ca(OH)2), representada pela equação 
CaO + 
H2O 
? Ca(OH)2 + 
calor 
 
cal extinta 
- 25 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Por ser um óxido básico, é utilizado na agricultura para diminuir a acidez do solo. Além disso, é 
utilizado para neutralizar o ácido sulfúrico derramado em acidentes rodoviários ou em 
vazamentos nas indústrias. 
 
É usado em pintura de paredes, denominada caiação. 
 
 
Óxido de magnésio - MgO 
 
É chamado de magnésia. Misturado com água, forma o chamado leite de magnésia 
usado como antiácido estomacal. 
 
 
ÓXIDOS NEUTROS 
 
Monóxido de carbono - CO 
 
É um gás incolor, inodoro, extremamente tóxico por se ligar à hemoglobina do sangue, impedindo 
que ela transporte o oxigênio durante o processo de respiração. 
 
É um s ério poluente atmosférico. 
 
Forma-se na queima incompleta de combustíveis (gasolina, álcool, diesel). Por isso, nunca se deve 
ligar o motor de um veículo em ambientes fechados ou usar aquecedores a gás em ambientes sem ventilação, 
uma vez que, nessas condições, pode ocorrer formação de CO em níveis perigosos e, até mesmo, fatais. 
 
A quantidade de CO lançada na atmosfera pelos escapamentos dos automóveis, 
ônibus e caminhões, cresce na seguinte ordem, em relação ao combustível usado: 
 
 
álcool (etanol) < gasolina < querosene < óleo diesel 
 
 
 
 
Ó xido nitroso - N2O 
 
É um gás incolor, de odor adocicado, usado como anestésico e conhecido como gás hilariante. 
 
 
Óxido nítrico - NO 
 
É um gás incolor, produzido quando ocorre reação entre o oxigênio e o nitrogênio, a temperaturas 
muito elevadas. 
 
No motor dos automóveis ocorre entrada de ar, cujo O2 é necessário à combustão. Junto com esse 
oxigênio, entram outros componentes do ar, que não deveriam, em princípio, tomar parte das reações dentro do 
motor. No entanto, devido à alta temperatura interna do motor, ocorre reação entre N2 e O2: 
 
N2 + O2 ? 2 NO 
 
Em contato com o oxigênio do ar, o NO se transforma em NO2, óxido ácido que ao reagir com a 
água da chuva produz os ácidos nítrico (HNO3) e nitroso (HNO2). Por isso, o NO é considerado como poluente 
atmosférico. 
 
 
ÓXIDOS ÁCIDOS 
 
 
Dióxido de carbono - CO2 
 
É um gás incolor, inodoro, mais denso que o ar e por isso, pode acumular-se no chão 
causar asfixia se sua concentração for maior que 0,5 % em volume. 
 
O CO2 não é tóxico portanto não é poluente. O ar contendo teor de CO2 maior que o norma 
(0,03 %) é impróprio para a respiração porque contém um teor de O2 menor que o normal. 
- 26 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Não é combustível nem comburente e, por isso, é usado como extintor de incêndios. 
 
No estado sólido é conhecido como gelo seco e é usado em refrigeração e em shows e filmes, como 
artifício cênico. 
 
Quando bebemos água mineral gaseificada e refrigerante, estamos ingerindo uma mistu 
que contém o gás carbônico, que sendo um óxido ácido, reage com a água produzindo ácido carbônico (H2CO3). 
o fato de todo refrigerante gaseificado possuir um caráter ácido. 
 
A adição de gás carbônico na fabricação de refrigerantes é feita sob uma pressão 
maior que a atmosférica, o que aumenta sua solubilidade em água. Ao deixarmos uma garrafa 
de refrigerante aberta, permitimos a saída de grande parte do gás carbônico para o meio ambiente, o que 
torna o refrigerante "choco", 
isto é, praticamente sem gás. 
 
Plantas e animais, ao respirar, eliminam gás carbônico, sendo, portanto natural sua 
presença na atmosfera. Quando chove, ocorre uma reação entre ele e a água, produzindo ácido 
carbônico, o que deixa a chuva ligeiramente ácida. Ess a acidez n atural d a chu va é tão bai xa que não 
faz nenh u m mal aos seres vivos. 
 
A queima dos combustíveis (álcool, gasolina, diesel, etc.) produz uma mistura de CO2, CO, fuligem 
( C ) e água, o que aumenta muito a concentração de gás carbônico na atmosfera. 
 
O gás carbônico presente na atmosfera tem a propriedade de absorver parte das 
radiações infravermelhas provenientes da reflexão da luz solar que incide sobre a Terra, agindo assim como um 
espécie 
de cobertor, que evita que as radiações escapem completamente para o espaço, mantendo assim 
planeta 
aquecido. 
 
 
 
Dióxido de enxofre - SO2 
 
É um gás incolor, tóxico, de cheiro forte e irritante e constitui um sério poluente atmosférico 
 
É formado na queima do enxofre e dos compostos que o contêm: 
S + O2 ? SO2 
Uma das fases da fabricação do ácido sulfúrico (H2SO4) consiste na queima de 
enxofre ou de minérios de enxofre, particularmente da pirita (FeS2). Por isso, nas regiões onde há fábricas de 
ácido sulfúrico, o dióxido de enxofre é o principal poluente do ar. 
 
A queima de combustíveis derivados de petróleo (gasolina, querosene, diesel) 
também é responsável pelo lançamento de SO2 na atmosfera, uma vez que estes 
combustíveis possuemcompostos de enxofre em sua constituição. 
 
Uma vez lançado na atmosfera, o dióxido de enxofre reage, em parte, com o 
oxigênio do ar formando trióxido de enxofre (SO3). Esses dois óxidos interagem com a água das 
chuvas formando ácidos, dando origem à denominada chuva ácida, que causa sérios problemas ambientais. 
 
As reações que ocorrem para a formação da chuva ácida são: 
Queima de enxofre 
S + O2 ? SO2 
 
Transformação de SO2 em SO3 
 
2 SO2 + ? 2 
 
Reações com a água da chuva 
 
SO2 + H2O ? H2SO3 e SO3 + H2O ? H2SO4 
- 27 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Dióxido de nitrogênio - NO2 
 
É um gás de cor castanho - avermelhada, de cheiro forte e irritante, muito tóxico, e constitui um 
poluente atmosférico 
 
É o principal poluente do ar nas regiões onde há fábricas de ácido nítrico (HNO3). O gás castanho 
que sai das chaminés das fábricas contém alto teor de NO2. 
 
Já vimos que nos motores dos veículos, devido a alta temperatura, há formação de NO (monóxido 
de nitrogênio) através da reação entre o oxigênio e o nitrogênio e que em contato com o ar, o NO se transforma 
em NO2. A interação do NO2 com a água da chuva geram os ácidos nitroso (HNO2) e nítrico (HNO3), 
dando origem, portanto, à chuva ácida, que, como já foi visto, causa sério impacto ambiental. 
 
N2 + O2 ? 
 
2 NO + O2 ? 
 
2 NO2 + ? 
 
2 NO 
 
2 NO2 
 
HNO2 + 
 
 
Além da de chuva ácida, a presença de NO2 na atmosfera gera outro 
produção de ozônio (O3). Considerado sério poluente atmosférico, é obtido através da seguinte reação: 
 
NO2 + ? NO + 
 
Veja que contraste da natureza: o ozônio formado nas camadas inferiores da atmosfera é totalmente 
indesejável e, por isso, é considerado um poluente, mas, na estratosfera, onde é absolutamente necessário, ele é 
destruído. Para evitar sua produção, alguns automóveis modernos possuem dispositivos, chamados conversores 
catalíticos, capazes de transformar os óxidos de nitrogênio em nitrogênio (N2), antes de serem 
lançados na atmosfera. 
 
Convém ressaltar que, mesmo em regiões não poluídas, as águas da chuva também podem conter 
ácido nítrico, ainda que em quantidades bem menores, se essas chuvas forem acompanhadas 
de raios e relâmpagos. Nessas condições, nitrogênio e oxigênio do ar combinam-se 
(devido à grande energia desenvolvida) originando NO2 que, dissolvido na água, produz HNO3. 
 
 
PERÓXIDOS 
 
Peróxido de hidrogênio - H2O 2 
 
O peróxido de hidrogênio, ou água oxigenada, é um líquido incolor, com viscosidade semelhante à 
do xarope, que explode violentamente quando aquecido. 
 
As soluções aquosas diluídas de peróxido de hidrogênio são de uso comum (como anti- 
séptico, alvejante, para clarear pêlos e cabelos, etc.). 
 
Os frascos de água oxigenada normalmente são escuros ou opacos, pois a luz provo 
a sua decomposição: 
 
2 H2O2 ( aq ) ? 2 H2O( l ) 
 
+ O2 ( g ) 
 
 
Soluções cuja concentração é maior do que 30 % de peróxido de hidrogênio são 
utilizadas, 
industrialmente, como alvejante de madeiras, fibras, ossos, marfim, cera de abelhas, tecidos e, 
- 28 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à 
Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sobre a chuva ácida 
 
 
 
 
O que é chuva ácida? 
 
 
 
 
 
 
 
 
 
 
 
A água de chuva já é naturalmente ácida? 
 
 
 
 
 
 
 
 
 
 
 
 
 
O que causa a deposição ácida? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mas, a chuva ácida pode ter uma causa natural? 
 
 
 
 
 
 
 
 
 
 
E como são formados os ácidos sulfúrico e nítrico? 
 
 
 
- 
- 29 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à 
Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
O alcance da chuva ácida 
 
 
 
 
 
 
 
 
 
 
 
 
Chuva ácida é um fenômeno recente? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Todas as regiões têm a mesma capacidade de neutralizar os ácidos? O 
que acontece quando esta capacidade de neutralização é esgotada? 
Quais os efeitos da chuva ácida sobre o solo e a vegetação? 
- 30 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à 
Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Quais os efeitos da chuva ácida sobre os ecossistemas aquáticos? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Quais os efeitos da chuva ácida sobre os materiais? 
 
 
 
 
 
 
 
 
 
 
 
 
 
Quais os efeitos da chuva ácida sobre a saúde? 
- 31 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à 
Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sobre o efeito estufa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ondas curtas 
 
 
 
ondas lon gas 
 
 
 
 
 
- 32 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
gases de estufa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- 33 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
1) Complete: 
EXERCÍCIOS 
 
 
 
 
 
 
 
 
K2O 
SnO 
Cl2O 
Cu2O 
N2O3 
MgO2 
ZnO 
NO2 
Fe2O3 
CO 
CrO3Li2O 
CO2 
NO 
 
 
2) Associe: 
 
( a ) caráter ácido ( b ) caráter básico 
 
( ) Óxidos dos elementos com eletronegatividade baixa. 
 
( ) Como regra, óxidos dos elementos com eletronegatividade alta. 
 
( ) Como regra, óxidos dos elementos localizados à esquerda da tabela periódica . 
 
( ) Como regra, óxidos dos elementos localizados à direita da tabela periódica (excluindo os gases nobres). 
( ) Óxidos iônicos 
( ) Óxidos moleculares 
 
( ) Óxidos dos elementos ametálicos (como regra) 
 
( ) Óxidos dos elementos 
 
( ) Óxidos dos elementos 
 
( ) Óxidos dos elementos 
 
metálicos (como regra) 
 
metálicos que apresentam baixo nox ( +1 ; +2 ) 
 
metálicos que apresentam nox elevado ( +5) 
 
 
3) Dê nome aos seguintes óxidos, segundo a regra geral (dos prefixos): 
 
a) CO b) NO c) N2O d) NO2 e) N2O3 f) N2O4 
g) N2O5 h) SO2 i) SiO2 j) Pb3O4 l) P2O3 m) Na2O2 
n) BaO2 
 
t) Mn2O7 
o) MnO2 
 
u) ClO2 
p) HgO 
 
v) Cr2O3 
q) Fe2O3 
 
x) Hg2O 
r) PbO2 
 
z) I2O5 
s) CrO3 
- 34 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
4) Identifique o tipo dos óxidos abaixo, nomeando-os. 
 
a) K2O b) MgO c) N2O3 d) SO2 e) FeO f) Cl2O 
g) Cu2O h) BaO2 i) CaO j) HgO k) Br2O3 l) CuO 
m) Li2O n) SO3 o) BaO p) N2O5 q) Br2O7 r) Ag2O 
s) Li2O2 t) CrO3 u) CO2 v) Na2O x) Mn2O7 z) I2O5 
 
5) Faça a reação dos óxidos do item anterior com água. 
 
 
6) Dê a fórmula dos óxidos abaixo: 
 
a) óxido de níquel II 
 
d) anidrido bórico 
g) óxido de prata 
j) óxido cúprico 
m) óxido de estanho II 
 
p) anidrido sulfuroso 
s) anidrido silícico 
v) óxido de cobre I 
 
b) óxido mercuroso 
e) óxido de cálcio 
h) anidrido clórico 
 
k) anidrido perclórico 
n) anidrido nítrico 
q) óxido plumboso 
t) anidrido hipobromoso 
x) óxido ferroso 
 
c) anidrido carbônico 
f) anidrido sulfúrico 
i) anidrido nitroso 
l) óxido auroso 
o) óxido de manganês II 
 
r) anidrido fosfórico 
u) óxido de magnésio 
z) anidrido fosforoso 
 
7) Dê dois nomes possíveis, excetuando a regra válida para qualquer tipo de óxido: 
 
a) CuO 
 
h) Mn2O7 
b) MnO 
 
i) PbO 
c) Hg2O 
 
j) PbO2 
d) MnO3 
 
l) Au2O 
e) Cl2O 
 
m) Cl2O7 
f) Cu2O 
 
n) N2O 
g) HgO 
 
o) NO 
p) Cl2O6 
 
x) N2O3 
q) CO2 
 
z) N2O5 
r) FeO s) Fe2O3 t) CrO3 u) P2O3 v) P2O5 
 
8) Usando as regras específicas quanto ao caráter, dê nome a: 
a) K2O b) K2O2 c) ZnO d) Al2O3 e) MgO f) H2O2 
g) SrO2 h) BaO i) Li2O j) Li2O2 l) BaO2 m) K2O2 
n) CaO2 o) Cl2O3 p) SnO q) SnO2 r) SO2 s) SO3 
t) As2O3 u) As2O5 v) MnO x) Mn2O3 z) Na2O2 
 
9) Escreva as fórmulas dos seguintes óxidos: 
 
a) pentóxido de dicloro 
b) anidrido nitroso 
c) óxido de níquel III 
 
d) óxido nitroso 
 
e) óxido de cromo VI 
f) peróxido de sódio 
g) óxido arsênico 
h) óxido de antimônio III 
 
i) tetróxido de trimanganês 
j) óxido estanoso 
k) peróxido de cálcio 
 
l) óxido de estanho IV 
m) óxido de alumínio 
n) trióxido de enxofre 
o) óxido nítrico 
p) anidrido nítrico 
 
q) anidrido sulfuroso 
 
r) peróxido de potássio 
s) óxido de iodo I 
t) óxido áurico 
 
u) óxido plumboso 
 
v) anidrido mangânico 
x) óxido de bromo III 
z) óxido de magnésio 
 
10) Equacione as reações: 
 
a) N2O3 
+ 
 
b) Cl2O + 
 
c) K2O2 + d) CuO + H2O e) CrO3 + 
H2O H2O 
 
h) N2O3 
+ 
- 35 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
H2O 
- 36 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
11) Dados os óxidos: CO, CO2, BaO, ZnO, Fe3O4, Cl2O5, CuO, N2O, Na2O2 
 
a) Qual o nox de cada elemento ligado ao oxigênio? 
 
b) Quais são capazes de reagir com água formando ácido? Equacione. 
c) Quais são capazes de reagir com HCl ? 
d) Quais são capazes de reagir com NaOH ? 
 
e) Quais são neutros? 
 
12) Cal viva é o óxido de cálcio. 
 
a) Escreva a equação da reação da cal viva com a água. 
adicionada ao solo? 
 
 
b) Por que, na agricultura, a cal 
 
13) Quando aplicada em ferimentos, a água oxigenada parece "ferver". 
 
a) Por quê? b) Escreva a equação que representa a reação química envolvida. 
 
14) A queima de combustíveis fósseis conduz à formação de compostos derivados do enxofre. Estes compostos 
são lançados na atmosfera, precipitando na forma de chuvas ácidas, fenômeno que causa sérios danos ao meio 
ambiente. Escreva as equações de formação do ácido sulfúrico, a partir do enxofre. 
 
15) Associe: 
( a ) Fe3O4 
( b ) SnO2 
( c ) Al2O3 
( d ) Fe2O3 
( e ) MnO2 
 
( ) bauxita 
( ) hematita 
( ) magnetita 
( ) pirolusita 
( ) cassiterita 
 
16) Associe: 
( a ) Pb3O4 
( b ) CO2(s) 
( c ) Fe3O4 
( d ) CaO 
( e ) SiO2 
 
( ) cal virgem 
( ) quartzo 
( ) gelo seco 
( ) zarcão 
( ) pedra-ímã natural 
 
17) Associe: 
( a ) CaO 
( b ) NO2 
( c ) Pb3O4 
( d ) SiO2 
( e ) CO2 
 
( ) extintor de incêndio 
( ) usado pelos pedreiros 
( ) óxido mais abundante na crosta terrestre 
( ) usado para proteger o ferro contra ferrugem 
( ) responsável pela poluição do ar com ozônio 
 
 
18) Quais são os óxidos responsáveis pela formação da chuva ácida? Equacione o fenômeno. 
 
19) A chuva ácida provocada pelo gás carbônico e pela formação de dióxido de nitrogênio nas 
tempestades 
 
20) O NO2 eliminado do escapamento dos automóveis é o principal responsável pela poluição do ar com ozônio. 
Qual é a reação que ocorre nesse processo? 
 
21) O gelo seco consiste em dióxido de carbono sólido, que nas condições ambientes, sofre sublimação. 
Colocando um pedaço de gelo seco em água destilada, o meio ficará ácido ou básico? Justifique com o 
auxílio de uma equação química. 
- 37 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
 
K2O 
 
X 
 
Óxido básico 
 
Óxido de potássio 
 
K2O + H2O ? 2 KOH 
 
SnO 
 
X 
 
X 
 
Óxido anfótero 
 
Óxido de estanho II ou 
estanoso 
 
Não reage 
 
Cl2O 
 
X 
 
Óxido ácido 
 
Anidrido hipocloroso 
 
Cl2O + H2O ? 2 HClO 
 
Cu2O 
 
X 
 
Óxido básico 
 
Óxido de cobre I ou 
cuproso 
 
Cu2O + H2O ? 2 CuOH 
 
N2O3 
 
X 
 
Óxido ácido 
 
Anidrido nitroso 
 
N2O3 + H2O ? 2 HNO2 
 
MgO2 
 
X 
 
Peróxido 
 
Peróxido de magnésio 
 
MgO2+ H2O? Mg(OH)2 +H2O + ½ O2 
 
ZnO 
 
X 
 
X 
 
Óxido anfótero 
 
Óxido de zinco 
 
Não reage 
 
NO2 
 
X 
 
Anidrido misto 
 
Anidrido nitroso-nítrico 
 
NO2 + H2O ? HNO2 + HNO3 
 
Fe2O3 
 
X 
 
X 
 
Óxido anfótero 
 
Óxido de ferro III ou 
férrico 
 
Não reage 
 
CO 
 
X 
 
Óxido neutro 
 
Monóxido de carbono 
 
Não reage 
 
CrO3 
 
X 
 
Óxido ácido 
 
Anidrido crômico 
 
CrO3 + H2O ? H2CrO4 
 
Li2O 
 
X 
 
Óxido básico 
 
Óxido de lítio 
 
Li2O + H2O ? 2 LiOH 
 
CO2 
 
X 
 
Óxido ácido 
 
Anidrido carbônico 
 
CO2 + H2O ? H2CO3 
 
NO 
 
X 
 
Óxido neutro 
 
Óxido nítrico 
 
Não reage 
 
 
 
1)2) ( b) (a ) ( b ) ( a ) ( b ) ( a ) ( a )( b )( b) ( a ) 
 
 
3)a) monóxido de carbono 
b) monóxido de nitrogênio 
c) monóxido de dinitrogênio 
d) dióxido de nitrogênio 
e) trióxido de dinitrogênio 
f) tetróxido de dinitrogênio 
g) pentóxido de dinitrogênio 
h) dióxido de enxofre 
i) dióxido de silício 
j) tetróxido de trichumbo 
l) trióxido de difósforo 
RESPOSTAS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
m) dióxido de disódio 
n) dióxido de bário 
o) dióxido de manganês 
p) monóxido de mercúrio 
q) trióxido de diferro 
r) dióxido de chumbo 
s) trióxido de cromo 
t) heptóxido de dimanganês 
u) dióxido de cloro 
v) trióxido de dicromo 
x) monóxido de dimercúrio 
z) pentóxido de difosfóro 
- 38 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
 
4) a) K2O – básico; óxido de potássio 
 
b) 
 
MgO – básico; óxido de magnésio 
c) 
 
e) 
N2O3 – ácido ; anidrido nitroso 
 
FeO – básico ; óxido de ferro II ou óxido ferroso 
d) 
 
f) 
SO2 – ácido ; anidrido sulfuroso 
 
Cl2O – ácido ; anidrido hipocloroso 
g) Cu2O – básico ; óxido de cobre I ou óxido cuproso h) BaO2 – peróxido ; peróxido de bário 
i) CaO – básico ; óxido de cálcio j) HgO – básico ; óxido de mercúrio II ou óxido mercúrico 
k) Br2O3 – ácido ; anidrido bromoso l) CuO – básico; óxido de cobre II ou óxido cúprico 
m) Li2O – básico ; óxido de lítio n) SO3 – ácido ; anidrido sulfúrico 
 
o) BaO – básico; óxido de bário p) N2O5 – ácido ; anidrido 
nítrico 
 
q) Br2O7 – ácido ; anidrido perbrômico r) Ag2O – básico ; óxido de prata 
 
s) Li2O2 – peróxido; peróxido de lítio t) CrO3 – ácido ; anidrido crômico 
u) CO2 – ácido ; anidrido carbônico v) Na2O – básico; óxido de sódio 
x) Mn2O7 – ácido ; anidrido permangânico z) I2O5 – ácido ; anidrido iódico 
 
 
5) a) K2O + H2O ? 2 KOH b) MgO + H2O ? Mg(OH)2 
 
c) N2O3 + H2O ? 2 HNO2 d) SO2 + H2O ? H2SO3 
 
e) FeO + H2O ? Fe(OH)2 f) Cl2O + H2O ? 2 HClO 
 
g) Cu2O + H2O ? 2 CuOH h) 2 BaO2 + 4 H2O ? 2 Ba(OH)2 + 2 H2O + O2 
 
i) CaO + H2O ? Ca(OH)2 j) HgO + H2O ? Hg(OH)2 
k) Br2O3 + H2O ? 2 HBrO2 l) CuO + H2O ? Cu(OH)2 
m) Li2O + H2O ? 2 LiOH n) SO3 + H2O ? H2SO4 
o) BaO + H2O ? Ba(OH)2 p) N2O5 + H2O ? 2 HNO3 
q) Br2O7 + H2O ? 2 HBrO4 r) Ag2O + H2O ? 2 AgOH 
s) 2 Li2O2 + 4 H2O ? 4 LiOH + 2H2O + O2 t) CrO3 + H2O ? H2CrO4 
u) CO2 + H2O ? H2CO3 v) Na2O + H2O ? 2 NaOH 
x) Mn2O7 + H2O ? 2 HMnO4 z) I2O5 + H2O ? 2 HIO3 
 
6)a) NiO b) Hg2O c) CO2 d) B2O3 e) CaO f) SO3 g) Ag2O 
h) Cl2O5 i) N2O3 j) CuO k) Cl2O7 l) Au2O m) SnO n) N2O5 
o) MnO p) SO2 q) PbO r) P2O5 s) SiO2 t) Br2O u) MgO 
v) Cu2O x) FeO z) P2O3 
 
7) a) CuO – óxido de cobre II ou óxido cúprico 
 
b) MnO – óxido de manganês II ou óxido manganoso 
c) Hg2O – óxido de mercúrio I ou óxido mercuroso 
d) MnO3 – óxido de manganês VI ou anidrido mangânico 
 
e) Cl2O – óxido de cloro I ou anidrido hipocloroso 
f) Cu2O – óxido de cobre I ou óxido cuproso 
g) HgO –óxido de mercúrio II ou óxido mercúrico 
 
h) Mn2O7 – óxido de manganês VII ou anidrido permangânico 
i) PbO – óxido de chumbo II ou óxido plumboso 
j) PbO2 – óxido de chumbo IV ou óxido plúmbico 
- 39 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à 
Educação Profissional 
 
7) l) Au2O – óxido de ouro I ou óxido auroso 
 
m) Cl2O7 – óxido de cloro VII ou anidrido perclórico 
n) N2O – óxido de nitrogênio I ou óxido nitroso 
o) NO – óxido de nitrogênio II ou óxido nítrico 
 
p) Cl2O6 – óxido de cloro VI ou anidrido clórico-
perclórico q) CO2 – óxido de carbono IV ou anidrido 
carbônico 
r) FeO – óxido de ferro II ou óxido ferroso 
 
s) Fe2O3 – óxido de ferro III ou óxido férrico 
 
t) CrO3 – óxido de cromo VI ou anidrido crômico 
 
u) P2O3 – óxido de fósforo III ou anidrido fosforoso 
v) P2O5 – óxido de fósforo V ou anidrido fosfórico 
x) N2O3 – óxido de nitrogênio III ou anidrido nitroso 
z) N2O5 – óxido de nitrogênio V ou anidrido nítrico 
 
8) a)K2O – óxido de potássio b) K2O2 – peróxido de potássio 
c)ZnO – óxido de zinco d) Al2O3 – óxido de alumínio 
e)MgO – óxido de magnésio f) H2O2 – peróxido de hidrogênio 
g) SrO2 – peróxido de estrôncio h) BaO – óxido de bário 
i) Li2O – óxido de lítio j) Li2O2 – peróxido de lítio 
 
l) BaO2 – peróxido de bário m) K2O2 – peróxido de potássio 
n) CaO2 – peróxido de cálcio o) Cl2O3 – anidrido cloroso 
p) SnO – óxido estanoso q) SnO2 – óxido estânico 
 
r) SO2 – anidrido sulfuroso s) SO3 – anidrido sulfúrico 
t) As2O3 – óxido arsenioso u) As2O5 – óxido arsênico 
v) MnO – óxido manganoso x) Mn2O3 – óxido mangânico 
 
z) Na2O2 – peróxido de sódio 
 
9) a) Cl2O5 b) N2O3 c) Ni2O3 d) N2O 
e) CrO3 f) Na2O2 g) As2O5 h) Sb2O3 
) Mn3O4 j) SnO k) CaO2 l) SnO2 
m) Al2O3 n) SO3 o) NO p) N2O5 
q) SO2 r) K2O2 s) I2O t) Au2O3 
u) PbO v) MnO3 x) Br2O3 z) MgO 
 
10) a) N2O3 + H2O ? 2 HNO2 h) N2O3 + Na2O ? 2 NaNO2 
b) Cl2O + H2O ? 2 HClO i) Mn2O7 + H2O ? 2 HMnO4 
c) 2 K2O2 + 4 H2O ? 4 KOH + 2 H2O + O2 
d) CuO + H2O ? Cu(OH)2 
 
e) CrO3 + H2O ? H2CrO4 
f) BaO + H2O ? Ba(OH)2 
g) CO2 + BaO ? BaCO3 
- 40 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à 
Educação Profissional 
 
11) a) C = +2, C = +4, Ba = +2, Zn = +2, Fe = +8/3, Cl = +5, Cu = +2, N = +1, Na = +1 
 
b) CO2 + H2O ? H2CO3 c) BaO ; ZnO ; Fe3O4 ; CuO ; Na2O2 
 
Cl2O5 + H2O ? 2 HClO3 d) CO2 ; ZnO ; Cl2O5 e) CO e N2O 
 
12) Cal viva é o óxido de cálcio. 
 
a) CaO + H2O ? Ca(OH)2 b) Para diminuir a acidez do solo. 
 
 
13) a) Devido à formação de gás oxigênio. b) 2 H2O2 ? 2 H2O + O2 
 
 
14) S + O2 ? SO2 SO2 + ½ O2 ? SO3 SO3 + H2O ? H2SO4 
 
15) ( a ) Fe3O4 
 
( c ) bauxita 
 
( b ) SnO2 ( d ) hematita 
( c ) Al2O3 ( a ) magnetita 
( d ) Fe2O3 ( e ) pirolusita 
( e ) MnO2 ( b ) cassiterita 
 
 
16) ( a ) Pb3O4 ( d ) cal virgem 
( b ) CO2(s) ( e ) quartzo 
( c ) Fe3O4 ( b ) gelo seco 
( d ) CaO ( a ) zarcão 
( e ) SiO2 ( c ) pedra-ímã natural 
 
 
17) ( a ) CaO ( e ) extintor de incêndio 
( b ) NO2 ( a ) usado pelos pedreiros 
( c ) Pb3O4 ( d ) óxido mais abundante na crosta terrestre 
( d ) SiO2 ( c ) usado para proteger o ferro contra ferrugem 
( e ) CO2 ( b ) responsável pela poluição do ar com ozônio 
 
 
18) SO2 , NO2 
 
2 NO2 + H2O ? HNO2 + HNO3 
 
SO2 + ½ O2 ? SO3 
SO2 + H2O ? H2SO3 
SO3 + H2O ? H2SO4 
 
19) Não, essa acidez natural da chuva é tão baixa que não faz nenhum mal aos seres vivos. 
 
 
20) NO2 + O2 ? NO + O3 
 
21) Ácido. CO2 + H2O ? H2CO3 
- 41 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO 3 
 
ÁCIDOS 
 
São substâncias moleculares que, em solução aquosa ionizam-se, liberando como cátions somente íons H3O 
+.
 
 
Algumas classificaçõesDe acordo com a presença ou não de oxigênio na molécula 
 
Hidrácidos não possuem oxigênio na molécula. Ex: HCl, HCN, H2S 
 
Oxiácidos possuem oxigênio na molécula. Ex: HNO3, H2SO4, H3PO4 
 
 
De acordo com o número de hidrogênios ionizáveis 
 
Hidrogênios ionizáveis são aqueles ligados a um átomo ou grupo de átomos q 
possuam eletronegatividades significativamente maiores que a sua. 
 
Essa diferença de eletronegatividade acarreta a formação de um pólo positivo no hidrogênio, sendo que 
o restante da molécula passa a apresentar um pólo negativo. Ao dissolvermos o ácido em água, 
é um solvente polar, seus pólos positivos (no caso o próprio hidrogênio) são fortemente 
atraídos pela força 
eletrostática dos pólos negativos da água. 
 
Essa atração é tão intensa que a água consegue separar os hidrogênios das moléculas 
 
Nos hidrácidos, ; nos 
são ionizáveis. 
 
Assim, em função do número de hidrogênios ionizáveis, podemos classificar os ácidos em: 
Monoácidos ionizam um hidrogênio de sua molécula; são os ácidos monohidrogenados e o H3PO2
. 
Diácidos ionizam dois hidrogênios de sua molécula; são os ácidos dihidrogenados, H3PO3 e H4P2O5
. 
Triácidos ionizam três hidrogênios de sua molécula; são os ácidos trihidrogenados exceto H3PO3 e H3PO2 
Tetrácidos ionizam quatro hidrogênios de sua molécula são os ácidos tetrahidrogenados exceto H4P2O5
.
 
 
 
 
ATENÇÃO 
 
 
 
H3PO2: 
monoácido 
 
H3PO3 e 
 
 
 
 
 
 
diácidos 
 
Obs.: Não esqueça que quando um ácido possui dois ou mais hidrogênios ionizáveis em sua 
molécula, a 
ionização ocorre em etapas, ocorrendo em cada uma a ionização de apenas um hidrogênio 
ionizável. Essas etapas são sucessivas e a ionização do primeiro hidrogênio é sempre mais fácil que a 
ionização dos demais, devido à formação de pontes de hidrogênio intramoleculares. 
 
1.ª etapa : H3PO4 
 
2.ª etapa : H2PO4 
–
 
+ 
H2O 
 
+ H2O 
 
H3O
+
 
 
H3O
+
 
+ H2PO4 
– 
3.ª etapa : HPO4 
2–
 H3O
+
 + PO4 
3–
 
- 42 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
De acordo com a presença ou não de carbono na molécula 
 
Orgânicos: caracterizam-se pela presença de carbono na molécula, sob a forma de um radical denominado 
carboxila (R- COOH ). Ex: HCOOH,CH3COOH 
 
Inorgânicos: não possuem carbono em sua molécula ou, se possuírem, este não se apresenta na 
forma de carboxila. Ex: HCl, HNO3, HCN, H2CO3, HSCN 
 
 
De acordo com o grau de ionização 
 
Para comparar os graus de ionização de diferentes ácidos, devem-se utilizar soluções com o 
mesmo número de moléculas de cada um dos ácidos para um mesmo volume de solução, à mesma temperatura. 
 
Quanto maior o grau de ionização, maior a condutividade elétrica, pois a condutibilidade é proporcional 
à concentração de íons presentes na solução. Embora todos os ácidos sofram ionização em meio aquoso, não o 
fazem na mesma escala. Assim, comparando os graus de ionização dos ácidos, podemos classificá-los em: 
 
Á cidos fortes onde > 50 % . Ex: HCl, H2SO4 
 
Ácidos médios e fracos, onde 50 %. Ex: HF, H2S, H3PO4 
 
Por uma questão prática, trabalharemos apenas com o conceito forte/fraco. Os ácidos médios estão incluídos 
nos fracos. Assim: 
 
 
 
Hidrácidos 
 
Fortes: HCl, HBr e HI 
 
 
 
Fracos: os demais 
 
 
Oxiácidos 
 
A força é indicada pela diferença obtida entre o número de átomos de oxigênio e o 
número de hidrogênios ionizáveis; quanto maior for essa diferença, maior será a força do ácido. 
 
X = n.º de átomos de O n.º de átomos de H ionizáveis 
 
 
Fortes - diminuindo o nº de oxigênios do nº de hidrogênios ionizáveis = 
Fracos - diminuindo o nº de oxigênios do nº de hidrogênios ionizáveis < 2 
 
Veja os exemplos: 
 
HClO4 : x = 4 – 1 = 
3 
H3PO4 : x = 4 – 3 = 
 
 
ácido forte 
ácido fraco 
 
 
H2SO4 : x = 4 – 2 = 
2 
H3BO3 : x = 3 – 3 = 
 
 
ácido forte 
ácido fraco 
 
 
De acordo com a volatilidade 
 
A volatilidade é a propriedade que as substâncias têm de passar do estado líquido para o estado 
gasoso. Sendo assim, as substâncias com baixo ponto de ebulição são consideradas mais voláteis, pois passam 
do estado líquido para o gasoso com maior facilidade. 
 
A grande maioria dos ácidos é volátil, mas existem dois ácidos de uso comum que s 
pouco voláteis e denominados de ácidos fixos: o ácido sulfúrico (H2SO4) e o ácido fosfórico (H3PO4). 
Assim, temos: 
 
Ácidos voláteis: . 
 
Ex: HNO3 (P.E. = 86 
o
C) ; HCl, H2S e HCN (gases) . O ácido acético, componente do vinagre, é o ácido volátil 
mais comum no nosso cotidiano; ao abrirmos um frasco com vinagre logo percebemos seu cheiro característico. 
 
Ácidos fixos: . 
 
Ex: H2SO4, H3PO4, H3BO3 
- 43 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
Atenção 
 
 
 
 
 ? 
 ? 
 
 
ácidos instáveis 
 
 ? 
 
 
 
Nomenclatura 
 
Hidrácidos 
 
 
 
 
 
 
Exemplos: 
Ácido ..................................... ídrico 
nome do elemento 
 
 
 
 
Quando se ionizam em água geram ânions que possuem uma nomenclatura derivada deles. 
ácido 
 
Ex: HCl + 
 
 
 
HCN + H2O 
H3O 
+ 
+ Cl 
 
 
 
H3O 
+ 
+ CN 
 
 
 
 
 
 
 
 
 
 
 
 
 
HN
+5
O3 
Oxiácidos 
Sendo dada a fórmula do ácido para nomeá-lo: 
Utiliza-se um raciocínio semelhante ao visto para os anidridos. 
• +3 – 
• N : 
• +5 – ? 
 
 
 
 
H2S
+4
O3 
•• +2 – 
• S : +4 – ? 
• +6 – 
 
 
 
 
HCl
+1
O 
•• +1 – 
• Cl : +3 – 
•• +5 – 
+7 – 
 
Assim como 
 ? 
 
 
 
 
 
hidrácidos, quando se ionizam em água geram ânions que 
nomenclatura derivada deles. O ácido que termina em oso gera um ânion terminado em ito e o ácido terminado 
em ico gera um ânion terminado em ato. Os prefixos não se alteram. 
- 44 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ex: HNO
 
+ H O H O 
+ 
 
+ NO
 
3 2 3 3 
 
 
 
 
HClO + H2O H3O 
+ 
+ ClO 
 
 
 
 
Sendo fornecido o nome do ácido para que seja descoberta sua fórmula: 
 
Como a nomenclatura é derivada do anidrido correspondente podemos descobrir sua fórmula através da 
reação do anidrido com água. 
 
Exemplos: 
 
Como saber a fórmula do ácido nitroso? 
 
Partimos do anidrido nitroso onde o nitrogênio apresenta nox +3 e consequentemente possui 
como fórmula N2O3 já que o nox do oxigênio nos óxidos é sempre – 2. 
 
 
 
N2O3 + H2O ? 2 HNO2 
 
 
Podemos usar o mesmo raciocínio para qualquer ácido desejado: 
Ácido carbônico: C = +4 
CO2 + H2O ? H2CO3 
 
 
 
 
Ácido sulfúrico: ico ? S = +6 
 
SO3 + H2O ? H2SO4 
 
 
 
 
Ácido perclórico: per...ico ? Cl = +7 
 
Cl2O7 + H2O ? 2 HClO4 
 
 
 
 
Alguns anidridos ( P2O3 e P2O5, por exemplo) dão origem a vários ácidos em que o nox 
átomo central não se altera. A diferença estáfundamentada no grau de hidratação do ácido. Ne 
casos, para 
diferenciá-los, usaremos diferentes prefixos: 
 
P2O3 
 
P2O3 
 
P2O3 
+ H2O 
 
+ 2 
H2O 
? 2 HPO2 
 
? H4P2O5 
 
? 2 H3PO3 
 
Anidrido fosfórico 
 
P2O5 
 
P2O5 
 
P2O5 
 
+ H2O ? 
 
+ 2 ? 
H2O 
?
 
 
2 HPO3 
 
H4P2O7 
 
2 H3PO4 
- 45 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Além do fósforo, outros elementos apresentam este tipo de comportamento. Veja tabela a seguir: 
 
 
Elemento – Nox 
 
Grau de hidratação 
 
As e Sb (+3 e +5) 
 
1 H2O – meta ; 2 H2O – piro ; 3 H2O – orto 
 
B (+3) 
 
1 H2O – meta ; 3 H2O – orto 
 
Si (+4) 
 
1 H2O – meta ; 2 H2O – orto 
 
 
 
Observações 
 
 
 
 
 
 
 
 
 
tio 
 
ácido tiossulfúrico 
 
 
 
 
 
 
 - 
 
 - 
 
 
- 
 
 
 
 
 
 
ÁCIDOS MAIS COMUNS NO COTIDIANO 
 
Ácido Fluorídrico ( HF ) 
 
Nas condições ambientes é um gás incolor que tem a característica de, quando em solução 
 aquosa, 
 . Por esse motivo deve ser acondicionado em frascos plásticos, sendo usado para gravações em 
cristais e vidros. É usado também na obtenção de fluoretos, como por exemplo, o de sódio (NaF), usado como 
 
 
Ácido Clorídrico ( HCl ) 
 
O ácido clorídrico consiste no gás cloreto de hidrogênio dissolvido em água. O estômago secreta esse 
ácido, num volume aproximado de 100 mL, para auxiliar a digestão dos alimentos. Quando impuro, é vendido 
- 46 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
no comércio com o nome de , sendo usado principalmente na limpeza de pisos e de superfícies 
metálicas, antes do processo de soldagem. 
Na extração de petróleo, o ácido clorídrico é introduzido no bolsão rochoso, dissolvendo uma parte das 
rochas e facilitando o fluxo do petróleo até a superfície. Algumas vezes esse procedimento pode ajudar a tornar 
o poço de petróleo mais rentável. 
 
 
Ácido Sulfídrico ( H2S ) 
 
É um gás venenoso, incolor, formado na putrefação de substâncias orgânicas naturais que contenham 
enxofre, sendo responsável em grande parte . Queima no ar, com chama 
produzindo SO2 e H2O . É encontrado em pequenas quantidades em algumas águas minerais (sulfurosas) e 
sua utilização é restrita a processos de análises químicas. 
 
 
Ácido Cianídrico ( HCN ) 
 
É o nome com que se indica uma solução aquosa de gás cianídrico, que é incolor, com cheiro característico 
de amêndoas amargas. Por ser muito venenoso (age sobre a hemoglobina do sangue), esse gás é utilizado nas 
, nos países onde há pena de morte. 
 
 
Ácido Carbônico ( H2CO3 ) 
 
É um ácido fraco, extremamente instável, que se forma somente em equilíbrio dinâmico entre a água e o 
gás carbônico. 
 
CO2(g) 
 
+ H2O(l 
 
H2CO3(aq) 
 
É um dos constituintes dos e das . 
O gás carbônico, ao se combinar com a água da chuva, origina um determinado tipo de ―chuva ácida‖, 
mesmo em ambientes não poluídos e na ausência de relâmpagos, o que leva a concluir que toda chuva é ácida. 
 
 
Ácido fosfórico ( H3PO4 ) 
 
É um sólido incolor, que apresenta PF = 42.ºC. É encontrado no comércio na forma de solução aquosa 
com cerca de 90% de ácido fosfórico, tendo a aparência de um líquido viscoso. 
É usado na indústria de vidro, na tinturaria, nas , na produção de Coca-Cola 
( ) e na fabricação de fosfatos e superfosfatos usados como adubos ( ). 
 
 
Ácido Acético ( CH3COOH ) 
 
É um líquido incolor, de cheiro penetrante e característico, solúvel em água em todas as proporçõ 
originando soluções ácidas fracas. 
É usado no dia-a-dia como condimento culinário; o é uma solução aquosa de ácido acético de 3 
a 7 %. 
 
 
Ácido Sulfúrico ( H2SO4 ) 
 
É um líquido relativamente denso, incolor e inodoro. Já era conhecido pelos alquimistas 
árabes do século X, que o introduziram na Europa no século XV, recebendo o nome de vitríolo. 
É o ácido mais importante economicamente, conhecido como ―burro de carga‖ da indústria química. O 
maior consumo se dá na fabricação de fertilizantes. É utilizado 
também 
corantes, de papel (dentre outras) e nas baterias de automóvel. 
Uma das principais propriedades do ácido sulfúrico é 
sua 
nas indústrias petroquímicas, 
 
 e, 
principalmente, 
 
C12H22O11 
Sacarose 
H2SO4 concentrado 12 C(s) 
Carvão 
+ 11 
- 47 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Devido a essa ação desidratante, o ácido sulfúrico concentrado tem ação corrosiva sobre os tecidos dos 
organismos vivos, produzindo sérias queimaduras na pele, com a formação de manchas pretas ocasionadas pela 
carbonização. Por isso, é necessário extremo cuidado ao manusear esse ácido. 
O ácido sulfúrico faz parte da composição de um tipo de “ ”, característica de 
 
 
 
Ácido Nítrico ( HNO3 ) 
 
É um líquido incolor e fumegante no contato com o ar. Ataca com violência os tecidos animal e vegetal, 
produzindo manchas amareladas na pele. Tem ação oxidante mesmo quando diluído e a frio Seu 
manuseio, portanto, requer muito cuidado, pois seus vapores são muito tóxicos. Era empregado pelos 
alquimistas, que o chamavam aqua fortis. 
 
Depois do ácido sulfúrico, o ácido nítrico é o mais fabricado e o mais consumido na indústria. Uma das 
suas mais importantes aplicações envolve 
 a trinitrotolueno [TNT] e trinitrocelulose 
[algodão- pólvora] 
(NaNO3 e KNO3), que é usado como e na 
 ( nitroglicerina [dinamite] 
). ; 
É, ainda, utilizado na 
O nítrico é encontrado em um tipo ” , 
e também aparece na composição d ” 
 
 
 
 
 
 
 
1) Complete: 
EXERCÍCIOS 
 
 
 
 
 
 
 
 
 
 
 
 
N2O5 
HF 
Cl2O3 
HNO2 
P2O5 
CrO3 
HCN 
NO2 
H2SO3 
CO2 
Mn2O7 
SO3 
NH3 
H3BO3 
 
H2S 
 
 
H3PO3 
 
 
HAc 
- 48 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
2) Faça a equação de ionização total dos ácidos a seguir, dizendo se o ácido em questão é forte ou fraco e dando 
nome aos ânions formados: 
 
a) ácido clorídrico 
d) ácido iodídrico 
g) ácido brômico 
j) ácido cianídrico 
 
m) ácido bromídrico 
p) ácido tiossulfúrico 
s) ácido acético 
v) ácido pirofosforoso 
 
b) ácido sulfúrico 
 
e) ácido hipocloroso 
h) ácido carbônico 
k) ácido nítrico 
 
n) ácido sulfuroso 
q) ácido fluorídrico 
t) ácido metafosfórico 
 
x) ácido metafosforoso 
 
c) ácido iodoso 
 
f) ácido sulfídrico 
 
i) ácido (orto) fosfórico 
l) ácido perclórico 
o) ácido nitroso 
 
r) ácido tiociânico 
u) ácido fosforoso 
z) ácido pirofosfórico 
 
3) Dê nome aos seguintes ácidos: 
 
a) HBr b) HCN c) H3AsO3 
H3AsO4 
 
 
 
4) Escrevaas fórmulas dos seguintes ácidos: 
 
 
d) HBrO 
HBrO2 
HBrO3 
HBrO4 
 
 
e) HMnO4 
H2MnO4 
 
a) ácido clórico 
 
d) ácido fluorídrico 
b) ácido sulfúrico 
e) ácido sulfídrico 
c) ácido carbônico 
f) ácido crômico 
 
5) O ácido dicrômico é obtido reagindo-se 2 mol de anidrido crômico com 1 mol de água. Qual a fórmula do 
ácido ? 
 
6) O arsênio e o antimônio estão na mesma família do fósforo na Tabela Periódica. Sabendo que a fórmula do 
ácido (orto)fosfórico é H3PO4, quais são as fórmulas dos ácidos (orto)arsênico e (orto)antimônico ? 
 
7) Qual é a fórmula e o nome do ácido resultante da substituição de um átomo de oxigênio por um átomo de 
enxofre no ácido ciânico (HOCN) ? 
 
8) Sabendo que, nos ácidos oxigenados, os átomos de hidrogênio ionizáveis estão ligados a átomos de oxigênio, 
escreva as fórmulas estruturais dos ácidos a seguir : 
 
a) b) HNO3 c) d) H2SO4 e) H3PO2 f) H3PO3 g) H4P2O5 
 
9) Classifique os ácidos, completando a tabela abaixo: 
 
Ácido N.º de H+ gerado Presença de oxigênio Força 
HBr monoácido hidrácido forte 
HNO2 
H2S 
HClO3 
H3PO3 
H4Fe(CN)6 
 
10) Em qual das soluções, todas de mesma concentração e na mesma temperatura, a lâmpada de um aparelho 
para medir condutividade elétrica apresenta maior brilho? 
 
a) HF b) H2S c) H3PO4 d) H4SiO4 e) HNO3 
 
11) Ordene os ácidos, do mais forte para o mais fraco: 
 
a) HF, H2S, b) HNO2, H2CrO4 ,H3AsO3 ,HBrO 
- 48 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
3 
7 
3 
3 
2 
12) Por que a primeira ionização dos hidrogênios de um poliácido se dá com mais facilidade que as demais? 
 
13) Por que o ácido carbônico, embora possua carbono em sua molécula, não é considerado um ácido orgânico? 
 
14) Dê nome aos radicais obtidos através da ionização total dos ácidos: 
 
a) clorídrico 
 
e) pirofosfórico 
b) permangânico 
f) sulfídrico 
c) hipocloroso 
g) bórico 
d) mangânico 
h) sulfúrico 
 
15) Dado o ânion e seu respectivo nome, construa a fórmula e dê nome ao ácido que o gerou: 
a) SiO 
2–
 
2–
 
– meta b) Fe(CN)6
4–
 
 
– ferrocianeto c) BO3
3–
 
4–
 
 
– borato 
d) HPO3 – fosfito e) C2O4
2– – oxalato f) SiO4 – orto 
 
16) Associe: 
( a ) ânion cloreto 
( b ) ânion hipoclorito 
( c ) ânion clorito 
( d ) ânion clorato 
( e ) ânion perclorato 
( f ) ânion nitrito 
( g ) ânion nitrato 
( h ) ânion sulfeto 
( i ) ânion sulfito 
( j ) ânion sulfato 
( l ) ânion fosfato 
( m ) ânion metafosfato 
( n ) ânion pirofosfato 
( o ) ânion carbonato 
( p ) ânion acetato 
( q ) ânion fosfito 
 
( ) ClO2
–
 
( ) SO4
2–
 
( ) P2O 
4–
 
( ) ClO3
–
 
( ) SO3
2–
 
( ) CH3COO
–
 
( ) Cl
–
 
( ) HPO 
2–
 
( ) NO 
–
 
( ) PO4
3– 
( ) ClO4
– 
( ) NO 
–
 
( ) PO3
– 
( ) ClO
– 
( ) S
2–
 
( ) CO3
2–
 
 
17) Água mineral com gás pode ser fabricada pela introdução de gás carbônico na água, sob pressão um pouco 
superior a 4 atm. 
 
a) Essa água é ácida ou alcalina? Justifique escrevendo a reação. 
 
b) Se a garrafa for deixada aberta, o que acontece com o pH da água? Explique. 
 
 
18) Estabeleça a relação correta entre os ácidos: 
 
a) 
HNO3 
d) HCN 
 
b)CH3COOH 
 
e)H2SO4 
 
h) H3PO4 
 
c) HCl 
f) H2S 
i) H2CO3 
 
e os usos, as ocorrências e as características dadas 
 
a seguir : 
 
 
( ) Chuva ácida em ambiente não poluído na ausência de raios e relâmpagos 
( ) Chuva ácida em ambiente não poluído na presença de raios e relâmpagos 
( ) Fertilizantes 
( ) Corrosão do vidro 
 
( ) Câmara de gás 
 
( ) Queimaduras na pele 
 
( ) Suco gástrico 
 
( ) Vinagre 
- 49 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
( ) Ácido muriático 
 
( ) Cheiro de ovo podre 
 
( ) Refrigerantes e águas minerais gaseificadas 
 
( ) Desidratante enérgico 
 
( ) Cheiro de amêndoas amargas 
 
( ) Bateria de automóvel 
 
( ) Fabricação de explosivos 
 
( ) Aditivo (estabilizante) em refrigerantes 
 
( ) Fabricação de salitre 
 
19) A queima de combustíveis fósseis conduz à formação de compostos derivados do enxofre. Estes compostos 
são lançados na atmosfera, precipitando na forma de chuvas ácidas, fenômeno que causa sérios danos ao meio 
ambiente. Escreva as equações de formação do ácido sulfúrico, a partir do enxofre. 
 
20) O gelo seco consiste em dióxido de carbono sólido, que nas condições ambientes, sofre 
sublimação. 
Colocando um pedaço de gelo seco em água destilada, o meio ficará ácido ou básico? Justifique com o auxílio 
 
 
 
RESPOSTAS 
 
 
 
 
 
 
 
 
 
 
 
N2O5 
 
Óxido ácido 
 
Anidrido 
nítrico 
 
N2O5 + H2O ? 2 HNO3 
 
HNO3 + H2O H3O
+
+ NO3 
 
Ácido nítrico 
Íons nitrato e íons hidrônio 
 
HF 
 
Ácido 
 
Ácido 
fluorídrico 
 
 
HF + H2O H3O 
+ 
+ F 
 
Íons fluoreto e íons hidrônio 
 
Cl2O3 
 
Óxido ácido 
 
Anidrido 
cloroso 
 
Cl2O3 + H2O ? 2 HClO2 
 
HClO2 + H2O H3O
+
+ ClO2 
 
Ácido cloroso 
Íons clorito e íons hidrônio 
 
HNO2 
 
Ácido 
 
Ácido nitroso 
 
HNO2 + H2O H3O 
+
+ NO2 
 
Íons nitrito e íons hidrônio 
 
 
 
 
 
 
 
 
P2O5 
 
 
 
 
 
 
 
 
Óxido ácido 
 
 
 
 
 
 
 
 
Anidrido 
fosfórico 
 
P2O5 + H2O ? 2 HPO3 
 
HPO3 + H2O H3O
+
+ PO3 
 
 
P2O5 + 2 H2O ? H4P2O7 
 
H4P2O7+4H2O 4H3O
+
+ P2O7
4
 
 
 
P2O5 + 3 H2O ? 2 H3PO4 
 
H3PO4+3H2O 3H3O
+
+ PO4
3 
 
Ácido metafosfórico 
Íons hidrônio e íons 
metafosfato 
 
Ácido pirofosfórico 
Íons hidrônio e íons 
pirofosfato 
 
Ácido ortofosfórico 
Íons hidrônio e íons 
ortofosfato 
 
CrO3 
 
Óxido ácido 
 
Anidrido 
crômico 
 
CrO3 + H2O ? H2CrO4 
 
2 
H2CrO4+2H2O 2H3O
+
+ CrO4 
Ácido crômico 
 
Íons cromato e íons hidrônio 
- 50 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
3 
 
 
3 
 
 
HCN 
 
Ácido 
 
Ácido 
cianídrico 
 
 
HCN + H3O 
+ 
+ 
 
Íons cianeto e íons hidrônio 
 
NO2 
 
Óxido ácido 
(anidrido 
misto) 
 
Anidrido 
nitroso-nítrico 
 
NO2 + H2O ? HNO2 + HNO3 
 
HNO2 + H2O H3O
+
+ NO2 
 
HNO3 + H2O H3O
++ NO3 
 
Ácido nitroso e ácido nítrico 
 
Íons nitrito e íons hidrônio 
 
Íons nitrato e íons hidrônio 
 
H2SO3 
 
Ácido 
 
Ácido 
sulfuroso 
 
 
H2SO3+2H2O 2 H3O
+ 
+SO 
2 
3 
 
Íons sulfito e íons hidrônio 
 
CO2 
 
Óxido ácido 
 
Anidrido 
carbônico 
 
CO2 + H2O ? H2CO3 
 
H2CO3+2H2O 2 H3O
+
+CO3
2 
 
Ácido carbônico Íons 
carbonato e íons 
hidrônio 
 
Mn2O7 
 
Óxido ácido 
 
Anidrido 
permangânico 
 
Mn2O7 + H2O ? 2 HMnO4 
 
HMnO4 + H2O H3O
+
+ MnO4 
 
Ácido permangânico Íons 
permanganato e íons 
hidrônio 
 
SO3 
 
Óxido ácido 
 
Anidrido 
sulfúrico 
 
SO3 + H2O ? H2SO4 
 
H2SO4+2H2O 2 H3O
+
+SO 
2 
4 
 
Ácido sulfúrico 
Íons sulfato e íons hidrônio 
 
NH3 
 
Base 
 
Amônia 
 
 
NH3+H2O NH4
+
+OH 
 
Íons amônio e íonshidroxila 
 
H3BO3 
 
Ácido 
 
Ácido bórico 
 
 
H3BO3+3H2O 3 H3O
+
+BO 
3 
3 
 
Íons borato e íons hidrônio 
 
H2S 
 
Ácido 
 
Ácido 
sufídrico 
 
 
H2S + 2 H2O 2 H3O 
+ 2 
 
Íons sulfeto e íons hidrônio 
 
H3PO3 
 
Ácido 
 
Ácido 
(orto)fosforoso 
 
H3PO3+2H2O 2 H3O
+
+HPO3
2 
 
Íons fosfito e íons hidrônio 
 
HAc 
 
Ácido 
 
Ácido acético 
 
HAc + H2O H3O 
+
+ Ac 
2 
 
Íons acetato e íons hidrônio 
 
2) a)HCl + H2O 
 
b) H2SO4 + 2 
H O 
+ 
+ Cl 
2 H O 
+ 
+ SO 
2 
3 4 
+ 
 
ácido forte ; 
 
ácido forte ; 
 
íon cloreto 
íon sulfato 
c) HIO2 
 
d) HI 
+ H2O 
 
+ H2O 
H3O + IO2 
H O 
+ 
+ I 
+ 
ácido fraco ; 
 
ácido forte ; 
íon iodito 
 
íon iodeto 
e) + H2O H3O + ClO 
+
 
ácido fraco ; íon hipoclorito 
f) H2S 
+ 
g) 
HBrO3
 
2 H2O 
 
+ H2O 
2 H3O 
H O 
+ 
3 
+ S 
2
 
 
+ BrO3 
+
 
ácido fraco 
; 
 
ácido forte ; 
íon sulfeto 
íon bromato 
h) 
H2CO3 
i) 
H3PO4 
j) 
 
k) HNO3 
 
l) 
+ 2 
H2O 
 
 
+ H2O 
 
+ H2O 
 
+ H2O 
2 H3O + 
+ 
3 H3O + 
H O 
+ 
+ 3 
H O 
+ 
+ 3 
H O 
+ 
+ 3 
CO3 
2
 
 
PO4 
3
 
 
CN 
NO3 
ClO4 
 
ácido fraco ; 
ácido fraco ; 
ácido fraco ; 
ácido forte ; 
íon carbonato 
íon (orto)fosfato 
íon cianeto 
íon nitrato 
 
íon perclorato 
- 51 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
3 
3 3 
3 
 
2) m) HBr 
n) H2SO3 
 
+ H2O 
 
+ 2 H2O 
H O 
+ 
+ Br 
2 H O 
+ 
+ SO 
2
 
+ 
 
ácido forte ; íon brometo 
ácido fraco ; íon sulfito 
o) HNO2 + H2O H3O + NO2 
+
 
ácido fraco ; íon nitrito 
p) H2S2O3 + 2 H2O 2 H3O 
+ 
+ S2O3 
2
 ácido fraco ; íon tiossulfato 
q) HF + H2O H3O + F 
+ 
ácido fraco ; íon fluoreto 
r) HSCN + H2O H3O 
+ 
+ SCN ácido fraco 
; 
íon tiocianato 
s) CH3COOH + H2O H3O + 
+ 
CH3COO 
ácido fraco 
íon acetato 
t) HPO3 
 
u) H3PO3 
v) H4P2O5 
x) HPO2 
z) H4P2O7 
+ H2O 
 
+ 2 H2O 
 
+ 2 
H2O 
 
 
+ 4 
H3O 
+ 
2 H3O 
2 H O 
+ 
3 
H O 
+
 
4 H O 
+ 
3 
+ PO3 
 
+ HPO3 
2
 
 
+ H2P2O5 
2
 
 
+ PO2 
 
+ P2O7 
4
 
; 
 
ácido forte ; 
 
ácido fraco 
; 
 
ácido forte ; 
íon metafosfato 
 
íon fosfito 
 
íon pirofosfito 
íon metafosfito 
íon pirofosfato 
 
3)a)HBr – ácido bromídrico b) HCN – ácido cianídrico 
 
c) H3AsO3 – ácido (orto) arsenioso H3AsO4 – ácido (orto) arsênico 
d) HBrO – ácido hipobromoso HBrO3 – ácido brômico 
HBrO2 – ácido bromoso HBrO4 – ácido perbrômico 
e) HMnO4 – ácido permangânico H2MnO4 – ácido mangânico 
 
4) a) HClO3 b) H2SO4 c) H2CO3 d) HF e) H2S f)H2CrO4 
 
5) H2Cr2O7 
 
6) ácido (orto)arsênico - H3AsO4 
 
e 
 
(orto)antimônico - H3SbO4 
 
7) ácido tiociânico (HSCN) 
 
8) a) H O Cl b) H O N O 
O 
c) H O d) O 
¦ 
H O - P O H O S O H 
¦ 
H O O 
 
e) H f) H 
 ¦ ¦ 
H O P O É um monoácido H O P O É um diácido 
¦ ¦ 
H H O 
 
g) H O O H 
 
H P O P H É um diácido 
 
O O 
- 52 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
4 3 
 
 
 
 
 
 
 
 
 
 
 
9) 
Ácido N.º de H
+ 
gerado Presença de oxigênio Força 
HBr 
HNO2 
H2S 
HClO3 
H3PO3 
H4Fe(CN)6 
 
10) e) HNO3 
 
11) a) HI, HF, H2S b) HBrO4, H2CrO4, HNO2, ,H3AsO3 
 
 
12) Devido à formação de pontes de hidrogênio intramoleculares. 
 
13) Porque não possui o radical carboxila, característico dos ácidos orgânicos. 
 
14) a) cloreto b) permanganato c) hipoclorito d) manganato 
e) pirofosfato f) sulfeto g) borato h) sulfato 
 
15) a) H2SiO3 – ácido meta silícico b) H4Fe(CN)6 – ácido ferrocianídrico 
c)H3BO3 – ácido bórico d) H3PO3 – ácido fosforoso 
e)H2C2O4 – ácido oxálico f) H4SiO4 – ácido orto silícico 
 
16) 
 
 
– 2– – –
 
( c ) ClO2
– 
( j ) SO4
2– 
( n ) P2O7
4– 
( d ) ClO3 ( i ) SO3 ( p ) CH3COO ( a ) Cl 
( q ) HPO 
2–
 ( g ) NO3
–
 ( l ) PO4
3–
 ( e ) ClO 
–
 ( f ) NO2
–
 ( m ) PO3
–
 ( b ) ClO
–
 
( h ) S
2– 
( o ) CO3
2–
 
 
 
17) a) ácida . CO2 + H2O H2CO3 2H
+ 
+ CO3 
2–
 
 
b) Aumenta, devido à diminuição da acidez gerada pela saída do CO2 
 
 
18) ( i ) Chuva ácida em ambiente não poluído na ausência de raios e relâmpagos 
( a ) Chuva ácida em ambiente não poluído na presença de raios e relâmpagos 
( h ) Fertilizantes 
( g ) Corrosão do vidro 
( d ) Câmara de gás 
( c ) Suco gástrico 
( b ) Vinagre 
( c ) Ácido muriático 
( f ) Cheiro de ovo podre 
( i ) Refrigerantes e águas minerais gaseificadas 
( e ) Desidratante enérgico 
( d ) Cheiro de amêndoas amargas 
( e ) Bateria de automóvel 
( a ) Fabricação de explosivos 
( h ) Aditivo (estabilizante) em refrigerantes 
( a ) Fabricação de salitre 
 
19) S + O2 ? SO2 / 2 SO2 + O2 ? 2SO3 / SO3 + H2O ? H2SO4 
 
 
20) ÁCIDO. CO2 + H2O ? H2CO3 que ioniza-se : 
H CO + 2 H O 2 H O
+ 
+ CO 
2-
 
Be(OH)2 Mg(OH)2 < Ca(OH)2 < Sr(OH)2 < < 
- 53 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
2 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO 4 
 
HIDRÓXIDOS OU BASES 
 
São substâncias iônicas que, em solução aquosa, dissociam-se, liberando como ânions somente íons OH
–
. 
 
Algumas classificações 
Monobases possuem apenas uma hidroxila. Ex: NaOH, NH4OH, AgOH 
Dibases possuem duas hidroxilas. Ex: Ca(OH)2, Fe(OH)2, Sn(OH)2 
Tribases possuem três hidroxilas. Ex: Fe(OH)3, Al(OH)3, Bi(OH)3 
 
Tetrabases possuem quatro hidroxilas. Ex: Sn(OH)4, Pb(OH)4 
 
 
Obs.: Quando uma base possui duas ou mais hidroxilas ela é denominada de polibase e, sua dissociação se dá 
por etapas, liberando uma hidroxila de cada vez. 
 
 
Fe(OH) 
 
3 (s) Fe(OH) 
+
 + OH
– 
(aq) 
 
Fe(OH)2
+
 
(aq) 
 
? Fe(OH) 
2+
(aq) 
 
3+
 
 
+ OH– (aq) 
 
–
 
2+ ? Fe (aq) + OH (aq) 
As duas setas da primeira etapa da dissociação representam o equilíbrio entre o sólido (o hidróxido em 
questão tem uma solubilidade muito pequena em água) e os íons formados. 
 
Diferentemente dos ácidos, que são todos solúveis em água, muitos hidróxidos têm 
pequena solubilidade em água, o que acarreta uma dissociação em pequena escala e uma baixa condutividade 
Podemos então concluir que, . 
 
O quadro a seguir indica a quantidade, em gramas, de algumas bases dissolvidas em um litro de água, a 20 ºC. 
 
 
Substância Solubilidade (g/L de água a 20 ºC) 
 
 
 
 
 
 
 
 
 
Sr(OH)2 3,9 
 
Pelo quadro podemos observar que as bases dos metais alcalinos ( grupo IA) são as mais solúveis, e 
que a ordem crescente de solubilidade dessas bases será: 
 
LiOH < NaOH < KOH < RbOH < CsOH 
 
Observe que a solubilidade aumenta com o aumento do raio atômico. 
 
Comparando-se a solubilidade das bases dos metais alcalinos com as dos metaisalcalino- 
terrosos 
(grupo IIA), observa-se que a solubilidade destes é bem inferior, sendo, portanto, pouco solúveis. 
- 54 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
Neste caso também, a solubilidade aumenta com o aumento do raio atômico. As bases 
Be(OH)2 e 
Mg(OH)2, por apresentarem solubilidade muito pequena, são consideradas praticamente insolúveis. 
Finalmente, considerando a solubilidade das bases dos demais metais, pode-se concluir que todas elas 
 
 
 
Solubilidade das bases em água 
Ordem decrescente 
 
 
Metais alcalinos 
( I A ) 
Metais alcalino – terrosos 
(exceto Be e Mg) 
Be , Mg e 
Outros metais 
 
 
 
Solúveis Pouco solúveis “Insolúveis” 
 
 
 
Sendo assim temos: 
 
Fortes 
 
Fracos - 
 
 
 
 
 
 
existe apenas em solução aquosa 
ATENÇÃO 
 
que 
 
 
 
 
l) 
 
 
 
 
Fixos – todos os hidróxidos metálicos. Sendo iônicos, são sólidos à temperatura ambiente e, portanto, 
são fixos. 
 
Voláteis – a amônia (NH3) 
 
 
 
Nomenclatura 
 
Usam-se os mesmos critérios dos óxidos básicos. 
 
Se o elemento ligado à hidroxila tem nox fixo 
 
 
 
 
 
Exemplos: 
Hidróxido de 
nome do elemento 
 
NaOH – hidróxido de sódio 
 
NH4OH – hidróxido de amônio 
 
Ca(OH)2 – hidróxido de cálcio 
 
AgOH – hidróxido de prata 
- 55 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
Se o elemento tem nox variável 
 
O número de oxidação do elemento ligado ao oxigênio é indicado por algarismos romanos. 
 
 
Hidróxido de 
nome do elemento nox do elemento em alg. romano 
 
 
Exemplos: 
Fe(OH)2 – hidróxido de ferro II 
Pb(OH)2 – hidróxido de chumbo 
II 
 
Fe(OH)3 – hidróxido de ferro III 
Pb(OH)4 – hidróxido de chumbo 
IV 
 
 
Ou utiliza-se o sufixo oso denota o elemento de menor nox e o sufixo ico, o de maior nox. 
 
 
Hidróxido ------------------------------------------------- 
nome do elemento oso (menor nox) ou ico (maior nox) 
 
 
Exemplos: 
 
Fe(OH)2 – hidróxido ferroso 
 
Pb(OH)2 – hidróxido 
plumboso 
 
 
Fe(OH)3 – hidróxido férrico 
 
Pb(OH)4 – hidróxido plúmbico 
 
 
 
BASES MAIS COMUNS NO COTIDIANO 
 
 
Hidróxido de sódio (NaOH) 
 
É conhecido por soda cáustica, cujo termo ―cáustica‖ significa que ela pode corroer ou, de qualquer 
modo, destruir os tecidos vivos. 
 
É um sólido branco, cristalino e higroscópio ( tem a propriedade de absorver água ). Por isso, quando 
exposto ao meio ambiente, ele se transforma, após certo tempo, em um líquido incolor. As substâncias que têm 
essa propriedade são denominadas 
 
A 
através da eletrólise : 
 
2 NaCl + 2 
. 
 
 e sua preparação é feita a partir do cloreto de sódio (NaCl), 
 
 
eletrólise 2 NaOH + H2 + 
 
processo que também produz hidrogênio (H2) e cloro (Cl2), que têm grandes aplicações industriais, como, por 
exemplo, a fabricação de HCl. 
 
Soluções concentradas dessa base devem ser armazenadas em frascos plásticos, pois, 
lentamente, reagem com o vidro. 
 
Reagem com óleos e gorduras e, por isso, da soda cáustica é 
produção de sabão e de produtos utilizados para desentupir pias e ralos. A soda cáustica converte as graxas em 
uma substância solúvel e fluida, que é removida pela lavagem. 
 
Óleo ou gordura + sabão + 
 
 
As outras aplicações do hidróxido de sódio estão relacionadas à indústria petroquímica, de fabricação de 
papel, de celulose, de corantes e a produção de salitre ( NaNO3). 
- 56 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
Hidróxido de cálcio ( Ca(OH)2 ) 
 
O hidróxido de cálcio é conhecido por cal hidratada cal extinta ou cal apagada. Nas 
ambientes é um sólido branco, pouco solúvel em água. 
Sua 
é e a 
 
É consumida em grande quantidade nas pinturas a cal (caiação) e na preparação de argamassa (massa de 
assentamento de tijolos e recobrimento de paredes, usada pelos pedreiros). 
 
 
Hidróxido de magnésio ( Mg(OH)2 ) 
 
É um sólido branco, pouco solúvel em água e sua suspensão é conhecida como leite de magnésia 
cuja principal aplicação consiste no uso como antiácido e laxante. 
 
É utilizado também no refino do açúcar, na fabricação do papel e na indústria farmacêutica. 
 
 
Hidróxido de amônio ( NH4OH ) 
 
O hidróxido de amônio não existe isolado, sendo obtido quando borbulhamos 
originando uma solução comercializada como amoníaco. 
 
 
 (NH3) em água, 
 
 
NH3(g) 
 
+ H2O(l ) 
 
NH4 
+ 
(aq) 
 
+ OH 
– 
(aq) 
 
A amônia é um gás incolor, de cheiro irritante, presente numa mistura chamada inalador de 
amônia, 
usada para restabelecer pessoas desmaiadas. 
 
A amônia é fabricada em grandes quantidades, através da reação de síntese, cujas matérias primas são o ar e a 
 
N2 + 3 H2 ? 2 NH3 
 
extraído do ar extraído da água 
 
A partir da amônia são fabricadas várias outras substâncias de grande importância, tais como: 
Ácido nítrico; 
Sais de amônio, muito empregados como fertilizantes na agricultura; 
Produtos de limpeza doméstica (Ajax, Fúria,etc) 
 
 
 
 
EXERCÍCIOS 
 
1) Usando uma tabela de cátions, faça a associação entre os metais e os respectivos cátions em seus composto 
iônicos: 
 
( a ) cátion monovalente 
 
( b ) cátion bivalente 
 
( c ) cátion trivalente 
 
( d ) cátion mono e bivalente 
 
( ) sódio 
 
( ) lítio 
 
( ) magnésio 
 
( ) bário 
 
( ) 
cálcio 
 
( ) ferro 
 
( ) prata 
 
( ) 
alumínio 
 
( ) cobre 
 
( ) potássio 
 
( e ) cátion bi e trivalente 
 
( ) cromo 
 
( ) mercúrio ( ) amônio 
 
 
2) Escreva as fórmulas dos 
a) de lítio 
b) áurico 
 
c) de mercúrio I 
 
 
d) de bário 
 
e) de cobre I 
 
f) de alumínio 
 
 
g) de amônio 
h) ferroso 
i) de cobalto II 
 
 
j) cúprico 
 
l) mercúrico 
m) plumboso 
- 57 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
3) Escreva os nomes dos compostos cujas fórmulas são 
 
a) Mg(OH)2 
 
b) Fe(OH)3 
 
c) CsOH 
 
d) Sn(OH)2 
 
e) Zn(OH)2 
 
f) Hg(OH)2 
 
g) AgOH 
 
h) Co(OH)3 
 
i) RbOH 
 
j) NH4OH 
 
l) KOH 
 
m) Pb(OH)4 
 
 
4) Complete: 
 
 
 
 
 
 
 
 
 
 
 
K2O 
Mg(OH)2 
CaO 
Pb(OH)2 
HgO 
FeO 
Fe(OH)3 
Na2O2 
Na2O 
NaOH 
Cu(OH)2 
BaO2 
NH3 
Al(OH)3 
 
 
5) Escreva as equações de dissociação iônica das bases abaixo, considerando que esta se dá por etapas: 
 
a) hidróxido de potássio 
b) hidróxido de cálcio 
c) hidróxido de alumínio 
d) hidróxido de cobre I 
 
6) Escreva a equação da reação de ionização que ocorre quando a amônia dissolve-se em água. Qual o nome 
comercial da solução obtida? 
 
7) Quais das afirmações seguintes são corretas: 
 
a) Os hidróxidos dos metais alcalinos e de amônio são muito solúveis em água. 
 
b) Os hidróxidos dos metais não alcalinos e não alcalino-terrosos são pouco solúveis em água; 
podem ser considerados insolúveisem água. 
 
c) Os hidróxidos dos metais alcalino-terrosos têm solubilidade intermediária entre as citadas em a e b. 
 
 
8) Coloque as bases em ordem crescente de solubilidade em água: 
 
a) NaOH, Ca(OH)2 e Fe(OH)2 
 
b) KOH, Ba(OH)2 , Mg(OH)2 , Al(OH)3 
- 58 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
c) Ca(OH)2 , Cu(OH)2 
, NH4OH 
 
 
9) Qual a relação existente entre a força das bases e sua solubilidade? Existe alguma exceção? 
 
 
10) Dentre as bases a seguir, quais são fortes? 
 
a) NaOH 
 
e) LiOH 
 
i) Ba(OH)2 
 
n) Pb(OH)2 
 
b) CuOH 
 
f) Zn(OH)2 
 
j) Mg(OH)2 
 
o) Al(OH)3 
 
c) Cu(OH)2 
g) Fe(OH)2 
l) Ca(OH)2 
p) CsOH 
 
d) KOH 
 
h) Fe(OH)3 
 
m) NH4OH 
 
 
11) Nas condições ambientes, pastilhas de hidróxido de sódio, expostas ao ar durante várias horas, transformam- 
se em um líquido claro. Este fenômeno ocorre porque o hidróxido de sódio: 
 
a) absorve água da atmosfera 
b) reage com o oxigênio do ar 
c) combina-se com o hidrogênio do ar 
d) reage com o nitrogênio do ar 
e) produz água ao decompor-se 
 
12) Associe: 
 
( a ) NH3(aq) ou NH4OH 
( b ) NaOH 
( c ) NH3(g) 
 
( d ) Ca(OH)2 
 
( e ) CaO 
 
 
( ) cal viva ou cal virgem 
( ) cal extinta ou apagada 
( ) soda cáustica 
( ) amoníaco 
 
( ) amônia 
 
 
13) Associe : 
( a ) NaOH 
( b ) Mg(OH)2 
 
( c ) Ca(OH)2 - solução 
 
( d ) Ca(OH)2 - suspensão 
 
 
( ) água de cal 
 
( ) leite de cal 
 
( ) leite de magnésia 
 
( ) desentupimento de ralos e pias 
 
 
14) Considere os seguintes materiais: 
I – solução de soda cáustica 
III – vinagre 
 
V – leite de magnésia 
 
 
II – produtos de limpeza (Ajax, Fúria) 
IV – água de bateria de automóvel 
 
Quais tornam azul o papel rosa de tornassol? 
 
a) todos 
 
d) somente III e 
 
b) nenhum 
 
e) somente I e II 
 
c) somente I, II e V 
- 59 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
 
 
 
 
 
 
 
 
 
K2O 
 
Óxido 
básico 
 
Óxido de 
potássio 
 
K2O + H2O ? 2 KOH 
( KOH ? K
+ 
+ OH 
– ) 
Hidróxido de potássio 
(íons potássio e íons 
hidroxila) 
 
Mg(OH)2 
 
Base 
 
Hidróxido de 
magnésio 
 
 
Mg(OH)2(s) Mg
2+ 
+2 OH
–
(aq) (aq) 
 
Íons magnésio e íons 
hidroxila 
 
CaO 
 
Óxido 
básico 
 
Óxido de cálcio 
 
CaO + H2O ? Ca(OH)2 
(Ca(OH)2 ? Ca
2+ 
+ 2 OH 
– 
) 
Hidróxido de cálcio 
(íons cálcio e íons 
hidroxila) 
 
Pb(OH)2 
 
Base 
 
Hidróxido de 
chumbo II ou 
plumboso 
 
Pb(OH)2(s) Pb
2+ 
(aq)+2 OH
– 
(aq) 
 
Íons chumbo II e íons 
hidroxila 
 
HgO 
 
Óxido 
básico 
 
Óxido de 
mercúrio II ou 
mercúrico 
 
HgO + H2O ? Hg(OH)2 
 
(Hg(OH) Hg 
2+ 
+ 2 OH 
– ) 
Hidróxido de mercúrio 
II ou mercúrico 
(íons mercúrio II e íons 
 
FeO 
 
Óxido 
básico 
 
Óxido de ferro II 
ou ferroso 
 
FeO + H2O ? Fe(OH)2 
 
2+ – (Fe(OH)2 Fe + 2 OH ) 
Hidróxido de ferro II ou 
ferroso 
(íons ferro II e íons 
hidroxila) 
 
Fe(OH)3 
 
Base 
Hidróxido de 
ferro III ou 
férrico 
 
Fe(OH) Fe 
3+ 
+ 3 OH 
 
Íons ferro III e íons 
hidroxila 
 
Na2O2 
 
Peróxido 
 
Peróxido de 
sódio 
2 Na2O2 + 4 H2O ? 4NaOH + 
2H2O + O2 
( NaOH ? Na
+ 
+ OH 
– 
) 
Hidróxido de sódio, 
água e gás oxigênio 
(íons sódio e íons 
hidroxila) 
 
Na2O 
 
Óxido 
básico 
 
Óxido de sódio 
 
Na2O + H2O ? 2NaOH 
( NaOH ? Na
+ 
+ OH 
– ) 
Hidróxido de sódio 
(íons sódio e íons 
hidroxila) 
 
RESPOSTAS 
 
 
1) ( a ) sódio ( b ) cálcio ( c ) alumínio 
 
( a ) lítio ( b ) zinco ( d ) cobre 
 
( b ) magnésio ( e ) ferro ( a ) potássio 
 
( b ) bário ( a ) prata ( b ) cádmio 
 
( e ) cromo ( d ) mercúrio ( a ) amônio 
 
 
2) a) LiOH b) Au(OH)3 
 
3) a) hidróxido de magnésio 
 
b) hidróxido de ferro III ou férrico 
c) hidróxido de césio 
d) hidróxido de estanho II ou estanoso 
e) hidróxido de zinco 
f) hidróxido de mercúrio II ou mercúrico 
 
c) Hg2(OH)2 
 
d) Ba(OH)2 
g) hidróxido de prata 
 
e) CuOH f) Al(OH)3 
g) NH4OH h) Fe(OH)2 
i) Co(OH)2 j) Cu(OH)2 
l) Hg(OH)2 m) Pb(OH)2 
h) hidróxido de cobalto III ou cobáltico 
 
i) hidróxido de rubídio 
j) hidróxido de amônio 
l) hidróxido de potássio 
m) hidróxido de chumbo IV ou plúmbico 
 
4) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 hidroxila) 
 
 
 
 
 
 
3(s) (aq) (aq) 
- 60 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
NaOH 
 
Base 
 
Hidróxido de 
sódio 
 
NaOH ? Na
+ 
+ OH 
– 
 
Íons sódio e íons 
hidroxila 
 
Cu(OH)2 
 
Base 
Hidróxido de 
cobre II ou 
cúprico 
 
Cu(OH) Cu
2+ 
+ 2 OH
–
 
(aq) 
 
Íons cobre II e íons 
hidroxila 
 
BaO2 
 
Peróxido 
 
Peróxido de 
bário 
2 BaO2 + 4 H2O ? 2 Ba(OH)2 
+ 2H2O + O2 
( Ba(OH)2 ? Ba
2+ 
+ 2OH 
– 
) 
Hidróxido de bário, 
água e gás oxigênio 
(íons bário e íons 
hidroxila) 
 
NH3 
 
Base 
 
Amônia 
 
 
NH3+H2O NH4
+
+OH 
 
Íons amônio e íons 
hidroxila 
 
Al(OH)3 
 
Base 
 
Hidróxido de 
alumínio 
 
Al(OH)3 Al 
3+ 
+ 3OH
–
 
(aq) 
 
Íons alumínio e íons 
hidroxila 
 
(aq) 
(aq) 
 
 
 
 
 
2 (s) (aq) 
 
 
 
 
 
 
 
 
 
 
 
 
(aq) (aq) 
 
 
 
5) a) KOH (s) ? K
+
(aq) + OH 
– 
(aq) 
 
+ –
 
b) Ca(OH)2(s) ? (CaOH) (aq) + OH (aq) 
 
(CaOH)
+
 
 
? Ca
2+
 
 
(aq) 
 
+ OH
–
 
 
+
 
 
(aq) 
 
 
10) a – d – e – i - l – p 
c) Al(OH)3(s) [Al(OH)2] (aq + OH
– 
(aq) 
 
[Al(OH)2] (aq)? 
 
[Al(OH)] (aq) 
 
+ OH– (aq) 
11) a
 
+ 2+ 
[Al(OH)]
2+
 
 
? Al
3+
 
 
(aq) 
 
+ OH
–
 
 
–
 
 
(aq) 
 
12) 
 
( e ) cal viva ou cal virgem 
d) CuOH(s) Cu
+
(aq) + OH (aq) 
 
( d ) cal extinta ou apagada 
 
( b ) soda cáustica 
6) NH3 (g) + H2O(l ) NH4
+ 
(aq) + OH
–
(aq). 
 
A solução é chamada de amoníaco. 
 
 
7) Todas 
 
 
8) a) Fe(OH)2 < Ca(OH)2 < 
NaOH 
 
a) Al(OH)3 < Mg(OH)2 < Ba(OH)2 
<KOH 
 
b) Cu(OH)2 < Ca(OH)2 < 
NH4OH 
 
d) Mg(OH)2 < Ca(OH)2 < 
Ba(OH)2 
 
 
9) Regra geral, quanto mais solúvel for a base, mais 
forte ela será, pois haverá mais íons em solução. A 
exceção é o hidróxido de amônio (solução 
aquosa de amônia) que, apesar de ser 
solúvel, é fraca devido à pequena ionização. 
 
( a ) amoníaco 
 
( c ) amônia 
 
 
13) Associe : 
 
( c ) água de cal 
 
( d ) leite de cal 
 
( b ) leite de magnésia 
 
( a ) desentupimento de ralos e pias 
 
 
14) c 
- 61 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
1) Cal viva é o óxido de cálcio. 
EXERCÍCIOS COMPLEMENTARES 
 
a) Escreva a equação da reação da cal viva com a água. 
 
b) Por que, na agricultura, a cal viva é adicionada aosolo? 
 
2) Dê nome às substâncias abaixo: 
 
a) Al(OH)3 b) HAc c) Ba(OH)2 d) H2SO4 e) HCN f) Fe(OH)3 
g) HNO3 h) KOH i) Pb(OH)2 j) H2S k) Cu(OH)2 l) H2SO3 
m) HBrO3 n) H3PO4 o) RbOH p) HNO2 q) HClO2 r) NH4OH 
s) Ca(OH)2 t) HClO u) Mg(OH)2 v) HClO4 x) H2CO3 z) NaOH 
 
3) Dê a fórmula das substâncias abaixo: 
 
a) ácido bromídrico 
d) ácido nítrico 
g) hidróxido de lítio 
j) hidróxido de zinco 
m) hidróxido niqueloso 
p) hidróxido de ouro III 
s) ácido perclórico 
v) hidróxido de estrôncio 
 
b) hidróxido de magnésio 
e) hidróxido férrico 
h) ácido cianídrico 
 
k) ácido hipocloroso 
n) ácido sulfuroso 
q) ácido nitroso 
t) hidróxido de amônio 
x) hidróxido de potássio 
 
c) ácido sulfúrico 
 
f) ácido (orto)fosfórico 
i) hidróxido de cobre II 
l) hidróxido de bário 
o) hidróxido de cálcio 
r) ácido sulfídrico 
u) ácido permangânico 
 
z) ácido acético 
 
 
4) Faça a equação de dissociação total das bases seguir, dando nome aos cátions formados e dizendo se a base 
em questão é forte ou fraca: 
 
a) hidróxido de sódio 
 
d) hidróxido de alumínio 
g) hidróxido de cobre I 
j) hidróxido de ferro III 
 
b) hidróxido de cálcio 
e) hidróxido de amônio 
h) hidróxido de bário 
k) hidróxido de magnésio 
 
c) hidróxido ferroso 
f) hidróxido cúprico 
i) hidróxido de potássio 
 
l) hidróxido de chumbo IV 
 
RESPOSTAS 
 
1)a) CaO + H2O ? Ca(OH)2 b) para diminuir a acidez do solo 
 
2)a) Al(OH)3 – hidróxido de alumínio b) HAc – ácido acético 
 
c) Ba(OH)2 – hidróxido de bário d) H2SO4 – ácido sulfúrico 
 
e) HCN – ácido cianídrico f) Fe(OH)3 – hidróxido de ferro III ou 
férrico g) HNO3 – ácido nítrico h) KOH – hidróxido de potássio 
i) Pb(OH)2 – hidróxido de chumbo II ou plumboso j) H2S – ácido sulfídrico 
k) Cu(OH)2 – hidróxido de cobre II ou cúprico l) H2SO3 – ácido 
sulfuroso 
m) HBrO3 – ácido brômico n) H3PO4 – ácido 
(orto)fosfórico o) RbOH – hidróxido de rubídio p) HNO2 – ácido nitroso 
q) HClO2 – ácido cloroso r) NH4OH – hidróxido de amônio 
s) Ca(OH)2 – hidróxido de cálcio t) HClO – ácido hipocloroso 
u) Mg(OH)2 – hidróxido de magnésio v) HClO4 – ácido perclórico 
 
x) H2CO3 – ácido carbônico z) NaOH – hidróxido de sódio 
- 62 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
2 
2 
3 NH4 
2 
3 
2 
4+ 
 
 
3) a) HBr 
 
b) Mg(OH)2 
 
c) H2SO4 
d) HNO3 e) Fe(OH)3 f) H3PO4 
g) LiOH h) HCN i) Cu(OH)2 
j) Zn(OH)2 k) HClO l) Ba(OH)2 
m) Ni(OH)2 n) H2SO3 o) Ca(OH)2 
p) Au(OH)3 q) HNO2 r) H2S 
s) HClO4 t)NH4OH u) HMnO4 
v) Sr(OH)2 x) KOH z) HAc ou CH3COOH 
 
 
4) a) NaOH(s) ? Na 
+
(aq) 
 
+ OH (aq) base forte ; íon sódio 
 
b) Ca(OH) (s) 
 
Ca 
2+
(aq) + 2 OH base forte ; íon cálcio 
 
c) Fe(OH) (s) 
 
Fe 
2+
(aq) + 2 OH base fraca ; íon ferro II ou ferroso 
 
 3+
 
d) Al(OH)3(s) Al (aq) + 3 OH (aq) base fraca ; íon alumínio 
 
e) NH (g) + 
 + 
(aq) + OH (aq) (ionização) base fraca ; íon 
f) Cu(OH) (s) Cu 
2+
(aq) + 2 OH (aq) base fraca ; íon cobre II ou cúprico 
g) CuOH(s) Cu 
+
(aq) + OH (aq) base fraca ; íon cobre I ou cuproso 
2+
 
h) Ba(OH)2(s) ? Ba (aq) + 2 
OH
 
(aq) base forte ; íon bário 
i) KOH(s) ? K 
+ 
+ OH (aq) base forte ; íon potássio 
 
j) Fe(OH) (s) Fe 
3+
(aq) + 3 (aq) base fraca ; íon ferro III ou férrico 
k) Mg(OH) (s) Mg 
2+
(aq) + 2 (aq) base fraca ; íon magnésio 
l) Pb(OH)4(s) Pb (aq) + 4 (aq) base fraca ; íon chumbo IV ou 
- 63 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
4 4 
2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAPÍTULO 5 
 
SAIS 
 
 
 
 
 
Algumas classificações 
 
Sal binário: constituído por dois elementos. Ex: NaCl, CaBr2 
 
Sal ternário: constituído por três elementos. Ex: CaCO3, AlPO4 
 
S al quaternário: constituído por quatro elementos. Ex: NaHCO3 
 
 
Sais oxigenados ou oxi-sais: Ex: Na2SO4 
 
Sais não oxigenados: Ex: KCN, NH4Cl 
 
 
Sal normal: é o sal cujo ânion não possui hidrogênio ionizável e também não apresenta o ânion OH . 
 
Hidrogeno-sal: é o sal que apresenta hidrogênio ionizável em seu ânion. 
 
Hidroxi-sal: é o sal que apresenta hidroxila em sua estrutura. 
 
Sal duplo ou misto: é o sal que apresenta dois cátions diferentes ou dois ânions diferentes (excetuando-se o 
H
+ 
e o OH ). Ex: NaLiSO , CaBrCl, AlSO Cl 
 
Sal hidratado: é o sal que apresenta moléculas de água em proporção definida no seu retículo cristalino. A 
água combinada dessa maneira chama-se água de cristalização. Ex: CuSO4·5H2O, CaCl2·2H2O 
 
Alúmen: é o sal que contém um único tipo de ânion, o sulfato (SO4
2 
), e dois cátions, sendo um monovalente 
(X
+
) e um trivalente (Y
3+
), e água de cristalização. Sua fórmula geral pode ser representada por X
+
Y
3+
(SO4) 
2
 
12 H2O. O alúmen mais conhecido é a pedra-ume, adquirida em farmácias e cuja principal 
aplicação está relacionada à sua ação coagulante em pequenos cortes, sendo utilizada, normalmente, por barbeir 
e manicuras. 
 
 
Sendo compostos iônicos, teremos a seguinte relação: 
 
Solúveis Fortes 
 
“Insolúveis “ Fracos 
 
Solúveis: 
 
. Insolúveis: 
- 64 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nomenclatura 
 
Dos sais normais 
A nomenclatura é obtida a partir do nome do ânion (vimos que o nome do ânion se origina na nomenclatura 
do ácido, substituindo-se os sufixos). Para determinar o nome dos sais utiliza-se o seguinte esquema: 
 
 
 
 
 
 
 
Exemplos: 
Nome do sal : ........................................... de 
................................... 
 
nome do ânion nome do cátion 
 
NaCl – cloreto de sódio 
 
SnCl2 – cloreto de estanho II ou cloreto estanoso 
 
Fe2(SO4)3 – sulfato de ferro III ou sulfato férrico 
 
KNO2 – nitrito de potássio 
 
Na2HPO3 – fosfito de sódio 
 
KH2PO2 – hipofosfito de potássio 
 
 
Dos h idrogeno-sais 
 
Indica-se o número de H
+ 
pelas expressões (mono), di, tri hidrogeno. 
 
 
.......................... hidrogeno ........................................... de .............................. 
 
mono, di ou tri nome do ânion nome do cátion 
 
 
Exemplos: 
 
NaH2PO4 – dihidrogeno fosfato de sódio 
 
KHCO3 – hidrogeno carbonato de potássi 
 
 
Na2HPO4 – (mono)hidrogeno fosfato de sódio 
 
Ca(H3P2O7)2 – trihidrogeno pirofosfato de cálcio 
 
Sn (HSO4)2 – hidrogeno sulfato de estanho II ou hidrogeno sulfato estanoso 
 
 
Observação 
 
 
bi 
 
 
 
 
 
 
 
 
Dos hidroxi-sais 
 
Indica-se o número de hidroxilas (OH ) pelas expressões (mono), di, tri hidroxi 
 
 
.......................... hidroxi ........................................... de 
 
mono, di ou tri nome do ânion nome do cátion 
 
 
Exemplos: 
 
Al(OH)Cl2 – hidroxi cloreto de alumínio Al(OH)2Cl – dihidroxi cloreto de alumínio 
 
Sn(OH)2SO4 – dihidroxi sulfato de estanho IV ou dihidroxi sulfato estânico 
Sn(OH)3I – trihidroxi iodetode estanho IV ou trihidroxi iodeto estânico 
- 65 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Dos sais duplos 
 
Nos sais duplos quanto ao cátion: usa-se o nome do ânion seguido dos nomes dos dois cátions. 
Exemplos: 
KNaSO4 – sulfato de sódio e potássio 
 
K2NaPO4 – fosfato de dipotássio e sódio ou fosfato dipotássico monosódico. 
 
 
Nos sais duplos quanto ao ânion : usa-se o nome dos dois ânions seguido do nome do cátion. 
Exemplos: 
CaBrCl – cloreto brometo de cálcio Al(SO4)Cl – cloreto sulfato de alumínio 
 
 
 
 
 
 
 
Exemplos: 
Dos sais hidratados 
 
Usa-se o nome dos sais seguido da quantidade de água de cristalização. 
 
CaCl2 ·2 H2O – cloreto de cálcio dihidratado 
CuSO4 · 5 H2O – sulfato cúprico pentahidratado 
Na2SO4 · 10 H2O – sulfato de sódio decahidratado 
 
 
 
OCORRÊNCIA DOS SAIS NA NATUREZA E SUAS APLICAÇÕES 
 
 
Ao contrário dos sais, os ácidos e as bases não são encontrados em fontes naturais. Assim 
não há 
jazidas naturais de ácido sulfúrico, ácido nítrico, soda cáustica, cal extinta, amoníaco, etc.; todos esses produtos 
fabricados pela indústria química. 
 
Os sais são encontrados na natureza constituindo jazidas minerais. Dentre eles, 
destacam-se os seguintes: 
 
Fluoreto de cálcio (CaF2) 
 
 
 
Sulfetos metálicos 
 
Os mais importantes são a pirita (FeS2), a galena (PbS), a blenda (ZnS ) e o cinábrio (HgS). 
 
 
Silicatos 
 
A crosta terrestre é constituída basicamente de sílica (SiO2) e silicato de sódio, de potássio, de cálcio, 
de magnésio e de alumínio. Entre esses silicatos naturais, podem-se mencionar o feldspato, a mica o talco, o 
amianto ou asbesto, a argila e o caulim. 
 
 
Carbonato de cálcio (CaCO3) 
 
É um dos sais mais espalhados na crosta terrestre. Existem muitos terrenos calcários, isto é, ricos em 
CaCO3. Assim como o calcário o mármore é uma variedade natural desse mineral. 
 
Sob a forma de mármore, é utilizado para a fabricação de pias, estátuas, pisos e escadarias. 
- 66 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
A decomposição térmica do calcário irá produzir a cal viva e o gás carbônico: 
 
 
 
 
CaCO3 CaO + CO2 
 
 
 
 
Além disso, o calcário é utilizado na fabricação do vidro comum e, também, na produção do cimento, 
quando misturado com argila e areia e submetendo-se essa mistura a aquecimento. 
 
O carbonato de cálcio é praticamente insolúvel em água pura, mas dissolve-se de modo apreciável em 
água com dióxido de carbono (CO2 ) existente na atmosfera. 
 
 
 
CaCO3 (s) + H2O (l) + CO2 (g) Ca
2+ 
(aq) + 2 HCO3 (aq) 
 
 
 
 
Essa é a principal reação responsável pela formação de cavernas de calcário, nas quais são encontradas 
as formações de carbonato de cálcio conhecidas por estalactites (superiores) e estalagmites (inferiores). Essas 
formações ocorrem no interior das cavernas quando o gás carbônico se desprende e provoca a precipitação do 
carbonato de cálcio: 
 
 
 
Ca2+ (aq) + 2 HCO3 (aq) CaCO3 (s) + H2O (l) + CO2 (g) 
 
 
Uma aplicação do carbonato de cálcio no nosso dia-a-dia ocorre quando pintamos paredes usando cal 
extinta (Ca(OH)2 ). Após a caiação, a cal extinta reage com o gás carbônico do ar, originando uma película 
de carbonato de cálcio que, por ser insolúvel na água, protege a parede. 
 
O carbonato de cálcio também é usado na vinicultura para diminuir a acidez do vinho, e na agricultura, 
para reduzir a acidez de solos (calagem). Quando adicionado a cremes dentais, age como abrasivo. 
 
Uma variedade mais pura de carbonato de cálcio, chamada terra alba, é utilizada na indústria cerâmica. 
 
 
 
Cloreto de sódio (NaCl ) 
 
Pode ser encontrado dissolvido na água do mar, de onde é extraído por evaporação nas salinas, ou em 
jazidas na crosta terrestre sal gema). 
 
Faz parte do sal de cozinha, usado na nossa alimentação. Além do cloreto de sódio, há, 
no sal de cozinha, certa quantidade de iodetos ou iodatos de sódio (NaI , NaIO3 ) e potássio ( KI , KIO3 
), cuja adição é obrigatória por lei, pois a falta de iodo no organismo pode provocar uma doença chamada bócio. 
 
É usado na conservação de carnes, de pescados e de peles. 
 
Na medicina é utilizado na fabricação do soro fisiológico, que consiste numa solução com 0,92 % de 
NaCl. No combate à desidratação, é usado como componente do soro caseiro. 
 
O cloreto de sódio é a principal matéria-prima usada na fabricação da soda cáustica (NaOH). A partir do 
NaCl obtém-se também : sódio metálico (Na°), cloro (Cl2 ), hidrogênio (H2 ), ácido clorídrico (HCl), carbonato e 
bicarbonato de sódio (Na2CO3 e NaHCO3 ), etc. 
 
Adicionado ao gelo, obtém-se uma mistura refrigerante que atinge até 22 C. 
- 67 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Nitrato de sódio (NaNO3) 
 
É encontrado no Chile, em extensas jazidas (sendo por isso conhecido como s alitre do 
Chile), no Egito e nos EUA. Sendo muito utilizado na fabricação de fertilizantes (adubos), a 
exploração comercial das jazidas chilenas começou em 1830, mas hoje diminuiu consideravelmente, pois há 
outras fontes de nitrogênio para as plantas. 
A transformação do nitrato de sódio em nitrato de potássio (KNO3) permite a fabricação da 
pólvora negra, que é um dos explosivos mais comuns, e cuja composição, nas proporções adequadas é: KNO3 
+ carvão 
 
 
Fosfato de cálcio (Ca3(PO4)2 ) 
 
Encontra-se na crosta terrestre sob a forma dos minerais fosforita e apatita, constituindo 
matéria- prima utilizada na produção do elemento fósforo. Quando tratado com ácido sulfúrico, 
produz fertilizante fosfatado. 
 
É um componente importante dos ossos e dentes. A ―farinha de osso‖ (usada no solo) contém fosfato 
de cálcio que é obtido pela calcinação de ossos de animais. 
 
 
Sulfato de cálcio ( CaSO4 ) 
 
Na forma hidratada (CaSO4. 2 H2O ), encontra-se amplamente distribuído na natureza e é chamado gipsita 
 
A gipsita se desidrata parcialmente ao ser aquecida brandamente,, dando origem ao sulfato de 
cálcio hemi-hidratado (CaSO4. ½ H2O ) , conhecido por nós como gesso ( na Europa e nos EUA é 
conhecido como plástico de Paris) . Na natureza não existe gesso e sim gipsita. Neste estado de 
hidratação é utilizado em Medicina (ortopedia), na produção de moldes em Odontologia e na construção 
civil. 
 
Pela desidratação completa da gipsita obtém-se o sulfato de cálcio anidro (CaSO4), que é utilizado na 
 
Fluoreto de sódio (NaF ) 
 
É utilizado na fluoretação da água potável e na fabricação de pastas de dente, 
pois inibe a desmineralização dos dentes, tornando-os menos suscetíveis à cárie. 
 
 
Sulfato de magnésio (MgSO4) 
 
Esse sal é encontrado dissolvido na água do mar, mas em quantidades menores que o cloreto de sódio e 
o cloreto de magnésio. 
 
Comercializado pelo nome de sal amargo e conhecido também por sal de Epson, sua 
principal aplicação medicinal ocorre devido a sua ação laxativa. 
 
Carbonato de sódio (Na2CO3) 
 
O carbonato de sódio é conhecido como barrilha ou soda e comumente é utilizado no tratamento de 
água de piscina, na fabricação de sabões, remédios, corantes, papel, etc. Sua principal aplicação, no entanto, é afabricação do vidro comum: 
 
 
Barrilha + calcário + areia fusão vidro 
 
Na2CO3 + CaCO3 + SiO2 silicatos de sódio e cálcio 
 
 
 
 
Alguns vidros são coloridos e isso ocorre devido à adição de alguns compostos, como os de selênio 
(usado para produzir vidro vermelho), os de cromo (vidro verde) e os de chumbo (vidro azul). 
- 68 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Bicarbonato de sódio (NaHCO3) 
 
É um sólido de cor branca, sendo aplicado medicinalmente como antiácido estomacal, por ser capaz de 
neutralizar o excesso de ácido clorídrico presente no suco gástrico. 
 
. 
 
NaHCO3 + HCl NaCl + H2O + CO2 
 
 
O CO2 liberado é o responsável pela eructação (―arroto‖). 
 
Nos principais antiácidos comerciais efervescentes, existem compostos, como o ácido tartárico, o ácido 
cítrico e outros que na presença do bicarbonato de sódio produzem efervescência. 
 
Uma outra aplicação importante do bicarbonato de sódio é a utilização como fermento de pães e bolos. 
O crescimento da massa deve-se à liberação de CO2 obtido pela decomposição do bicarbonato de sódio, 
que pode ser representada por: 
 
 
 
2 NaHCO3 Na2CO3 + H2O + CO2 
 
 
Esse sal é utilizado, também, na fabricação de extintores de espuma. No extintor há NaHCO3 sólido e 
uma solução de ácido sulfúrico, em compartimentos separados. Quando o extintor é acionado, estes se misturam 
e reagem produzindo a espuma com liberação de CO2. Esses extintores não podem ser usados para apagar fogo 
de instalações elétricas, porque a espuma conduz corrente elétrica. 
 
Além disso, o bicarbonato de sódio é utilizado como um dos componentes dos talcos desodorantes, pois 
reage com os ácidos liberados na transpiração, neutralizando-os. 
 
 
Nitrato de amônio (NH4 NO3) 
 
O nitrato de amônio pode ser utilizado como fertilizante e explosivo. Atualmente são usadas medidas 
preventivas a fim de evitar que o nitrato de amônio – substância fundamental para a produção de fertilizantes – 
seja usado como explosivo. Uma dessas medidas obriga a adição de carbonato de cálcio ao nitrato de amônio 
comercializado, o que diminui o poder explosivo desse sal. 
 
 
Hipoclorito de sódio (NaClO ) 
 
Um dos usos industriais mais importantes desse sal é como alvejante (branqueador). A sua 
solução aquosa tem a capacidade de remover a cor amarelada de tecidos e papéis, tornando-os brancos. No 
nosso dia-a- dia, é empregado na lavagem doméstica de roupas, com a mesma finalidade. Seu uso em 
quantidades excessivas altera as cores dos tecidos, tornando-os desbotados. 
 
Por ser um poderoso agente anti-séptico, é usado para a limpeza de residências, hospitais, 
etc. Essa propriedade é também responsável pelo seu uso no tratamento de água para 
consumo e de piscinas. Normalmente comercializado com o nome de cloro, o hipoclorito de 
sódio é um sólido branco. Durante as epidemias da cólera, recomendava-se sua adição em pequenas 
quantidades à água usada para beber ou lavar alimentos. 
 
Sua solução aquosa tem cheiro desagradável e provoca irritações na pele e nos olhos; por esse motivo 
deve ser manuseada com cuidado. 
- 69 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
EXERCÍCIOS 
 
1) De todos os nomes possíveis aos seguintes sais: 
 
a) Sr(CN)2 
 
e) Zn3(PO4)2 
 
i) Li2SO3 
 
n) Al(HSO3)3 
 
r) Na2HPO3 
 
v) NH4ClO4 
 
b) Ca(ClO)2 
 
f) NH4IO3 
 
j) MgOHCl 
o) Fe(NO3)2 
s) Ca(HS)2 
x) Al(OH)2Cl 
 
c) Al2(CO3)3 
g) Fe(NO2)2 
l) CuCO3 
p) Au2(SO4)3 
 
t) Ca(H2PO4)2 
 
z) NaF 
 
d) ZnCl2 
h) AgNO3 
m) PbS 
q) CdS 
 
u) Cu2S 
 
 
2) Dentre os sais mencionados no item anterior, quais são normais, hidrogeno-sais e hidroxi-sais? 
 
 
3) Escreva as fórmulas dos seguintes sais: 
 
a) cromato de prata 
 
c) ferrocianeto ferroso 
 
e) cloreto de mercúrio II 
 
g) fosfato de alumínio 
 
i) hidroxi cloreto de cálcio 
k) nitrato de mercúrio I 
m) cloreto plumboso 
 
o) sulfeto de mercúrio II 
q) carbonato de ferro III 
s) sulfito de amônio 
u) sulfato de manganês II 
 
x) carbonato de sódio 
 
 
b) hipoclorito de magnésio 
d) cloreto cúprico 
f) sulfato férrico 
 
h) hidroxi sulfato de ferro II 
 
j) sulfato de prata 
 
l) bissulfeto de sódio 
 
n) bissulfato de alumínio 
 
p) dihidroxi cloreto de chumbo IV 
 
r) fosfato de cobre II 
 
t) bicarbonato de chumbo II 
v) perclorato de prata 
z) nitrato de amônio 
 
 
4) Sabendo-se que o H2Cr2O7 é o ácido dicrômico, H4Fe(CN)6 é o ácido ferrocianídrico e H2SiO3 é o ácido 
met silícico, dê nome a : 
 
a) Hg2Fe(CN)6 b) FeSiO3 c) Na2Cr2O7 
 
5) Considere os íons: 
 
2
 
Positivos: Ca
2+
, Fe
3+
, Cu
2+
, NH4
+ 
; Negativos: PO4
3 
, NO3 , SO4 , 
 
Escreva todas as fórmulas de sais normais possíveis a partir da combinação desses íons (considere s 
com 
 
 
6) Se dissolvermos os sais sulfato de sódio e sulfato de potássio em água, que espécies químic 
estarão 
presentes na solução? 
 
a) K2SO4 e Na2SO4 
 
b) KOH , NaOH e H2SO4 
 
c) Na2K2(SO4)2 
 
d) KNaSO4 
- 70 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
7) O cobre pode ser encontrado na natureza no mineral denominado atacamita: CuCl2 . 3 Cu(OH)2 . Na 
fórmula da atacamita identifica-se cobre com valências, respectivamente: 
 
a) 1 e 1 b) 1 e 2 c) 1 e 3 d) 2 e 1 e) 2 e 2 
 
 
8) Dê nome aos sais abaixo: 
 
a) MgSO4.7H2O 
 
d) Fe(SCN)3 
 
 
b) CuSO4.5H2O 
 
e) Na2S2O3 
 
 
c) CaCl2. 6H2O 
 
f) CoCl2. 2 H2O 
 
 
9) O aquecimento de CuSO4. 5H2O faz com que sua cor mude de azul para branco acinzentado. Por quê? 
 
10) O dicromato de amônio tem a fórmula (NH4)2Cr2O7. Qual a fórmula do dicromato de magnésio? 
 
 
11) Molibdato de amônio é usado como fonte de molibdênio para o crescimento das plantas. Sabendo que esse 
elemento de símbolo Mo pertence à mesma família do cromo (Cr) e que a fórmula do íon cromato é CrO4
2 
, a 
fórmula do molibdato de amônio é: 
 
a) NH2MoO2 
 
b) NH3MoO2 
 
c) (NH3) MoO4 
d) NH4MoO4 
e) (NH4)2 MoO4 
 
12) Associe: 
( a ) NaNO3 
( b ) NaHCO3 
 
( c ) NaF 
 
( d ) Na2CO3 
 
( e ) NaCl 
 
( f ) CaSO4 
 
( g ) CaCO3 
 
( h ) NH4NO3 
 
( i ) Ca3(PO4)2 
 
( j ) MgSO4 
 
( l ) NaClO 
 
( m ) KI ou NaI 
 
 
( ) fabricação de soda cáustica 
 
( ) fertilizante 
 
( ) laxante 
 
( ) fermento 
 
( ) anticárie 
 
( ) gesso 
 
( ) giz escolar 
 
( ) barrilha 
 
( ) estalagmite 
 
( ) alvejante e anti-séptico 
 
( ) calcário 
 
( ) fabricação de vidro 
 
( ) aditivo de sal de cozinha (prevenção contra o bócio) 
( ) componente de antiácidos 
( ) ossos de animais 
 
( ) fabricação de pólvora 
 
( ) soro fisiológico 
 
( ) salitre do Chile 
- 71 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
4 
RESPOSTAS 
 
 
1) a) cianeto de estrôncio b) hipoclorito de cálcio 
c) carbonato de alumínio d) cloreto de zinco 
e) fosfato de zinco f) iodato de amônio 
g) nitrito de ferro II ou nitrito ferroso h) nitrato de prata 
i) sulfito de lítio j)hidroxi cloreto de magnésio 
 
l) carbonato de cobre II ou carbonato cúprico m) sulfeto de chumbo II ou sulfeto plumboso 
n) hidrogeno sulfito de alumínio ou bissulfito de alumínio o) nitrato de ferro II ou nitrato ferroso 
p) sulfato de ouro III ou sulfato áurico q) sulfeto de cádmio 
 
r) fosfito de sódio s) hidrogeno sulfeto de cálcio ou bissulfeto de cálcio 
t) dihidrogeno fosfato de cálcio u) sulfeto de cobre I ou sulfeto cuproso 
v) perclorato de amônio x) dihidroxi cloreto de alumínio z) fluoreto de sódio 
 
 
2) hidogeno-sais : n, s, t hidroxi-sais : j , x sais normais : os demais 
 
 
3) 
a) Ag2CrO4 b) Mg(ClO)2 c) Fe2[Fe(CN)6] d) CuCl2 e) HgCl2 f) Fe2(SO4)3 
g) AlPO4 h) [Fe(OH)]2SO4 i) CaOHCl j) Ag2SO4 k) Hg2(NO3)2 l) NaHS 
m) PbCl2 n) Al(HSO4)3 o) HgS p) Pb(OH)2Cl2 q) Fe2(CO3)3 r) Cu3(PO4)2 
s) (NH4)2SO3 t) Pb(HCO3)2 u) MnSO4 v) AgClO4 x) Na2CO3 z) NH4NO3 
 
4) a) Hg2Fe(CN)6 - ferrocianeto de mercúrio II ou ferrocianeto mercúrico 
b) FeSiO3 - meta silicato de ferro II ou meta silicato ferroso 
c) Na2Cr2O7 - dicromato de sódio 
 
 
5) (Ca
2+
)3 (PO4
3 
)2 Ca 3 (PO4)2 – fosfato de cálcio Ca
2+ 
(NO3 
)2 Ca (NO3)2 – nitrato de cálcio Ca
2+ 
SO4
2 
Ca SO4 – sulfato de cálcio 
Ca
2+ 
(Cl )2 Ca Cl2 – cloreto de cálcio (Fe
3+
)(PO4
3 
) 
FePO4 – fosfato de ferro III ou férrico 
Fe
3+ 
(NO3 )3 Fe (NO3)3 – nitrato de ferro III ou 
férrico (Fe
3+
)2(SO4
2 
)3 Fe2(SO4)3 – sulfato de ferro III 
ou férrico Fe
3+ 
(Cl )3 Fe Cl3 – cloreto de ferro III 
ou férrico 
(Cu
2+
)3 (PO 
3
 
 
)2 Cu 3(PO4)2–fosfato de cobre II ou 
cúprico Cu
2+ 
(NO3 )2 Cu (NO3)2 – nitrato de cobre II 
ou cúprico Cu
2+ 
SO4
2 
Cu SO4 – sulfato de cobre II 
ou cúprico 
Cu
2+ 
Cl 2 Cu Cl2 – cloreto de cobre II ou cúprico 
(NH4
+
)3 (PO4
3 
) (NH4) 3 PO4– fosfato de amônio (NH4
+
) (NO3 ) NH4 NO3 – nitrato de amônio 
+ 2 + 
- 72 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
8) a) MgSO4.7H2O – sulfato de magnésio heptahidratado 
 
b)CuSO4.5H2O – sulfato cúprico pentahidratado ou sulfato de cobre II pentahidratado 
c) CaCl2. 6H2O – cloreto de cálcio hexahidratado 
d) Fe(SCN)3 – tiocianato férrico ou de ferro III 
 
e) Na2S2O3 – tiossulfato de sódio 
 
f) CoCl2. 2 H2O – cloreto de cobalto II dihidratado ou cloreto cobaltoso dihidratado 
 
 
9) Devido à perda de água de cristalização, responsável pela coloração azul. O sulfato cúprico anidro é branco 
acinzentado. 
 
10) MgCr2O7 
 
11) letra e 
 
12) 
 
( a ) NaNO3 ( e ) fabricação de soda cáustica 
 
( b ) NaHCO3 ( h ) fertilizante 
 
( c ) NaF ( j ) laxante 
 
( d ) Na2CO3 ( b ) fermento 
 
( e ) NaCl ( c ) anticárie 
 
( f ) CaSO4 ( f ) gesso 
 
( g ) CaCO3 ( f ) giz escolar 
 
( h ) NH4NO3 ( d ) barrilha 
 
( i ) Ca3(PO4)2 ( g ) estalagmite 
 
( j ) MgSO4 ( l ) alvejante e anti-séptico 
 
( l ) NaClO ( g ) calcário 
 
( m ) KI ou NaI ( d ) fabricação de vidro 
( m ) aditivo de sal de cozinha (prevenção contra o bócio) 
( b ) componente de 
antiácidos 
 
( i ) ossos de animais 
 
( a ) fabricação de 
pólvora 
 
( e ) soro 
fisiológico 
- 73 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
3 
 
 
H 
2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
REAÇÃO DE SALIFICAÇÃO OU DE NEUTRALIZAÇÃO 
 
Juntando-se um e uma ocorre formação de sal e de água; por isso, este tipo de reação recebe o 
nome de salificação. Como ácidos e bases perdem suas propriedades iniciais, a reação também é conhecida 
por reação de neutralização. A formação de água, que é um composto pouquíssimo ionizado, faz com que o 
equilíbrio fique deslocado no sentido de formá-la, evitando assim um retorno apreciável da reação. 
 
Como já foi visto anteriormente, a equação química corresponde à representação gráfica da reação. Até 
agora, temos trabalhado com equações que são denominadas moleculares, porém 
, torna-se útil usar outro tipo de equação, chamada iônica, que nos permite analisar o 
comportamento das diversas espécies envolvidas na reação. 
 
Como procuram retratar o comportamento predominante das substâncias em solução 
aquosa, nas equações iônicas, as espécies são escritas levando-se em consideração sua força, sua 
solubilidade, etc. Por exemplo, ao escrevermos a reação entre o hidróxido de potássio e o ácido nítrico, 
 
Equação molecular: KOH + ? KNO3 + 
 
Equação iônica:
 
K 
+ 
+ OH 
– 
H 
+ 
+ NO – ?
 
K 
+ 
+ NO – + H O
 
3 3 2 
 
 
Na equação iônica acima, escrevemos o hidróxido de potássio na forma iônica, pois se trata de uma base 
forte (totalmente dissociada); o ácido nítrico, por também se tratar de um eletrólito forte, vem escrito na forma 
iônica (a maior parte das moléculas, em suas soluções, encontra-se ionizada); o nitrato de potássio é 
um sal 
solúvel e, portanto, totalmente dissociado e, finalmente, a água está escrita na forma molecular por se tratar de 
uma substância muito pouco ionizada. 
 
são chamadas de . Se, na equação iônica anterior, retirarmos os espectadores, a equação restante 
retratará o fenômeno que efetivamente está ocorrendo. 
 
Esta equação (sem os espectadores) é denominada . 
Os espectadores da equação vista são os íons potássio (K 
+
) e os íons nitrato (NO –) que permanecem 
sem qualquer modificação ao longo do processo. Considerando isto, temos: 
Equação iônica abreviada: OH – + H 
+
 
 
? H2 
 
 
Na reação entre o hidróxido de chumbo II e o ácido clorídrico, temos: 
 
Equação molecular: Pb(OH)2 + 2 HCl ? PbCl2 + 2 H2O 
 
 
 
Equação iônica: Pb(OH)2 + 2 H
+ 
+ 2 Cl 
– 
? PbCl 
 
+ 2 H2 
 
 
 
Equação iônica abreviada: Pb(OH)2 + 2 
+
 
 
+ 2 Cl 
– 
? PbCl2 
 
+ 2 H2O (não há espectadore 
 
 
 
 
 Pb(OH)2) 
 
 
 
 
 
 
 
 
 
. 
- 74 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
 
 
 
 
 
2 
3 4 3 4 2 2 
3 4 3 4 2 
 
 
 
 
– 
 
 
 
 
 
 
 
 
 
Tipos de reação de salificação 
 
Salificação total 
 
 
 
 
 
Exemplos: 
Ocorre quando do ácido e da base . 
 
Tem-se a formação de um sal normal 
 
Equação molecular: NaOH HCl ? NaCl + 
 
Equação iônica: Na 
 
+ OH + H 
+ 
+ Cl
– 
? Na 
+ 
+ Cl 
– 
+ 
Equação iônica abreviada: OH – + H 
+
 
 
? H2 
 
 
 
Equação molecular: 3 NaOH + ? Na3PO4 + 3 
 
Equação iônica: 3 Na
 
 
+ 3 OH 
– 
+ H PO
 
3 Na 
+ 
 
PO 
3 – 
+ 3 H O
 
3 4 4 2 
 
Equação iônica abreviada: 3 OH – + H3PO ? 
 
PO4
3 –
 
 
+ 3 H2O 
 
 
Equação molecular: 3 Ca(OH)2 + 2 H3PO4 Ca3(PO4)2 + 6 
Equação iônica: 3 Ca 2
+ 
+ 6 OH 
– 
+ 2 H PO ? Ca (PO ) + 
Equação iônica abreviada: 3 Ca 2
+ 
+ 6 OH 
– 
+ 2 H PO ? Ca (PO ) + 
 
 
 
 
Ocorre quando um 
 
 
 
 
Exemplos: 
Salificação parcial do ácido 
 
(mais de um hidrogênio ionizável) reage comuma e 
 . 
 
O sal formado é um hidrogeno-sal. 
 
Equação molecular: NaOH + H2SO4 ? + H2O 
 
Equação iônica: Na
 
 
+ OH 
– H 
+ 
+ HSO
 
? Na 
+ 
+ HSO 
– 
H O
 
4 4 2 
 
Equação iônica abreviada: 
 
OH 
– 
+ 
+ 
H ? H 2O 
 
 
 
 
 
 
 
 
Equação molecular: NaOH + H3PO4 NaH2PO4 + 
 
Equação iônica: Na + 
+ 
 
+ H3PO4 ? Na 
+ 
+ H2PO4
– 
+ 
 
Equação iônica abreviada: OH – + H3PO4 H2PO4 + 
 
 
Equação molecular: 2 NaOH + H3PO4 ? Na2HPO4 + 2 H2O 
 
Equação iônica: 2 Na + 2 OH – + H PO
 
2 Na 
+ 
+ HPO 
2– 
+ 2 H
 
3 4 4 2 
 
Equação iônica abreviada: 2 OH – + H3PO4 ? HP4O
2– 
+ 2 
- 75 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
 
 
 
2 
2– 
2 
2 
H 
 
 
 
 
 
 
 
 
 
 
 
 
Ocorre quando uma 
 . 
Salificação parcial da base 
 
(possui mais de uma hidroxila) reage com um e 
 
 
O sal formado é um hidroxi-sal. 
 
Exemplos: 
 
Equação molecular: Ca(OH)2 + HCl ? CaOHCl + H2O 
 
Equação iônica: Ca(OH) 
 
+ OH + H 
+ 
+ Cl
– 
? Ca(OH) 
+ 
+ Cl
– 
+ 
Equação iônica abreviada: OH – + H 
+ 
? H 
 
 
 
 
 
 
 
 
Equação molecular: Al(OH)3 + H2SO4 ? Al(OH)SO4 + 2 
 
Equação iônica: Al(OH)3 + 2 H 
+ 
SO4
2– 
? Al(OH) 
2+ 
SO4 + 2 
 
Equação iônica abreviada: Al(OH)3 
+ 
+ 2 H 
 
? Al(OH) 
2+ 
+ 2 
 
 
 
Equação molecular: Bi(OH)3 HCl ? Bi(OH)2Cl + H2O 
+
 
Equação iônica: Bi(OH)3 
+ 
+ Cl
– 
? Bi(OH)2 
+ 
+ Cl
– 
+ 
 
Equação iônica abreviada: Bi(OH)3 + 
+ 
? Bi(OH) 
+ 
+ 
 
 
 
Salificação de um poliácido por bases diferentes ou de uma polibase por 
ácidos diferentes 
 
Destas reações surgem os denominados sais duplos. 
 
Exemplos: 
 
KOH + NaOH + H2SO4 ? KNaSO4 + 2 H2O 
 
2 KOH + NaOH + ? K2NaPO4 + 3 
 
 
Os sais formados acima são exemplos de sais duplos quanto ao cátion. 
 
 
Ca(OH)2 + HCl + HBr ? CaBrCl + 2 H2O 
Al(OH)3 + HCl + ? Al(SO4)Cl + 3 H2O 
 
 
Os sais formados acima são exemplos de sais duplos quanto ao ânion. 
- 76 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à 
Educação Profissional 
 
 
 
 
 
OUTRAS REAÇÕES COM FORMAÇÃO DE SAIS 
 
Reações de ácidos com óxidos 
 
 
Reações de ácidos com óxidos básicos 
Na2O + 2 HCl ? 2 NaCl + 
MgO + H2SO4 MgSO4 
+ 
FeO + 2 HNO3 ? Fe(NO3)2 + H2 
 
 
Reações de ácidos fortes com óxidos anfóteros 
 
ZnO + H2SO4 
? 
 
Al2O3 + 6 
HCl 
? 
 
ZnSO4 + H2O 
 
2 AlCl3 + 3 H2O 
 
2 As Br3 + 3 
 
Reações de ácidos com óxidos duplos 
 
FeO + H2SO4 ? FeSO4 + 
 
 + Fe2O3 + 3 H2SO4 ? 
 
Fe3O4 + 4 H2SO4 ? 
 
Fe2(SO4)3 + 3 
H2O 
+ 4 
 
 
Reações de ácidos com peróxidos 
 
Na2O2 + H2SO4 ? Na2SO4 + H2O2 
 
H2O + ½ O2 
 
CaO2 + 2 HCl ? CaCl2 + H2O2 
 
H2O + ½ O2 
 
 
 
 
 
 
 
 
Reações de bases com óxidos 
 
 
Reações de bases com óxidos ácidos (anidridos) 
CO2 + 2 
KOH SO3 + 
Ca(OH)2 
 
? K2CO3 + H2O 
? CaSO4 + H2O 
 
? Na2CrO4 + 
 
 
Com anidridos mistos 
- 77 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
COMPOSTO 
 
FUNÇÃO 
 
NOME 
 
EQUAÇÃO DA INTERAÇÃO 
COM ÁGUA 
 
EQUAÇÃO DA INTERAÇÃO COM HCl 
ou NaOH (o que for possível) 
 
BaO 
 
Sn(OH)2 
 
 
HBrO3 
 
 
H2SO4 
 
 
P2O3 
 
 
CaO2 
 
 
Al2O3 
 
 
NO2 
 
 
H3PO2 
 
 
Mg(OH)2 
 
 
MnO3 
 
 
B2O3 
 
 
HCN 
 
NO 
 
Fe(OH)3 
 
 
H3PO3 
 
 
H2S 
 
 
Na2O 
 
 
NO 
 
 
 
 
 
 
Reações de bases fortes com óxidos anfóteros 
 
ZnO + Ca(OH)2 
? 
 
Al2O3 + 2 NaOH 
? 
 
CaZnO2 + H2O 
2 NaAlO2 + 3 
H2O 
 
 
 
Reações de óxidos básicos com óxidos ácidos 
 
 
Na2O CO2 ? Na2CO3 
 
 
 
 
 
 
 
 
 
 
1) Complete: 
+ 
 
FeO 
CaO 
 
SO3 
+ N2O5 
 
+ Cl2O7 
 
? MgSO4 
 
? Fe(NO3)2 
 
? Ca(ClO4)2 
 
 
EXERCÍCIOS 
- 78 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
2) Escreva as equações moleculares das reações de salificaçãototal entre: 
 
a) Hidróxido de sódio e ácido nitroso 
 
b) Hidróxido de potássio e ácido fosfórico 
c) Hidróxido de alumínio e ácido clorídrico 
d) Hidróxido férrico e ácido bromídrico 
e) Hidróxido de bário e ácido perclórico 
 
f) Hidróxido de cálcio e ácido ferricianídrico (sabendo-se que o radical ferricianeto é Fe(CN)6
3 
) 
 
 
3) Dê as equações moleculares das reações de salificação total abaixo, dando nome aos sais formados: 
 
a) ácido clorídrico e hidróxido ferroso 
 
b) ácido sulfúrico e hidróxido de ferro III 
 
c) ácido hipocloroso e hidróxido de sódio 
 
d) ácido permangânico e hidróxido de potássio 
e) ácido sulfídrico e hidróxido de amônio 
f) ácido fosfórico e hidróxido de bário 
g) ácido nítrico e hidróxido de cobre II 
h) ácido sulfuroso e hidróxido de prata 
i) ácido nitroso e hidróxido niqueloso 
j) ácido bromídrico e hidróxido de potássio 
 
 
4) Dê as equações moleculares e iônicas (inclusive a abreviada) das reações de salificação total abaixo, dando 
nome aos sais formados: 
 
a) ácido clorídrico e hidróxido de prata 
 
b) ácido sulfúrico e hidróxido de amônio 
c) ácido cianídrico e hidróxido de sódio 
d) ácido hipocloroso e hidróxido de magnésio 
e) ácido perclórico e hidróxido férrico 
f) ácido fosfórico e hidróxido de cálcio 
g) ácido nítrico e hidróxido de potássio 
h) ácido iódico e hidróxido de mercúrio II 
 
 
5) Soluções aquosas de mesma concentração mol/L de ácido acético e hidróxido de amônio 
têm baixa 
condutividade elétrica quando separadas. Todavia, ao misturá-las em volumes iguais, obtém-se uma solução de 
maior condutividade. Dê uma explicação para esse fato, equacionando a reação envolvida. 
 
Obs.: Dizer que as soluções têm mesma concentração mol/L significa, em última análise, dizer que têm igual 
 
 
6) a) Dê os nomes dos compostos representados pelas fórmulas H2SO4 e 
NH3. 
 
b) Escreva a equação molecular da reação entre esses compostos e dê o nome do sal formado. 
 
 
7) Dê as equações moleculares das reações de salificação que permitem a formação dos sais abaixo: 
 
a) nitrato de amônio b) fosfato de cálcio 
- 79 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
c) sulfato cúprico 
 
e) sulfeto de alumínio 
 
g) sulfito de manganês II 
 
i) perclorato de bário 
k) fluoreto de sódio 
m) cloreto de cálcio 
o) brometo de zinco 
q) sulfeto mercúrico 
d) cloreto férrico 
 
f) nitrito de magnésio 
h) nitrato de prata 
j) carbonato ferroso 
l) sulfato de amônio 
n) iodeto de cádmiop) sulfato de níquel II 
 
r) metafosfato de lítio 
 
 
8) Escreva as equações moleculares das reações de salificaçãoparcial, dando nome aos sais formados: 
 
a) ácido sulfúrico e hidróxido de amônio 
b) b) ácido fosfórico e hidróxido de lítio 
c) ácido permangânico e hidróxido férrico 
 
d) ácido cloroso e hidróxido de bário 
 
e ) ácido bórico e hidróxido de cobre I (sabendo-se que o íon borato é BO3
3
 
 
 
9) Escreva as equações moleculares das reações de salificaçãototal eparcial, dando nome aos sais formados: 
 
a) ácido nítrico e hidróxido de magnésio 
b) ácido clorídrico e hidróxido de cálcio 
c) ácido sulfúrico e hidróxido de sódio 
d) ácido bromídrico e hidróxido cobáltico 
 
 
10) Escreva as equações moleculares das reações de salificação que produzem os sais abaixo: 
 
a) sulfato férrico 
 
c) bicarbonato de magnésio 
e) fosfato de ferro III 
g) nitrato de alumínio 
i) acetato de zinco 
l) sulfeto de potássio 
n) sulfato cúprico 
p) bissulfito de potássio 
r) iodeto de amônio 
t) hipofosfito de estanho II 
 
v) iodeto fosfato de chumbo IV 
 
z) ortosilicato de magnésio e ferro II 
 
b) dihidrogeno fosfato de sódio 
d) hidrogeno sulfato de sódio 
f) hidroxi nitrato de cálcio 
h) cianeto de potássio 
j) sulfato de amônio 
m) bissulfato de bário 
o) fosfato de bário 
q) cloreto ferroso 
s) fosfito de lítio 
u) nitrato de prata 
x) sulfato duplo de alumínio e potássio 
 
11) Só existem dois minerais de césio conhecidos: a polucita (silicato de alumínio e césio) e a rodizita. Escreva 
a fórmula da substância contida na polucita. 
 
12) O magnésio é abundante na Natureza principalmente na água do mar como íon dipositivo, e 
crosta 
terrestre na forma de magnesita (MgCO3), dolomita (CaMg(CO3)2) e vários silicatos. Ocorre 
também como brucita (Mg(OH)2); carnalita (KMgCl3.6H2O); e kieserita (MgSO4.H2O). Dê os nomes 
- 80 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
13) Uma aplicação do carbonato de cálcio no nosso dia-a-dia ocorre quando pintamos paredes usando cal extinta 
(Ca(OH)2 ). Após a caiação, a cal extinta reage com o gás carbônico do ar, originando uma 
película de carbonato de cálcio que, por ser insolúvel na água, protege a parede. 
 
Escreva a equação da reação que ocorre no contato da cal da parede e o ar. 
 
 
14) O sulfato de magnésio é comercializado pelo nome de sal amargo e conhecido também por sal de Epson; 
sua principal aplicação medicinal ocorre devido a sua ação laxativa. 
 
Escreva quatro reações que permitam a obtenção desse sal. 
 
 
15) A água de cal (Ca(OH)2) e a água de barita (Ba(OH)2) quando ficam expostas ao ar, passam a apresentar 
uma turvação, que vai tornando-se cada vez mais intensa quanto maior for o tempo de exposição. Explique o 
acontece. Faça as equações químicas que justificam sua explicação. 
 
 
16) Se quiséssemos obter através de uma mesma reação, nitrato de potássio e gás oxigênio, que 
reagentes 
 
17) O zinco é indicado para a proteção da pele, na forma de ZnO. Na formulação do óxido de zinco, ele não 
poderá estar associado a ácidos ou bases fortes. Justifique, através de equações químicas, por que o óxido de 
zinco não deve ser misturado a esses compostos. 
 
18) O zarcão (tetróxido de trichumbo) é usado para proteger o ferro contra a ação da ferrugem. 
Escreva a 
 
19) O dióxido de nitrogênio (anidrido nitroso-nítrico) é um gás de cor castanho - avermelhada, de cheiro forte e 
irritante, muito tóxico, e constitui um poluente atmosférico. Se borbulharmos este gás em uma solução aquosa 
de hidróxido de sódio, quais serão os produtos formados. Equacione a reação ocorrida. 
 
 
20) Quando exposto ao ar, o óxido de cálcio sofre um processo denominado de carbonatação, que consiste na 
sua reação com o gás carbônico. Equacione este processo. 
 
21) O óxido de magnésio, conhecido como magnésia, é utilizado para neutralizar o excesso de ácido clorídrico 
(HCl), causador da acidez estomacal. Escreva a equação da reação que ocorre entre eles. 
- 81 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
RESPOSTAS 
1) 
 
SUBST. 
 
FUNÇÃO 
 
NOME 
 
EQUAÇÃO DA INTERAÇÃO COM ÁGUA 
 
EQUAÇÃO DA INTERAÇÃO COM HCl ou 
NaOH (o que for possível) 
 
BaO 
 
Óxido 
 
Óxido de 
bário 
 
BaO + H2O ? Ba(OH)2 
 
BaO + 2 HCl ? BaCl2 + H2O 
 
Sn(OH)2 
 
Base 
 
Hidróxido de 
estanho II ou 
estanoso 
 
 
Sn(OH)2(s) Sn
2+ 
+2 OH
– 
(aq) (aq) 
 
Sn(OH)2 + 2 HCl ? SnCl2 + 2 H2O 
 
HBrO3 
 
Ácido 
 
Ácido 
brômico 
 
HBrO3 + H2O H3O
+
+ BrO3 
 
HBrO3 + NaOH? NaBrO3 + H2 O 
 
H2SO4 
 
Ácido 
 
Ácido 
sulfúrico 
 
H2SO4+2H2O 2H3O
+
+ SO4
2 
 
H2SO4 + 2 NaOH? Na2 SO4 + 2H2 
O 
 
P2O5 
 
Óxido 
 
Anidrido 
fosfórico 
P2O5 + H2O ? 2 HPO3 
P2O5 + 2 H2O ? H4P2O7 
P2O5 + 3 H2O ? 2 H3PO4 
P2O5 + 2NaOH ? 2 NaPO3 + H2O 
P2O5 + 4NaOH Na4P2O7 + 2 H2O 
P2O5 + 6 NaOH ? 2 Na3PO4 + 3 H2O 
 
CaO2 
 
Peróxido 
 
Peróxido de 
cálcio 
 
CaO2+ H2O? Ca(OH)2 +H2O + ½ O2 
 
CaO2+ 2HCl? CaCl2 +H2O + ½ O2 
 
Al2O3 
 
Óxido 
 
Óxido de 
alumínio 
Não reage com água 
(é um óxido anfótero) 
 
Al2O3+ 6 HCl? 2AlCl3 + 3 H2O 
 
NO2 
 
Óxido 
 
Anidrido 
nitroso-nítrico 
 
NO2 + H2O ? HNO2 + HNO3 
 
2NO2+2NaOH ?NaNO2+NaNO3+ H2O 
 
H3PO2 
 
Ácido 
 
Ácido 
hipofosforoso 
 
H3PO2 + H2O H3O
+
+ H2PO2 
 
H3PO2 + NaOH? NaH2 PO2 + H2 O 
 
Mg(OH) 
2 
 
Base 
 
Hidróxido de 
magnésio 
 
Mg(OH)2 Mg
2+ 
+2 OH
– 
(aq) 
 
Mg(OH)2 + 2 HCl ? MgCl2 + 2 H2O 
 
MnO3 
 
Óxido 
 
Anidrido 
mangânico 
 
MnO3 + H2O ? H2MnO4 
 
MnO3 +2 NaOH ? Na2MnO4 + H2O 
 
B2O3 
 
Óxido 
 
Anidrido 
bórico 
B2O3 + H2O ? 2 HBO2 
B2O3 + 3 H2O ? 2 H3BO3 
B2O3 + 2NaOH ? 2 NaBO2 + H2O 
B2O3 6NaOH ? 2 Na3BO3 + 3 
 
HCN 
 
Ácido 
 
Ácido 
cianídrico 
 
HCN + H2O H3O
+
+ CN 
 
HCN + NaOH? NaCN + H2O 
 
NO 
 
Óxido 
 
Óxido nítrico 
Não reage com água 
(é um óxido neutro) 
Não reage com ácido ou base 
(é um óxido neutro) 
 
 
Fe(OH)3 
 
 
Base 
 
Hidróxido de 
ferro III ou 
férrico 
 
 
Fe(OH)3 Fe
3+ 
)+ 3 OH
– 
(aq) (aq 
 
Fe(OH)3 + 3 HCl ? FeCl3 + 3 H2O 
 
H3PO3 
 
Ácido 
 
Ácido 
fosforoso 
 
H3PO3 + 2H2O 2H3O
+
+HPO3
2 
 
H3PO3 + 2 NaOH? Na2 HPO3 + 2H2 
O 
H2S 
 
Ácido 
 
Ácido 
sulfídrico 
 
H2S+2H2O 2H3O
+
+ S
2 
 
H2S + 2 NaOH? Na2S + 2H2O 
 
Na2O 
 
Óxido 
 
Óxido de 
sódio 
 
Na2O + H2O ? 2 NaOH 
 
Na2O + 2 HCl ? 2 NaCl + H2O 
 
N2O5 
 
Óxido 
 
Anidrido 
nítrico 
 
N2O5 + H2O ? 2 HNO3 
 
N2O5 + 2NaOH ? 2 NaNO3 + 
H2O 
- 82 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
4 4 
2) a) NaOH + HNO2 ? NaNO2 + H2O 
 
b) 3 KOH + H3PO4 ? K3PO4 + 3 H2O 
 
c) Al(OH)3 + 3 HCl ? AlCl3 + 3 H2O 
 
d) Mg(OH)2 + 2 HClO ? Mg(ClO)2 + 2 H2O 
Mg(OH)2 + 2 HClO ? Mg(ClO)2+ 2 H2O 
hipoclorito de magnésio 
 
e) Fe(OH)3 + 3 HClO4 ? Fe(ClO4)3 + 3 H2O 
d) Fe(OH)3 + 3 HBr ? FeBr3 + 3 H2O 
 
Fe(OH)3 +3 H
+ 
+3ClO 
–
 
 
?Fe
3+
 
 
+3 ClO 
–
 
e) Ba(OH)2 + 2 HClO4 ? Ba(ClO4)2 + 2 H2O 
 
f) 3 Ca(OH)2+2 H3 Fe(CN)6?Ca3[Fe(CN)6]2+ 6 H2O 
 
 
3) a ) Fe(OH)2 + 2 HCl ? FeCl2 + 2 H2O 
cloreto de ferro II ou ferroso 
 
b) 3 H2SO4 + 2 Fe(OH)3 ? Fe2(SO4)3 + 
6 H2O 
+3H2O Fe(OH)3 +3 H
+ 
? Fe
3+ 
+ 3 H2O 
perclorato de ferro III ou férrico 
 
f) 2 H3PO4 +3 Ca(OH)2 ? Ca 3(PO4)2 + 6 H2O 
2 H3PO4 + 3 Ca
2+ 
+ 6 OH 
–
? Ca 3(PO4)2 + 6 H2O 
fosfato de cálcio 
 
g) KOH + HNO3 ? KNO3 + H2O 
sulfato de ferro III ou férrico K
+ 
+ 
OH
–
 
+ H
+
 + NO3 
– 
? K
+ 
+ 
NO3 
– 
+2H 
 
c) NaOH + HClO ? NaClO + H2O 
hipoclorito de sódio 
O OH 
– 
+ H
+ 
? H2O 
nitrato de potássio 
 
d) KOH + HMnO4 ? KMnO4 + H2O 
permanganato de potássio 
 
h) 2 HIO3 
 
+ Hg(OH2) ? Hg(3IO ) + 2 2 H O 
 
e) 2 NH OH + H S ? (NH ) S + 2 H O
 2 H
+ 
+ 2 IO3 
– 
+ Hg(OH)2 ? Hg(IO3)2 + 2
 
4 2 4 2 2 
sulfeto de amônio H2O 
 
f) 3 Ba(OH)
 
 
+ 2 H PO
 
 
? Ba
 
 
(PO ) + 6
 iodato de mercúrio II ou mercúrico 
2 
H2O 
3 4 3 4 2 
5) Tanto o ácido acético quanto o 
fosfato de bário 
 
g) Cu(OH)2 + 2 HNO3 ? Cu(NO3)2 + 2 H2O 
hidróxido de amônio são eletrólitos fracos e, 
portanto, possuem baixa condutividade elétrica. 
nitrato de cobre II ou cúprico Qaul an(daocetatojuntdaemosamônoios) dboais,tanetem sporloúpvoelrçõe,s 
 
h) 2 AgOH + H SO
 
 
? Ag SO
 
 
+ 2 H O
 adequadas, há formação de um 
2 3 2 3 2 
sulfito de prata 
 
consdeuqtiüveindtaedme.ente, haverá grande quantidade de íons 
 
i) Ni(OH)2 
 
+ 2 HNO2 
 
? Ni(NO2)2 
 
+ 2 H2O 
em solução o que justifica o aumento de 
nitrito de níquel II ou niqueloso 
 
 
j) KOH +HBr ? KBr +H2O brometo de potássio 
 
 
4) a) AgOH + HCl ? AgCl + H2O 
AgOH + H
+ 
+ Cl ? AgCl + H2O 
cloreto de prata 
 
 
6) a)
2
ácid
4 
o sulfúr
3
ico e am
4
ônia 
4
 
 
b) H SO + 2NH ? ( NH ) SO sulfato de amônio 
 
 
7) a) HNO3 + NH4OH ? NH4 NO3 + H2O 
b) 2 H3PO4 
2 
+ 3 Ca(
2
OH
4
)2 ? Ca 3(
4
PO4)2 +
2 
6 
H2O 
 
b) H SO
 
 
+ 2 NH OH ? ( NH
 
 
) SO + 2
 
 
c) Cu(OH) + H SO ? CuSO + 2 H O 
2 4 4 
H2O 
4 2 4 
d) Fe(OH)3 +3 HCl ? FeCl3 + 3 H2O 
2H
+ 
+SO4 
2– 
+2NH4OH?2NH4
+
+SO4
2– 
+2H2O 
2 H
+ 
+ 2 NH4OH ? 2 NH4
+ 
+ 2 H2O 
sulfato de amônio 
 
c) NaOH + HCN ? NaCN + H2O 
e) 2 Al(OH)3 + 3 H2S ? Al2S3 + 6 
H2O 
 
f) 2 HNO2 + Mg(OH)2 ? Mg(NO2)2 + 2 H2O 
 
g) H2SO3 + Mn(OH)2 ? MnSO3 + 2 H2O 
 
h) HNO3 + AgOH ? Ag NO3 + H2O
 
Na
+ 
+ OH + HCN ? Na
+ 
+ CN + 
i) Ba(OH)2 + 2 HClO4 ? Ba (ClO4)2 + 2 
- 83 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
7) l) H2SO4 + 2 NH4OH ? ( NH4 )2SO4 + 2 H2O 
 
m) Ca(OH)2 + 2 HCl ? CaCl2 + 2 H2O 
 
n) Cd(OH)2 + 2 HI ? Cd I2 + 2 H2O 
 
o) Zn(OH)2 + 2 HBr ? Zn Br2 + 2 H2O 
 
p) H2SO4 + Ni(OH)2 ? NiSO4 + 2 H2O 
 
q) H2S + Hg(OH)2 ? HgS + 2 H2O 
 
r) HPO3 + LiOH ? LiPO3 + H2O 
 
8) a) NH4OH + H2SO4? NH4HSO4 + H2O 
bissulfato de amônio 
10) f) Ca(OH)2 + HNO3 ? Ca(OH)NO3 + 
H2O 
 
g) Al(OH)3 +3 HNO3 ? Al(NO3)3 +3 H2O 
 
h) HCN + KOH ? KCN + H2O 
 
i) Zn(OH)2 + 2 HAc ? Zn(Ac)2 + 2 H2O 
 
j) 2 NH4OH + H2SO4 ? (NH4)2SO4 + 2 H2O 
 
l) H2S + 2 KOH ? K2S + 2 H2O 
 
m) Ba(OH)2+ 2 H2SO4 ? Ba(HSO4)2 + 2 
H2O n) Cu(OH)2 + 2 H2SO4 ? CuSO4 + 
 
b) LiOH + H PO
 
 
? LiH PO
 
 
+ H O
 2 H2O o) 3 Ba(OH)2 +2 H3PO4 ? Ba3(PO4)2 + 
3 4 2 4 2 
 
2 LiOH + H PO
 
 
? Li HPO
 
 
+ 2 H O
 6 H2O 
3 4 2 4 2 
dihidrogeno fosfato de lítio e hidrogeno fosfato de lítio 
c) Fe(OH)3 + HMnO4 ? Fe(OH)2MnO4 + H2O 
Fe(OH)3 +2 HMnO4 ? Fe(OH)(MnO4)2 +2 H2O 
dihidroxi permanganato de ferro III ou férrico e hidroxi 
permanganato de ferro III ou férrico 
p) KOH + H2SO3 ? KHSO3 +H2O 
 
q) Fe(OH)2 + 2 HCl ? FeCl2 + 2 H2O 
 
r) NH4OH + HI ? NH4I + H2O 
 
s) 2 LiOH + H3PO3 ? Li2(HPO3) + 2 H2O 
 
d) Ba(OH)2 
 
+ HClO2 
 
? Ba(OH)ClO2 
 
+ H2O 
t) Sn(OH)2 + 2 H3PO2 ? Sn(H2PO2)2 + 2 H2O 
hidroxi clorito de bário 
 
e) CuOH + H3BO3 ? CuH2BO3 + H2O 
 
2 CuOH + H3BO3 ? Cu2HBO3 + 2 H2O 
dihidrogeno borato de cobre I ou cuproso e hidrogeno 
borato de cobre I ou cuproso 
 
9)a) Mg(OH)2 + HNO3 ? Mg(OH)NO3 + 
 
H2O Mg(OH)2 + 2 HNO3 ? Mg(NO3)2 + 2 
 
H2O 
hidroxi nitrato de magnésio e nitrato de magnésio 
b) Ca(OH)2 + HCl ? Ca(OH)Cl + H2O 
Ca(OH)2 + 2 HCl ? CaCl2 + 2 H2O 
hidroxi cloreto de cálcio e cloreto de cálcio 
 
c) NaOH + H2SO4 ? NaHSO4 + H2O 
 
2 NaOH + H2SO4 ? Na2SO4 + 2 H2O 
u) AgOH + HNO3 ? AgNO3 + H2O 
 
11) AlCsSiO4 
 
12) MgCO3 – carbonato de magnésio 
CaMg(CO3)2 – carbonato de cálcio e magnésio 
Mg(OH)2 – hidróxido de magnésio 
KMgCl3.6H2O – cloreto de potássio e 
magnésio hexahidratado 
 
13) Ca(OH)2 + CO2 ? CaCO3 + H2O 
 
14) H2SO4 + Mg(OH)2 ? MgSO4 + 2 
 
H2O H2SO4 + MgO ? MgSO4 + 
H2O 
SO3 + Mg(OH)2 ? MgSO4 + 
formHanOdoSOsais i+nsolúveMisg(Opre?cipiMtadgoSs)Oque turvam
 
hidrogeno sulfato de sódio ou bissulfato de sódio e 2 3 4 
sulfato de sódio 
 
d) Co(OH)3 + HBr? Co(OH)2Br + H2O 
Co(OH)3 + 2 HBr? Co(OH)Br2 +2 
H2O Co(OH)3 + 3 HBr 
 
? CoBr3 + 3 H2O 
 
dihidroxi brometo de cobalto III ou cobáltico ; hidroxi 
brometo de cobalto III ou cobáltico ; brometo de 
cobalto III ou cobáltico 
 
10) a) 3H2SO4+2 Fe(OH)3 ? Fe2(SO4) + 6 H2O 
 
b) NaOH + H3PO4 ? NaH2PO4 + H2O 
 
c) 2 H2CO3+Mg(OH)2 ? Mg(HCO3)2 + 2H2O 
15) Ao entrar em contato com o ar, o gás carbônico 
nele presente reage com os hidróxidos 
citados 
 
a solução. 
 
Ca(OH)2 + CO2 ? CaCO3 + 
H2O 
Ba(OH)2 + CO2 ? BaCO3 + 
H2O 
 
16) K2O2 + 2 HNO3 ? 2 KNO3 + H2O + ½ O2 
 
17) ZnO + H2SO4 ? ZnSO4 + 
- 84 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
CAPÍTULO 6 
 
ESTUDO DE REAÇÕES 
 
Uma reação química é uma mistura? 
 
Muitas reações químicas não são acompanhadas de sinais visíveis que indiquem formação de um novo 
material. Assim, é possível confundir uma reação química com uma simples mistura. No entanto, 
existem diferenças que não deixam dúvidas: os componentes de uma mistura podem ser separados por 
meios físicos, como a destilação, a centrifugação ou a filtragem. Já numa reação química, os componentes 
originais em grande parte se transformaram e, portanto, não podem ser separados. Os componentes de uma 
mistura conservam suas propriedades específicas; numa reação, essas propriedades desaparecem e 
surgem novas. Na mistura, os componentes podem estar em qualquer proporção, enquanto numa 
reação as proporçõesentre reagentes e produtos são fixas, ou estequiométricas. 
 
Uma equação química é uma representação abreviada de uma reação. Nela, cada fórmula 
pode vir acompanhada por um subíndice que indique o estado de agregação que a substância apresenta na reaçã 
 
Usaremos as indicações ( s ) para sólidos, ( l ) para líquidos, ( g ) para gases e ( aq ) para substâncias 
dissolvidas em água. No caso da reação ocorrer com o auxílio de aquecimento será usado o símbolo sobre a 
seta que separa reagente e produtos e se ocorrer por ação de energia luminosa será usado o símbolo , 
também sobre a seta. 
 
Vários aspectos podem ser avaliados quando se estuda uma reação. Vejamos alguns destes aspectos: 
 
Energia nas reações químicas 
 
Nas reações químicas, além de haver uma transformação da matéria, ocorre também uma 
troca de energia com o ambiente. Geralmente, essa troca é de energia calorífica, mas também 
pode ser de energia elétrica, luminosa, acústica. As reações que ganham energia calorífica são chamadas 
endotérmicas e as reações 
que perdem são denominadas de exotérmicas. 
 
Exemplos: 
 
C(s) + O2(g) ? CO2(g) + calor 
 
 
 
Velocidade de reação 
 
Para que ocorra uma reação, é necessário que as entidades elementares das substâncias 
reagentes choquem-se com determinada energia cinética e na direção apropriada (teoria das colisões). Forma-se 
então um produto intermediário, o chamado complexo ativado. Ele se decompõe instantaneamente 
nos produtos de reação. A energia necessária para que se forme o complexo ativado chama-se energia de 
ativação. Por exemplo, para que um palito de fósforo queime é preciso esfregá-lo na lixa da 
caixa para lhe fornecer a energia necessária; depois, ele queima espontaneamente, sem nossa intervenção. 
 
De um modo geral, para medir a velocidade de uma reação deve-se medir a quantidade de reagente que 
desaparece ou a quantidade de produto que se forma, por unidade de tempo. 
 
Exemplos: 
 
 : 4 Fe(s) + 3 O2(g) ? 2 Fe2O3(s) (formação da ferrugem) 
 
 : 2 C4H10(g) + 13 8 CO2(g) + 10 H2O(g) 
(combustão do butano, um dos componentes do gás de cozinha) 
 
 
Fatores que modificam a velocidade de reação 
 
Segundo a teoria das colisões, a velocidade de reação pode ser modificada aumentando o número de 
choques efetivos ou diminuindo a energia de ativação dos mesmos. Vejamos alguns fatores capazes de interferir 
nessas condições: 
- 85 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Estado físico: como regra geral, os gases reagem mais facilmente e mais rapidamente do 
que os 
líquidos, e estes mais rapidamente que os sólidos. Líquidos miscíveis interagem melhor que 
líquidos imiscíveis e sólidos pulverizados reagem mais facilmente que sólidos em pedaços 
(no caso de um sólido, o choque é um fenômeno de superfície; se aumentarmos a superfície, 
aumentará o número de choques e, a superfície específica de um sólido é maior quanto 
mais finamente dividido ele está). Substâncias em solução aquosa, por possuírem suas entidades 
elementares livres, reagem muito mais facilmente. 
 
Temperatura: Um aumento da temperatura produz um duplo efeito: cresce a velocidade das moléculas 
e, com isso, sua energia cinética, facilitando as colisões efetivas e consequentemente há um aumento na 
velocidade da reação. 
 
El e tri ci d ad e e l u z: Sua presença tende a aumentar a velocidade das reações devido à energia contid 
nas mesmas que aumentará o número de choques eficazes. 
 
Concentração dos reagentes: Um aumento na concentração das substâncias reagentes, ou da pressão, 
no caso das substâncias gasosas, aumenta o número de choques. Se houver mais 
choques, cresce também a probabilidade que um número maior deles seja eficaz, o que, 
por sua vez, aumenta a velocidade de reação. 
 
Catalisador: catalisador é uma substância que abaixa a energia de ativação de 
uma reação, aumentando, assim, a sua velocidade, sem sofrer alteração qualitativa nem 
 
Existem produzidos por seres vivos, denominados , que aceleram reaçõ 
importantes para o metabolismo do próprio ser vivo. Podemos afirmar que sem a colaboração das enzimas 
seria impossível a vida dos vegetais e animais tal como a conhecemos em nosso planeta. 
 
 
Reversibilidade das reações 
 
Quando a reação não se completa e os reagentes e produtos mantêm-se em equilíbrio, ela é denominada 
de reversível e utiliza-se uma dupla seta para separar os membros da equação química. Quando a 
reações ocorrem num só sentido são denominadas irreversíveis. 
 
Exemplos: 
 
 N2(g) + 3 
H2(g) 
 
2 NH3(g) (obtenção industrial da amônia) 
 
? CO2(g) + calor (combustão do 
 
 
Variação do nox durante a reação 
 
Algumas reações ocorrem com transferência de elétrons entre as espécies reagentes. Diz-se 
que a espécie que perde elétrons se oxida e a que ganha se reduz; estas reações são denominadas de 
oxirredução, 
oxi-redução ou redoxi. 
 
Exemplos: 
 
: S
+6
O3 
2 
+ 
 
H2
+1
O 
2 
H2
+1
S
+6
O4 (formação do ácido sulfúrico) 
 
 
Principais tipos de reações químicas 
 
As numerosas reações que se processam na natureza podem ser agrupadas em quatro tipos gerais. 
 
 
Reações de síntese ou adição: 
 
Quando de duas ou mais substâncias se obtém uma única substância. Se a substância é obtida a partir de 
, ocorre síntese total se é obtida a partir de pelo menos uma , 
ocorre síntese parcial. . 
- 86 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
2 H2(g) + O2(g) 
? 
 
2 CO(g) + O2(g) 
? 
2 H2O( l ) 
 
2 CO2(g) 
 
? H2CO3(aq) 
(síntese total) 
(síntese parcial) 
(síntese parcial) 
 
Algumas reações de síntese: 
 
Toda reação de queima ou combustão é uma reação com o oxigênio (O2) que, sendo 
indispensável à 
queima, é chamado de . As reações de combustão das substâncias simples são reaçõ 
de síntese. 
 
2 Mg(s) + O2(g) ? 2 MgO(s) 
 
 
As reações dos óxidos ácidos e básicos com água são exemplos de reações de síntese. 
 
SO2(g) + H2O(l) ? H2SO3(aq) 
Na2O(s) + H2O(l) ? 2 NaOH(aq) 
 
Através de reações de síntese são fabricados muitos produtos químicos de grande importância na indústria. 
Entre eles podemos destacar: 
 
 
Á cido sulfúrico: S(s) + O2 (g) ? 
SO2 (g) + 1/2 O2(g) ? 
SO3 (g) + H2O(l) ? 
SO2 (g) (queima do 
enxofre) 
 
SO3(g) 
 
 
 
Ácido clorídrico: H2 (g) + Cl2(g) ? 2 HCl(g) 
 
 
 
Amônia: N2(g) + 3 H2(g) /alta pressão /catalisadores 2 NH3(g) 
 
 
 
 
Reações de análise ou decomposição: 
 
Ocorrem quando uma substância é decomposta em outras (a partir de um reagente obtemos mais que um 
produto). 
 
Determinadas reações de decomposição recebem nomes particulares: chama-se pirólise ou calcinação 
a ; a 
 . 
 é denominada fotólise e eletrólise a 
 
 
A maioria das substâncias compostas se decompõe por aquecimento. A temperatura necessária para haver a 
decomposição varia muito de uma substância para outra. 
2 HgO(s) 
NH4Cl(s) 
 
2 Hg(l ) + 
O2(g) 
 
 
Na natureza não existe cal virgem (CaO), mas há muito calcário (CaCO3). A cal virgem é fabricada 
por pirólise do calcário, em fornos especiais. 
 
CaCO3(s) CaO(s) + 
- 87 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
2 
Para obter nitrogênio em laboratório, faz-se a pirólise do nitrito de amônio (NH4NO2). 
 
NH4NO2(s) N2(g) + 2 H2O(g 
 
 
Certas substâncias, como os sais de prata, a água oxigenada e outras, devem ser guardadas e 
vidros 
escuros, porque se decompõem na presença de luz (fotólise). O vidro escuro absorve a luz e protege essas 
 
2 H2O2(l 
) 
 
2 AgBr(s) 
 
2 H2O(l ) + 
O2(g) 
 
2 Ag(s) + 
Br (g) 
 
 
A passagem de corrente elétrica no cloreto de sódio fundido provoca sua decomposição 
(eletrólise). 
Essa reação é utilizada industrialmente para a produção de sódio e cloro. 
 
 
 
Reações de deslocamento, substituição ou simples troca: 
 
São processos nos quais uma reage com originando uma 
 e (uma substância ―desloca‖ a outra da solução em que se encontra). 
 
. 
 
 
Zn(s) + CuSO4(aq) ? ZnSO4 + 
 
CaCl2 (aq) + F2 (g) ? CaF2(aq) + Cl2(g 
 
 
Quando ocorre uma reação de deslocamento? 
 
 
 
 
o Deslocamento entre metais 
 
O deslocamento de um metal por outro está associado à facilidade com que cada um del 
perde elétrons. O metal que perder elétrons mais facilmente (maior eletropositividade) doará estes elétrons ao 
metal 
que está em solução, na forma de íon (cátion), transformando-o em substância simples e, em 
conseqüência, torna-se um íon (cátion). A essa facilidade em perder elétrons dos metais está relacionada a 
reatividade química 
dos mesmos. 
 
Por exemplo, introduzindo-se uma lâmina de zinco numa solução de sulfato de cobre II, ocorre 
uma reação com formação de sulfato de zinco, que fica na solução, e a liberação de cobre metálico, que se 
deposita sobre a lâmina. A solução, inicialmente azul devido à presença dos íons Cu
2+
, fica incolor 
 
Equação molecular: Zn(s) + ? ZnSO4(aq) + 
 
Equação iônica: Zn° + Cu
2+ 
+ ? Zn
2+ 
+ SO4 + Cu° 
 
Esta reação mostra que o metal zinco perde elétrons mais facilmente que o metal cobre. Diz-se que o 
zinco é mais reativo que o cobre e que o deslocou da solução. 
 
Se introduzíssemos uma lâmina de cobre numa solução de sulfato de zinco nada ocorreria 
pois a tendência maior em perder elétrons é do zinco. 
- 88 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Por meio de experiências semelhantes à mencionada, foi construída uma escala de reatividade química 
para os metais. 
 
Cs Li>Rb>K>Ba Sr>Ca Na Mg>Al Mn Zn Cr Fe Cd>Co>Ni Sn 
Pb [H]> 
Sb>As>Bi Cu Hg Ag Pd>Pt Au 
 
 
 
Quanto menor a reatividade química, maior a nobreza do metal. Os metais menos reativos: prata (Ag) , 
platina ( Pt ), ouro (Au) ) são chamados metais nobres. O cobre e o mercúrio são considerad 
metais 
 
 
o Deslocamento entre ametais 
 
O deslocamento de um ametal por outro está associado à facilidade com que cada um 
deles ganha elétrons. O ametal que receber elétrons mais facilmente (maior eletronegatividade) receberá 
estes elétrons do ametal que está em solução, na forma de íon (ânion), transformando-se em um 
ânion e fazendo com que o doador dos elétrons torne-se uma substância simples. A essa facilidade 
em receber elétrons dos ametais está relacionada a reatividade química dos mesmos. 
 
Por exemplo, adicionando-se a substância simples cloro (Cl2) a uma solução aquosa de 
brometo de sódio (NaBr), forma-se cloreto de sódio (NaCl), que fica na solução, e há liberação de 
bromo na forma de substância simples (Br2). 
 
Equação molecular: Cl2(g) + 2 
NaBr(aq) 
Equação iônica: 
? 2 NaCl(aq) + Br2(g) 
 
? 2 Na
+ 
+ 2 Cl + Br2° 
 
Se adicionarmos bromo (Br2) a uma solução de NaCl não ocorre reação alguma, o que demonstra ser o 
cloro mais ávido por elétrons que o bromo. Diz-se que o cloro é mais reativo que o bromo e que o deslocou da 
solução. 
Assim como para os metais, há também uma escala de reatividade para os ametais. 
 
F O Cl Br I S C 
O ametal mais reativo é o que recebe elétrons mais facilmente. 
 
 
 
o Deslocamento do hidrogênio de ácidos diluídos por metais 
 
O hidrogênio é deslocado dos ácidos diluídos por metais mais reativos que ele, havendo formação de H2. 
 
Equação molecular: 
 
Zn(s) + 2 HCl(aq) ? ZnCl2(aq) + 
 
Equação iônica: Zn° + 2H 
+ 
+ 2 ? 
 
Zn
2+
 
 
+ 2 Cl + 
 
 
Equação molecular : Na(s) + ? NaCl(aq) + 1/2 
 
Equação iônica : 
 
Na° 
 
H 
+ 
+ ? 
H2(g) 
 
Observações 
 
 
 
 
Exceção importante 
menor nox 
 
 
 
- 89 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o Deslocamento do hidrogênio da água por metais muito reativos 
 
Os metais alcalinos e os metais alcalino-terrosos, por serem muito reativos, reagem com água, a 
frio, deslocando o hidrogênio. No caso dos metais alcalinos, a reação é muito violenta (grande desprendimento 
de energia). 
2 Na(s) + 2 H2O( l ) ? 
Ca(s) + 2 H2O( l ) ? 
 
2 NaOH(aq) + 
H2(g) 
 
 
Observações 
 
 
 
 
 
 
 
 
? 
? 
 
 
 
 
 
Reaçõesde dupla troca: 
 
Como o próprio nome indica, numa reação de dupla troca o cátion de uma substância (ou o hidrogênio 
no caso dos ácidos) une-se ao ânion da outra e vice-versa. 
 
. 
 
Equação molecular: CaCl2(aq) + Na2CO3(aq) ? CaCO3(s) + 2 NaCl(aq) 
 
ou CaCl2 + Na2CO3 ? CaCO3 + 2 NaCl 
 
 
Equação iônica: Ca
2+ 
+ 2 Cl + 2Na 
+ 
+ CO3 
2 
? 
CaCO3 + 2 Na
+ 
+ 2 
 
 
 
Quando ocorre uma reação de dupla troca? 
 
 
 
As reações de dupla troca ocorrem no sentido de formar espécies que diminuam ou impeçam o retorno 
da reação. Neste sentido, elas ocorrerão se houver formação de pelo menos um, dos itens abaixo: 
 
Uma substância praticamente insolúvel (precipitado). 
 
Uma substância pouco ionizada ou pouco dissociada (eletrólito fraco). 
Uma substância volátil (gases ou líquidos de baixo P.E.). 
 
Dentro destas características, para facilitar o estudo, podemos dividir as reações de dupla troca em cinco tipos: 
 
o 
o 
o 
 
o 
 
o 
- 90 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Para sabermos, portanto, se uma reação de dupla troca ocorrerá ou não, é necessário conhecer-se: 
A solubilidade dos reagentes e dos possíveis produtos; 
A força dos reagentes e dos possíveis produtos; 
 
A volatilidade dos reagentes e dos possíveis produtos. 
 
 
 
 
Ácidos 
Solubilidadeem água 
 
Ácidos 
 
Volatilidade 
 
 
 : 
Hidróxidos HF, HCl, HBr, HI, H2S, HCN, 
HNO2, HNO3 e CH3COOH 
(HAc) 
Bases: 
 
 
Sais: 
Solúveis: 
 
 
. 
 
 
 
 
 
Hidrácidos 
 
 
Força 
 
Ácidos: 
 
 
 
 
 
 
Insolúveis: 
Fortes: 
Fracos: 
Oxiácidos 
Fortes: 
Fracos: y – x < 
2 
 
Bases: 
Fortes: IA e IIA 
 
 
 
Sais: 
Fracas: 
 
 
 
Forte = 
Fraco = 
 
 
 
 
+1 +2 +1 e +2 +3 +2 e +3 +2, +3 e 
+4 
+2 e +4 +1 e +3 
IA , Ag IIA, Zn, 
Cd 
Hg , Cu Al , Bi Fe, Co, Ni, 
Cr 
Mn Pb, Sn, Pt, 
Ti 
Au 
 
 
Mn : +6 e +7 Cr : +6 As e Sb : +3 e +5 
- 91 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
o Reações de neutralização ácido-base: 
 
Como já foi visto, neutralização (ou salificação) é a reação entre ácido e base, gerando água e sal. Como 
a água é uma substância pouquíssimo ionizada, mesmo que o sal obtido seja solúvel, a reação 
ocorrerá no sentido de formar as moléculas de água. 
 
 
o Reações de precipitação: 
 
Podemos considerar reações entre: 
 
Sais entre si: neste caso, deverá existir no produto um sal de pouca solubilidade. A reação é no sentido 
do solúvel para o não solúvel. Se todos os sais envolvidos forem solúveis, não haverá reação química e 
sim uma mistura. 
 
Exemplo: 
 
 2 KI + Pb(NO3)2 ? 2 KNO3 + PbI2 
2 K
+ 
+ 2 Cl 
– 
Pb
2+
 
 
+ 2 NO3 
– 
? 2 K
+ 
+ 2 NO3 
– 
+ 
 
Ácido com sal: considerando apenas a influência do sal na ocorrência da reação, esta 
ocorrerá no 
sentido de formação do sal pouco solúvel. 
 
: HBr + ? HNO3 + 
: H
+ + Br 
– 
+ + NO3 
– 
H
+ + NO3 
– 
+ 
 
 
Base com sal: neste caso poderá haver formação de uma base menos solúvel ou um sal menos solúvel 
que os reagentes. 
 
Exemplos: 
 
 2 NaOH + Cu(NO3)2 
2 Na
+ 
+ 2 OH 
– 
+ 
 
? 2 NaNO3 + 
+ 2 NO3 
– 
? 2 Na
+ 
+ 2 NO3 
– 
+ 
 
 
 Ca(OH)2 + Na2SO4 ? 2 NaOH + CaSO 
Ca
2+ 
+ 2 OH 
– 
+ 2 Na
+ 
SO4
2 – 
? 2 Na
+ 
+ 2 OH 
– 
+ 
 
 
o Reações que originam ácido ou base fracos: 
 
Formação de ácido fraco: neste caso teremos a reação de um ácido com um sal onde a formação de 
ácido mais fraco que aquele presente nos reagentes é o fator responsável pela ocorrência da reação. 
 
Exemplo: 
 
 Na3BO3 + 3 ? 3 NaNO3 + H3BO3 
 
3 Na
+ 
BO3
3– 
+ 3 H
+
 
 
+ 3 NO3 
– 
? 3 Na
+ 
+ 3 NO3 
– 
+ 
 
 
Formação de base fraca: neste caso teremos a reação de uma base com um sal onde a formação de 
base mais fraca que aquela presente nos reagentes é o fator responsável pela ocorrência da 
 
 
Exemplos: 
 
 
2 NaOH + Cu(NO3)2 
 
2 Na
+ 
+ 2 OH 
– 
+ 
 
 
? 2 NaNO3 + Cu(OH)2 
 
+ 2 NO3 
– 
? 2 Na
+ 
+ 2 NO3 
– 
+ 
- 92 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 NaOH + NH4NO3 
Na
+ 
+ OH
– 
+ 
? NaNO3 + NH4OH 
+ NO3 
– 
? Na
+ 
+ NO3 
– 
+ 
 
 
o Reações que produzem ácido ou base voláteis: 
 
Formação de ácido volátil: neste caso teremos a reação de um ácido com um sal onde a formação de 
ácido mais volátil que aquele presente nos reagentes é o fator responsável pela ocorrência da reação. 
 
Exemplo: 
 
 NaCN + ? NaNO3 + HCN 
Na
+ 
+ CN
– 
H
+
 
 
+ NO3 
– 
? Na
+ 
+ NO3 
– 
+ 
 
 
Formação de base volátil: a única base volátil é a amônia, que existe em equilíbrio com os íons NH4
+
 
e OH
– 
presentes em solução. 
 
Exemplo: 
 
 NaOH + NH4NO3 
Na
+ 
+ OH
– 
+ 
 
? NaNO3 + NH4OH 
+ NO3 
– 
? Na
+ 
+ NO3 
– 
+ 
 
 
 
 
o Reações em que intermediariamente se forma um composto instável: 
 
Há ácidos que são instáveis, isto significa que, na verdade, eles existem por muito pouco tempo; logo 
que são produzidos decompõem-se em outras substâncias. Relembrando: 
 
Á cidos instáveis 
 
 
 
 
 
 
 
Exemplo: 
 
Ácido carbônico: ? 
Ácido sulfuroso: ? 
Ácido tiossulfúrico: ? 
 
 2 HClO4 + CaS2O3 ? Ca(ClO4)2 + H2O + SO2 + 
 
2 H
+ 
+ 2 ClO4 
– 
+ CaS2O3 ? Ca
2+ 
+ 2 ClO4 
– 
+ H2O SO2 + 
 
Observação 
 
 
? CO 
exotérmica, rápida, irreversível, de oxi-redução síntese 
 
 
 
 
 
- são reações de oxi-redução 
 
 
 
 
 
 
- são reações sem oxi-redução 
 
 
todas 
 
 
 
 
 
 
todas 
- 93 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
EXERCÍCIOS 
 
1) Classifique as seguintes reações quanto à variação do nox e quanto ao tipo de substâncias envolvidas 
 
a) 4 Al + 3 O2 
 
b) MgBr2 + 
Cl2 
 
? 2 Al2O3 
 
? MgCl2 
+ Br2 
 
d) BaCl2 + ? BaCrO4 + 2 
 
e) Sn + 2 Cl2 
? 
 
f) N2O5 + 
H2O 
? 
 
SnCl4 
 
2 HNO3 
 
2 KCl + 3 O2 
h) Na2SO3 + 2 HCl ? 2 NaCl + SO2 + 
 
2) Quais das seguintes reações são de oxirredução 
 
a) KCl + NaNO3 
? 
 
b) H2 + F2 ? 2 
HF 
 
c) Al2S3 + 6 
H2O 
? 
 
KNO3 + 
 
 
2 Al(OH)3 + 3 H2S 
 
? 2 Na + 3 H2 + 2 Na2CO3 
 
+ 3 SiO2 ? 3 CaSiO3 + 5 CO + 
 
3) Considerando as reações de dupla troca abaixo, determine em que sentido elas deverão ocorrer, justificando 
sua resposta: 
 
a) AgCl + NaNO3 ------- 
b) H2SO4 + BaCl2 ------- 
c) Cu(OH)2 + 2 NaNO3 ---
- 
 
NaCl + Ag NO3 
Ba SO4 + 2 HCl 
 
2 NaOH + 
 
d) 2 HCl + Na2SO 
 
e) NH4Cl + KOH 
 
f) CaCO3 + 2 
NaC 
 
------- 2 NaCl + H2SO4 
 
------- KCl + NH4OH 
 
------ Na2CO3 + 
 
4) Escreva a equação da reação que ocorre quando se adiciona uma solução de ácido sulfúrico a uma solução 
de sulfeto de potássio. O que ocorreria se nós misturássemos ácido sulfídrico com sulfato de potássio? 
 
5) Ao se adicionar gradativamente uma solução aquosa de Ba(OH)2 a uma solução aquosa de 
H2SO4, a condutividade elétrica da solução resultante vai diminuindo, passa por um valor praticamente 
nulo e, em 
 
6) Verifique a possibilidade de reação entre uma solução de hidróxido de amônio e as soluções abaixo. Em 
caso positivo, equacione o processo. 
a) nitrato de alumínio b) cloreto de potássio c) nitrato de chumbo II 
 
 
7) Utilizando adequadamente soluções aquosas de Na2CO3, H2SO4, KNO3, Ba(OH)2, NaOH, NaNO3 e 
NaCl, escreva a equação de uma reação entre dois desses compostos, com formação de : 
 
a) precipitado b) ácido volátil binário c) óxido gasoso 
 
8) Escreva as equações molecular e iônica entre: 
 
a) Cloreto de potássio e nitrato de chumbo II 
 
- 94 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
b) Hidróxidode sódio e nitrato cúprico 
c ) Ácido bromídrico e nitrato de prata 
- 95 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
d) Sulfato de alumínio e cloreto de bário 
e) Tiossulfato de cálcio e ácido perclórico 
f) Ácido fosfórico e sulfeto de sódio 
g) Fosfato de amônio e cloreto de cálcio 
h) Nitrato ferroso e cromato de lítio 
i) Dicromato de potássio e nitrito de bário 
 
9) Escreva as equações das reações entre solução aquosa de ácido sulfúrico e: 
 
a) alumínio b) óxido de zinco c) cloreto plumboso 
 
 
10) Escreva as equações moleculares das seguintes reações 
 
a) magnésio e oxigênio 
 
b) decomposição da água 
 
c) ferro com uma solução de sulfato cúprico 
d) óxido de potássio e água 
e) decomposição térmica de carbonato de cálcio 
f) cobre com uma solução de nitrato de prata 
g) síntese do ácido sulfúrico 
h) decomposição do peróxido de hidrogênio 
i) síntese do ácido clorídrico 
 
11) Dispondo-se de CaO(s), Ca°(s) , SO3(g) e de soluções aquosas de ácido sulfúrico, ácido 
clorídrico, hidróxido de cálcio e cloreto de cálcio, equacione todas as reações possíveis para a obtenção de 
sulfato de 
cálcio. 
12) A água dura caracteriza-se por apresentar alto teor de íons cálcio, Ca
2+
, sendo que grande pa 
desses cátions provém do bicarbonato, Ca(HCO3)2, que é solúvel .O uso dessa água 
apresenta certos 
inconvenientes como : 
a) No processo de lavagem, o sabão RCOO
– 
Na
+ 
(R = cadeia longa de hidrocarboneto) precipita como sa 
de cálcio, dificultando a limpeza; 
b) Em caldeiras industriais, no processo de aquecimento, o bicarbonato de cálcio decompõe liberando gás 
 
 
13) Quando se junta um ácido forte e uma base forte, quaisquer que sejam, ocorre uma única reação comum. 
Qual é essa reação? E por que ocorre? 
 
14) Complete as reações de deslocamento possíveis, equilibrando-as 
 
a) Zn + HCl 
 
c) Pb + AgNO3 
 
e) Mg + KBr 
g) Al + 
i) Cl2 + 
 
 
15) Equacione: 
 
a) alumínio + hidrácido forte 
c) metal alcalino + diácido 
 
b) Ag + HI 
 
d) Ca + 
 
f) Sn + 
h) 
Zn(NO3)2 
j) 
Na + H2O 
 
 
 
 
b) magnésio + triácido de 
fósforo 
- 96 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
e) cloro + iodeto de metal alcalino 
terroso 
f) óxido básico + 
 
 
16) Justifique a ocorrência das seguintes reações 
 
a) Mg + CuSO4 ? 
 
b) Na2S + 2 HCl ? 
 
c) AgNO3 + ? 
NaOH 
? 
d) H3PO4 + 3 ?
 
KOH 
e) Na CO + 2 
? 
 
MgSO4 + Cu 
 
2 NaCl + H2S 
AgOH + NaNO3 
K3PO4 + 3 H2O 
 
2 NaCl + H2O + 
CO2 
 
17) Escreva equações que permitam obter, por pelo menos dois processos, as seguintes substâncias: 
 
a) sulfato de potássio 
c) cloreto de prata 
e) anidrido sulfuroso 
g) ácido fosforoso 
i) amônia 
 
b) hidróxido de cálcio 
d) magnésio 
f) cromato de sódio 
h) gás carbônico 
j) oxigênio 
 
 
18) Verifique se as seguintes reações ocorrem ou não. Justifique suas respostas 
 
a) K + ? KCl + Na 
 
b) ZnSO4 + Cu ? 
 
c) AlCl3 + 3 LiOH 
? 
 
d) H2CO3 + 2 
RbNO3 
 
e) 2 NaBr + F ? 
 
CuSO4 + Zn 
 
Al(OH)3 + 3 LiCl 
 
? Rb2CO3 + 2 
 
2 NaF + 
Br2 
 
19) Considere as seguintes soluções aquosas: 
 
 
Solução 
 
CuSO4 
 
KNO3 
 
Na2SO4 
 
K2CrO4 
 
Cor 
 
Azul 
 
Incolor 
 
Incolor 
 
Amarela 
 
A partir da tabela acima, é possível concluir que os íons responsáveis pelas cores azul e amarela são: 
a) Cu
2+ 
e SO4
2 
b) K
+ 
e CrO 
2 – 
c) K
+ 
e SO 
2 – 
d) Na
+ 
e NO
 – 
e) Cu
2+ 
e CrO 
2 – 
4 4 3 4 
 
 
20) Escreva as seguintes reações 
 
a) Síntese do óxido de cálcio a partir do cálcio metálico 
b) Decomposição da água 
c) Decomposição térmica do clorato de potássio 
d) Síntese do gás clorídrico 
e) Deslocamento do bromo, na forma de íon brometo em solução aquosa, pelo cloro 
f) Decomposição térmica do carbonato de cálcio 
- 97 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
21) Complete as equações abaixo, equilibrando-as, e justificando sua ocorrência 
 
a) Zn + HNO3 
 
c) Cl2 + KBr 
 
e) HCl + Ba(OH)2 
 
g) H2SO4 + 
 
b) Na + FeCl3 
d) H3PO4 
+ Ca(OH)2 
 
f) KOH + Cr(NO3)3 
 
22) Complete apenas as reações que ocorrem, justificando o porquê da ocorrência ou não 
 
a) Cl2 + 
NaF 
 
c) H2S + 
Na2SO4 
 
e) KCl + 
Hg(NO ) 
 
b) Ca + HCl 
 
d) Na + AgNO3 
 
f) HBr + 
NaCN 
 
23) O sulfato de amônio (substância utilizada na agricultura como fertilizante) pode ser obtido pela reação do 
gás amônia com qual substância? Equacione a reação. 
 
 
24) Para combater o fogo em materiais elétricos ou líquidos inflamáveis, podemos fazer uso de um 
tipo de 
extintor de incêndio que funciona tendo por base a reação entre ácido sulfúrico e bicarbonato d 
sódio. Escreva a equação da reação química que ocorre. Qual, dentre os produtos formados, é a 
 
25) Na análise qualitativa de certa substância adicionou-se ácido clorídrico, obtendo-se um precipitado branco 
que escurece na presença de luz. Podemos afirmar que essa substância possui: 
a) Pb
2+ 
b) Ag
+ c) d) Cu
2+
 e) K
+
 
 
 
26) Um estudante realizou a seguinte seqüência de operações: 
I) Dissolveu óxido de sódio em água, obtendo a solução A. 
II) Sobre a solução A adicionou ácido sulfúrico (aq) suficiente para completar a reação, obtendo a solução B. 
 
III) À solução B adicionou cloreto de bário (aq), obtendo um precipitado branco. Após a reação, 
filtrou o sistema. 
 
IV) A solução resultante da filtração foi evaporada até sobrar um resíduo branco. 
Pede-se: 
a) Quais as equações moleculares das reações obtidas nas operações I, II e III? 
 
b) Qual o nome e a fórmula do resíduo sólido final, obtido na evaporação? 
 
27) Obter : 
 
a) Cianeto de ferro III, através de uma reação de dupla troca. 
 
Hidrogênio, através de uma reação de simples troca. 
c) Sulfito de cálcio, através de uma reação de síntese. 
d) Oxigênio, através de uma reação de decomposição. 
 
28) Objetos de cobre ficam revestidos, com o passar do tempo, por uma camada verde chamada de azinhavre ou 
zinabre, que é uma mistura de: carbonato e hidróxido de cobre II. Essa camada é removida, por donas de casa, 
com vinagre (solução de ácido acético, HAc). Justifique a situação quimicamente. 
 
29) Água e tetracloreto de carbono, cuja fórmula é CCl4, são líquidos incolores imiscíveis, sendo o tetracloreto 
de carbono mais denso. O brometo de potássio é um sal branco solúvel na água. 
- 98 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Quando borbulhamos cloro em uma solução aquosa de KBr, observamos que ela passa de 
incolor a 
amarelada. 
Em seguida, adiciona-se tetracloreto de carbono líquido, um solvente orgânico. Formam-se 
duas fases, sendo a aquosa a superior. Agita-se e observa-se que a cor amarelada vai 
desaparecendoda fase aquosa ao mesmo tempo em que a camada inferior se torna alaranjada. 
Baseado no texto acima, resolva as questões abaixo: 
 
a) Equacione na forma molecular, a reação de cloro com brometo de potássio em solução aquosa. 
b) Suponha que em vez de KBr usássemos NaBr. Haveria diferença visual? Por quê? 
c) Equacione na forma iônica a reações correspondentes às questões a e b. 
d) Que substância é responsável pela cor amarelada da fase aquosa? 
e) Formule uma hipótese para explicar o que deve acontecer quando se adiciona tetracloreto de carbono. Trata- 
se de reação química? 
 
f) Esquematize o tubo de ensaio contendo a mistura final. Indique que substâncias devem estar presentes em 
 
30) Mergulha-se uma placa limpa de zinco em uma solução azul de sulfato de cobre II. Observa-se que a placa 
fica recoberta por um depósito escuro e que, passado algum tempo, a solução se torna mais clara. Removido o 
depósito, constata-se que a placa se apresenta corroída. Explique o que ocorreu: 
 
a) na placa de zinco b) na solução 
 
31) Quatro elementos hipotéticos, A, B, C e D, formam em solução aquosa 
Considere as informações esquematizadas abaixo sobre reações que podem ou não ocorrer: 
A
2+
, B
2+
,
 e D
2+
. 
A + B
2+ 
D + B
2+ 
C + A
2+
 
A
2+ 
+ 
não ocorre 
C
2+ + 
a) Coloque os quatro elementos em ordem crescente de reatividade. Justifique sua resposta. 
b) Qual espécie tem mais tendência a ceder elétrons? E a receber elétrons? 
 
 
 
RESPOSTAS 
 
1) a) Síntese - reação de oxirredução b) Simples troca ou deslocamento - reação de oxirredução 
c) Decomposição - reação sem oxirredução d) Dupla troca - reação sem oxirredução 
e) Síntese - reação de oxirredução f) Síntese - reação sem oxirredução 
 
g) Decomposição - reação de oxirredução h) Dupla troca - reação sem oxirredução 
 
2) b – d – e 
 
3) a) NaCl + Ag NO3 ? AgCl + NaNO3 – formação de produto insolúvel (precipitado branco) 
 
b) H2SO4 + BaCl2 ? BaSO4 + 2 HCl – formação de precipitado branco (BaSO4) e ácido volátil (HCl) 
c) 2 NaOH + Cu(NO3)2 ? Cu(OH)2 + 2 NaNO3 – formação de produto insolúvel (precipitado azul) 
d) 2 NaCl + H2SO4 ? 2 HCl + Na2SO4 – formação de produto volátil (HCl) 
e) NH4Cl + KOH ? KCl + NH4OH – formação de base fraca e volátil (NH4OH) 
 
f) Na2CO3 + CaCl2 ? CaCO3 + 2 NaCl – formação de produto insolúvel (precipitado branco) 
 
 
4) H2SO4 + K2S ? K2SO4 + H2S . Não ocorreria reação, pois haveria formação de produto mais 
ionizado 
- 99 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
4 
5) Ba(OH)2 + H2SO4 ? BaSO4(s) + 2 H2O . Com a adição do hidróxido de bário à solução 
de ácido sulfúrico, há formação gradativa de sulfato de bário, produto insolúvel, que conduz pouca 
eletricidade. Quando todo o H2SO4 é neutralizado pela base, o que existe no meio reacional 
é BaSO4 e água, o que torna a condutividade praticamente nula uma vez que o sal é 
insolúvel e a água é pouquíssimo ionizada. Ao continuarmos com a adição do hidróxido de 
bário, estamos colocando no meio uma base forte, bastante dissociada e, em conseqüência disto, 
aumenta novamente a condutividade da solução. 
 
6) a)3 NH4OH + Al(NO3)3 ? 3 NH4NO3 + 
Al(OH)3 
 
b) NH4OH + KCl – não ocorre reação, haveria a formação de uma base forte 
c) 2 NH4OH + Pb(NO3)2 ? 2 NH4NO3 + Pb(OH)2 
 
7) a) Ba(OH)2 + H2SO4 ? BaSO4 + 2 H2O 
 
b) H2SO4 + 2 NaCl ? Na2SO4 + 2 HCl 
 
c) H2SO4 + Na2CO3 ? Na2SO4 + H2O + CO2 
 
 
8) a) 2 KCl + Pb(NO3)2 ? 2 KNO3 + 
PbCl2 
 
2 K
+ 
+ 2 Cl 
– 
+ Pb
2+ 
+ 2 NO3 
– 
? 2 K
+ 
+ 2 NO3 
– 
+ PbCl2 
 
b) 2 NaOH + Cu(NO3)2 ? 2 NaNO3 + Cu(OH)2 
 
2 Na
+ 
+ 2 OH 
– 
+ Cu
2+ 
+ 2 NO3 
– 
? 2 Na
+ 
+ 2 NO3 
– 
+ Cu(OH)2 
 
 
c) HBr + AgNO3 ? HNO3 + AgBr 
 
H
+ 
+ Br 
– 
+ Ag
+ 
+ NO3 
– 
? H
+ 
+ NO3 
– 
+ AgBr 
 
 
d) 3 BaCl2 + Al2(SO4)3 3 BaSO4 + 2 AlCl3 
 
3 Ba 
2+ 
+ 6 Cl 
– 
+ 2 Al
3+ 
+ 3 SO4 
2– 
2 Al
3+ 
+ 6 Cl 
– 
+ 3 BaSO4 
 
 
e) 2 HClO4 + CaS2O3 Ca(ClO4)2 + H2O + SO2 + S 
 
2 H
+ 
+ 2 ClO4 
– 
+ CaS2O3 Ca
2+ 
+ 2 ClO4 
– 
+ H2O + SO2 + S 
 
f) 2 H3PO4 + 3 Na2S 2 Na3PO4 + 3 H2S 
 
2 H3PO4 + 6 Na
+ 
+ 3 S 
2 – 
6 Na
+ 
+ 2 PO4 
3– 
+ 3 H2S 
 
 
g) 2 (NH4)3PO4 + 3 CaCl2 6 NH4Cl + Ca3(PO4)2 
 
6 NH4
+ 
+ 2 PO4 
3– 
+ 3 Ca 
2+ 
+ 6 Cl
– 
6 NH 
+
 + 6 Cl
–
 + Ca3(PO4)2 
 
 
h) Fe.(NO3)2 + Li2CrO4 2 LiNO3 + FeCrO4 
Fe 
2+ 
+ 2 NO3 
– 
+ 2 Li 
+ 
+ CrO4 
2– 
2 Li
+ 
+ 2 NO3
– 
+ FeCrO4 
 
 
i) Ba(NO2)2 + K2Cr2O7 2 KNO2 + BaCr2O7 
–
 
Ba 
2+ 
+ 2 NO2 
– 
+ 2 K 
+ 
+ Cr2O7 
2– 
2 K
+ 
+ 2 NO2 
- 100 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
+ BaCr2O7 
- 101 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
9) a) 2 Al + 3 H2SO4 Al2(SO4)3 + 3 H2 
 
b) ZnO + H2SO4 ZnSO4 + 3 H2O 
 
c) PbCl2 + H2SO4 PbSO4 + 2 HCl 
 
 
10) a) 2 Mg + O2 2 MgO b) 2 H2O 2 H2 + O2 
 
c) Fe + CuSO4 FeSO4 + Cu d) K2O + H2O 2 KOH 
 
e) CaCO3 CaO + CO2 f) Cu + 2 AgNO3 Cu(NO3)2 + 2 
Ag g) SO3 + H2O H2SO4 h) 2 H2O2 2 H2O + 
O2 
i) H2 + Cl2 2 HCl 
 
 
11) CaO + H2SO4 ? C aSO4 + H2O / Ca(OH)2 + H2SO4 ? CaSO4 + 2 
H2O Ca + H2SO4 ? CaSO4 + H2 / Ca(OH)2 
+ SO3 ? CaSO4 + 
H2O CaCl2 + H2SO4 ? CaSO4 + 2 HCl / CaO + SO3 ? CaSO4 
 
 
12) a) Ca(HCO3)2 + 2 RCOO
– 
Na
+ 
? (RCOO
–
)2Ca
2+ 
+ 2 NaHCO3 
 
b) Ca(HCO3)2 ? CaCO3 + H2O + CO2 
 
 
13) H
+ 
+ OH 
– 
? H2O Ocorre porque há formação de um composto pouco ionizado (H2O) 
 
 
14) a) Zn + 2 HCl ? ZnCl2 + H2 
 
b) Ag + HI - não ocorre ( a prata é menos reativa que o hidrogênio) 
 
c) Pb + 2 AgNO3 ? Pb(NO3)2 + 2 Ag 
d) Ca + SnCl2 ? CaCl2 + Sn 
e) Mg + KBr – não ocorre ( o magnésio é menos reativo que o potássio) 
f) Sn + Zn(NO3)2 – não ocorre ( o estanho é menos reativo que o zinco) 
g) 2 Al + 3 Cu(NO3)2 ? 2 Al(NO3)3 + 3Cu 
h) Na + H2O? NaOH + ½ H2 
 
i) Cl2 + 2 KBr ? 2 KCl + Br2 
 
j) I2 + NaCl – não ocorre ( o iodo é menos reativo que o cloro) 
 
 
15) a) 2 Al + 6 HCl ? Al(Cl)3 + 3 H2 b) 3 Mg + 2 H3PO4 ? Mg3(PO4)2 + 3 H2 
 
c) 2 Na + H2SO4 ? Na2SO4 + H2 d) Zn + 2 HAc ? Zn(Ac)2 + H2 
 
e) Cl2 + CaI2 ? CaCl2 + I2 f) CaO + H2O ? Ca(OH)2 
 
g) SO3 + H2O ? H2SO4 
 
 
16) a) Magnésio é mais reativo quecobre – simples troca 
 
b) Formação produto menos ionizado (H2S é ácido fraco) – dupla troca 
 
c) Formação de produto insolúvel e pouco dissociado (AgOH é base fraca) – dupla troca 
d) Formação de produto pouco ionizado (H2O) – dupla troca 
e) Formação de produto pouco ionizado (H2O) e de produto volátil (CO2) – dupla troca 
 
f) Cloro é mais reativo que bromo – simples troca 
- 102 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
17) 
 
a) H2SO4 + 2 KOH ? K2SO4 + 2 H2O / H2SO4 + K2O ? K2SO4 + H2O / H2SO4 + 2 K ? K2SO4 
+ H2 
 
b) CaO + H2O ? Ca(OH)2 / Ca + 2 H2O ? Ca(OH)2 + H2 
 
c) HCl + AgNO3 ? AgCl + HNO3 / KCl + AgNO3 ? A gCl + KNO3 
 
d) 2 K + MgCl2 ? 2 KCl + Mg / Ca + Mg(NO3)2 ? Ca(NO3)2 + Mg 
e) S + O2 ? SO2 / Na2SO3 + 2 HCl ? 2 NaCl + H2O + SO2 
f) 2 NaOH + H2CrO4 ? Na2CrO4 + 2 H2O / Na2O + CrO3 ? Na2CrO4 
 
g) P2O3 + 3 H2O ? 2 H3PO3 / Na2HPO3 + 2 HCl ? 2 NaCl + H3PO3 
h) C + O2 ? CO2 / CaCO3 + 2 HCl ? CaCl2 + H2O + CO2 
i) N2 + 3 H2 ? 2 NH3 / NH4Cl + NaOH ? NaCl + NH3 + H2O 
j) 2 H2O2 ? 2 H2O + O2 / H2O ? H2 + ½ O2 
 
 
18) a) Ocorre, potássio é mais reativo que sódio. 
 
b) Não ocorre, cobre é menos reativo que zinco. 
 
c) Ocorre, há formação de produto insolúvel e pouco dissociado (Al(OH)3 é uma base fraca). 
d) Não ocorre, H2CO3 é instável e mais fraco que HNO3. 
e) Ocorre, flúor mais reativo que bromo. 
 
f) Não ocorre, platina menos reativa que hidrogênio 
 
19) e 
 
 
20) a) 2 Ca + O2 2 CaO b) 2H2O 2 H2 + O2 
 
c) 2 KClO3 2 KCl + 3 O2 d) H2 + Cl2 2 HCl 
e) Cl2 + 2 B r
– 
2 Cl 
– 
+ Br2 f) CaCO3 CaO + CO2 
 
21) a) Zn + 2 HNO3 ? Zn(NO3)2 + H2 – zinco mais reativo que hidrogênio 
b) 3 Na + FeCl3 ? 3 NaCl + Fe – sódio mais reativo que ferro 
c) Cl2 + 2 KBr ?2 KCl + Br2 – cloro mais reativo que bromo 
 
d) 2 H3PO4 + 3 Ca(OH)2 ? Ca3(PO4)2 + 6 H2O – formação de produto insolúvel 
 
e) 2 HCl + Ba(OH)2 ? BaCl2 + 2H2O – formação de produto pouco ionizado (H2O) 
 
f) 3 KOH + Cr(NO3)3 ? 3 KNO3 + Cr(OH)3 – formação de produto insolúvel e pouco dissociado 
g) 3 H2SO4 + 2 Al(CN)3 ? Al2(SO4)3 + 6 HCN – formação de ácido fraco e volátil (HCN) 
h) 3 Na2S + 2 Fe(NO3)3 ? 6 NaNO3 + Fe2S3 – formação de produto insolúvel 
 
 
22) a) Não ocorre, cloro menos reativo que flúor . 
- 103 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
c) Não ocorre, haveria formação de ácido mais forte e fixo. 
 
d) Na + AgNO3 ? NaNO3 + Ag , ocorre porque sódio é mais reativo que prata. 
e) A reação não ocorre pois todos os sais são solúveis. 
f) HBr + NaCN ? NaBr + HCN, ocorre pois há formação de ácido fraco e volátil. 
 
g) BaCl2 + H2SO4 ? BaSO4 + 2 HCl, ocorre pois há formação de precipitado e de ácido volátil 
h) NH4Cl + KOH ? KCl + NH3 + H2O, ocorre pois há formação de base fraca e volátil 
 
23) 2 NH3 + H2SO4 ? (NH4)2SO4 
 
 
24) H2SO4 + 2 NaHCO3 ? Na2SO4 + 2 H2O + 2 CO2 ; 
 
O gás carbônico (CO2) é a substância responsável pela extinção do fogo. 
 
25) b 
 
26) a) I) Na2O + H2O ? 2 NaOH 
 
II) 2 NaOH + H2SO4 ? Na2SO4 + 2 
 
H2O III) Na2SO4 + BaCl2 ? 
 
BaSO4 + 2 NaCl 
 
b) Cloreto de sódio- NaCl 
 
 
27) a) Fe(NO3)3 + 3 NaCN ? Fe(CN)3 + 3 NaNO3 b) Zn + 2 HNO3 ? Zn(NO3)2 + H2 
 
c) CaO + SO2 ? CaSO3 d) 2H2O ? 2 H2 + O2 
 
 
28) CuCO3 + 2 HAc ? Cu(Ac)2 + H2O + CO2 
 
Cu(OH)2 + 2 HAc Cu(Ac)2 + 2 H2O 
 
 
29) a) Cl2 + 2 KBr ? 2 KCl + Br2 
 
 
b) Não, pois o que se pode visualizar é a coloração amarela da substância bromo (Br2) que foi produzida 
em ambos os casos. 
 
 
c) Cl2 + 2 Br 
– 
? 2 Cl 
– 
+ Br2 
 
 
d) Bromo (Br2) 
 
 
e) Ao adicionarmos tetracloreto e agitarmos, o Br2 por ser apolar e tendo maior afinidade por ele do 
que pela água, transfere-se em grande parte para camada inferior (a de
 CCl4) onde possui uma coloração característica (laranja) e com isso a cor amarela 
existente na fase aquosa vai desaparecendo. Trata-se de uma mistura heterogênea onde há por parte de um 
dos componentes da mistura (Br2) maior afinidade por uma fase da mistura do que pela outra. 
 
 
f) 
 
 
? H2O Fase aquosa: K
+ 
, Cl 
– 
e algum Br2 ( que dá a ela a coloração amarelada) 
 
 
? CCl Fase de CCl : Br (que dá a ela a coloração laranja) 
- 104 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
30) a) Sobre a placa de zinco forma-se um depósito de cobre metálico (Cu°) (que possui uma 
coloração avermelhada) e a placa vai ficando corroída pois o zinco, antes na forma de substância 
psiamsspalnesdo(pZanr°a)a, svoalui ção na forma de íon Zn
2+
. 
 
b) Na solução inicialmente azul devido aos íons Cu
2+
, vai havendo um descoramento, já que estes íons estão 
se lutrçaãnosfsoãromoasndíoonesmdoczoibnrceo m(Zentá
2l+i)cqou(eCsuã°o) iqnuceolvoarei sa.derindo à placa de zinco e os íons que estão entrando na 
 
 
Equação molecular: Zn° + CuSO4 ZnSO4 + Cu° 
 
Equação iônica: Zn° + Cu
2+ 
+ SO4
2– 
Zn
2+ 
+ SO4
2– 
+ Cu° 
O íon sulfato (SO4
2–
) é espectador da reação. 
 
31) A + B
2+ 
A
2+ 
+ B A > B 
 
D + B
2+ 
não ocorre D < B ordem crescente: D < B < A < C 
C + A
2+ 
C
2+ 
+ A C > A 
 
Ceder elétrons: C Receber elétrons:D
+
 
- 105 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
CAPÍTULO 7 
 
REAÇÕES DE OXI-REDUÇÃO 
 
Muitas reações químicas são de oxi-redução, ou seja, ocorrem por transferência de elétrons de uma ou 
mais espécies químicas para outra(s). 
 
A oxidação é uma transformação química na qual um átomo ou grupo de átomos p e rd e 
e l é trons 
ocasionando um aumento do número de oxidação. A redução por sua vez, se dá quando um átomo ou grupo de 
átomos ganha elétrons, ocasionando uma diminuição do número de oxidação. 
Os processos de oxidação e redução são sempre simultâneos: o número total de mols de 
elétrons 
 
A e se reduz provoca a perda de elétrons em outra espécie, 
conseqüente oxidação, sendo por isso chamada de ag e n te o xi d an te ou, simplesmente, 
Inversamente, a se oxida e, perdendo elétrons, obriga outra espécie a reduzir-se 
sendo, por isso, chamada de agente redutor ou redutor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BALANCEAMENTO DAS EQUAÇÕES DE OXI-REDUÇÃO 
 
Já estudamos algumas reações de oxi-redução: as de deslocamento, algumas de síntese e algumas 
de decomposição, de fácil balanceamento, não necessitando de nenhum método especial para que o equilíbrio 
dos átomos fosse feito. Existem, porém, reações de oxi-reduçãoque não se enquadram nos tipos 
de reações já estudados e que, devido ao número maior de reagentes e produtos presentes em suas equações, 
balanceá-las nem sempre é uma tarefa fácil. Neste caso é necessário utilizar-se um método que 
facilite a determinação dos coeficientes da reação. 
 
 
 
 
 
. 
 
 
 
Em geral, nas reações de oxi-redução o método das ―tentativas‖ não é prático. Por isso, o processo 
mais utilizado consiste em determinar a proporção entre oxidante e redutor e, depois, continuar o 
balanceamento por tentativas. 
 
Esta proporção entre oxidante e redutor pode ser determinada por dois métodos: método de oxi-redução 
e método do íon-elétron. 
 
O método de oxi-redução é mais utilizado em equações moleculares; já o método do íon-elétron é mais 
adequado ao equilíbrio de equações iônicas ou de processos onde haja mais de uma oxidação ou redução. 
- 106 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
+5 
 
Redução : cada N ganha 3 e 
 
+2 
 
 
 
 
 
 
MÉTODO D E OXI-REDUÇÃO 
 
1.º Passo : 
 
Procurar todos os elementos que sofrem oxi-redução e determinar seus números de oxidação 
antes e depois da reação. 
 
2.º Passo : 
 
Calcular o total de elétrons perdidos e recebidos pelos elementos que sofrem oxidação e 
redução, respectivamente ( variação total = ). Isso é feito multiplicando a variação do nox pela maior 
atomicidade com 
 
= [variação do nox do elemento] x [ (maior) n.º de átomos do elemento na equação] 
 
 
 
3.º Passo : 
 
O total de elétrons perdidos será invertido (―cruzado‖) com o total de elétrons recebidos ou seja, o do 
oxidante será o coeficiente do redutor e vice-versa. 
 
4.º Passo : 
 
Escolha do membro da equação em que o total de elétrons perdidos ou recebidos 
(coeficientes da equação) será colocado. 
 
 
 
 
 
 
 
 
 
5.º Passo : 
 
Após determinarmos os coeficientes iniciais, a seqüência será feita por tentativas. 
 
 
Primeiro exemplo Balancear a equação: 
 
P + HNO3 + H2O ? H3PO4 + 
NO 
 
 
 
P + HNO3 + H2O ? H3PO4 + NO 
 
0 +5 
 
Oxidação : cada P perde 5 e 
 
 
2º Passo: 
 
= 5 . 1 = = 3 . 1= 
 
 
 
 
 
3º e 4º Passos 
P + HNO3 + H2O ? H3PO4 + 
 
= 5 = 3 
 
3 P + 5 HNO3 + H2O ? 
 
H3PO4 + 
- 107 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
Contamos 5 N 
 
+3 +4 
 Total perdido ( ) 1 . 2 = 2 e 
 
 
 
 
 
Poderíamos ter efetuado as etapas (2) e (3) no 2.º membro, com o H3PO4 e NO; no caso, 
isso seria indiferente, já que atomicidade é a mesma nos dois membros e ambos não repetem seus nox. 
 
5º Passo : 
 
3 P + 5 HNO3 + H2O ? 
 
Contamos 3 P 
 
 
3 H3PO4 + 5 
 
 
 
 
 
Por fim falta acertar o coeficiente do H2O, o que pode ser feito pela contagem dos átomos de hidrogênio 
ou de oxigênio: 
 
 
3 P + 5 HNO3 + 2 H2O? 3 H3PO4 + 5 
 
 
 
 
Segundo exemplo : Balancear a equação : 
 
K2Cr2O7 + Na2C2O4 + ? K2SO4 + Cr2(SO4)3 + Na2SO4 + H2O + 
 
 
 
 
 
 
+3 Oxidação: cada C perde 1 e +4 
 
K2Cr2O7 + Na2C2O4 + H2SO4 ? K2SO4 + Cr2(SO4)3 + Na2SO4 + H2O + 
 
+6 +3 
 
Redução: cada Cr recebe 3 e 
 
 
 
Oxidação: cada C perde 1 e 
 
 
 
 
 
 
2 K2Cr2O7 + 6 Na2C2O4 + H2SO ? K2SO4 +Cr2(SO4)3 + Na2SO4 + H2O + CO 
 
 
Redução : cada Cr ganha 3 e – 
+6 +3 
Total ganho ( ) 3 . 2 = 6 
 
 
 
 
O coeficiente 2 foi dado ao K2Cr2O7 porque o nox = +6 do Cr não se repete e também porque 
Cr no 
K2Cr2O7 apresenta maior atomicidade. 
 
O coeficiente 6 foi dado ao Na2C2O4 porque o nox = +3 do C não se repete e também porq 
o C no 
Na2C2O4 apresenta maior atomicidade. 
- 108 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
-1 
 
Oxidação: cada Cl perde 1 e – 
 
0 
 
 
5º Passo : 
 
 
Contamos 2 K e 2 Cr 
 
 
 
1 K2Cr2O7 + 3 Na2C2O4 + H2SO4 ? 1K2SO4 +1Cr2(SO4)3 + 3Na2SO4 + H2O + 
 
 
Contamos 6 Na e 6 C 
 
 
 
 
Estão faltando apenas os coeficientes H2SO4 no 1.º membro e H2O no 2.º membro. Contan 
se os radicais SO4
2 
no 2.º membro, encontramos 7; temos então : 
 
1 K2Cr2O7 + 3 Na2C2O4 + 7H2SO4 ? 1K2SO4 +1Cr2(SO4)3 + 3Na2SO4 + H2O+ 6CO2 
 
Finalmente, acertamos o coeficiente do H2O no 2.º membro, contando os átomos de hidrogênio (ou oxigênio) no 
1.º membro : 
 
 
1K2Cr2O7 + 3Na2C2O4 +7H2SO4 ? 1K2SO4 +1Cr2(SO4)3 + 3Na2SO4 +7H2O +6CO2 
 
 
 
 
 
 
 
1º Passo : 
Balancear a equação : 
 
MnO2 + HCl ? MnCl2 + H2O + 
 
 
 
 
 
MnO2 + ? MnCl2 + H2O + 
 
+4 +2 -1 
 
Redução: cada Mn recebe 2 e– 
 
 
2º Passo : 
 
= 2 . 1 = 2 
 
 
= 1 . 2 = 2 
 
 
 
 
3º e 4º Passos 
MnO2 + ? MnCl2 + + Cl2 
 
= 2 = 2 
 
MnO2 + 
 
? 2 MnCl2 + H2O + 2 
 
 
O coeficiente 2 poderia ter sido colocado tanto no 1.ºmembro (MnO2) como no 2.º membro 
(MnCl2) da equação já que não há manutenção do nox e a atomicidade é a mesma nos dois casos. 
 
O coeficiente 2 foi dado ao Cl2 porque o nox = - 1 do Cl não se repete e também porque o 
Cl no Cl2 
apresenta maior atomicidade. 
- 109 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
5º Passo: 
 
Contamos 2 + 2 = 4 Cl 
 
 
 
1 MnO2 + 4 ? 1 MnCl2 + H2O + 1 
 
Contamos 1 Mn 
 
 
 
Finalmente, acertamos o coeficiente do H2O no 2º membro, contando os átomos de H ou de O, no 1.º membro : 
 
 
 
1 MnO2 + 4 ? 1 MnCl2 + 2 H2O + 1 
 
 
 
 
Quarto exemplo : Balancear a equação : 
 
KMnO4 + H2O2 
+ H2SO4 
 
 
? K2SO4 + MnSO4 + H2O + 
 
 
–1 
 
Oxidação: cada O perde 1 e– 
 
0 
 
KMnO4 + H2O2 + H2SO4 ? K2SO4 + MnSO4 + H2O 
 
+7 +2 
 
 Redução: cada Mn ganha 5 e– 
 
 
O H2O2 pode atuar tanto como oxidante como redutor; neste caso, porém, 
pode 
oxidação, uma vez que o KMnO4 está sofrendo redução. 
estar sofrendo 
 
= 5 . 1 = 5 
 
KMnO4 + 
= 1 . 2 = 2 
 
+ H2SO4 ? K2SO4 + MnSO4 + H2O + 
 
 
 
3º e 4º 
 
 
= 5 = 2 
 
 
2 KMnO4 + 5 H2O2 + H2SO4 ? K2SO4 + MnSO4 + H2O + O2 
 
O coeficiente 2 foi dado ao KmnO4 porque o nox = +7 do manganês não se repete. Poderia ter sido colocado 
no MnSO4 pela mesma razão, já que ambos possuem a mesma atomicidade. 
O coeficiente 5 foi dado ao H2O2. Poderia ter sido colocado no O2, já que H2O2 e O2 possuem o 
mesmo coeficiente. 
- 110 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
5º Passo : 
 
 
 
2 KMnO4 + 5 H2O2 + H2SO4 
Contamos 2 K e 2 Mn 
1 K2SO4 2 MnSO4 + H2O + 
 
 
a seguir : 
 
2 KMnO4 + 5 H2O2 + 3 H2SO4 1 K2SO4 2 MnSO4 + H2O + 
Contamos 1 + 2 = 3 SO42– 
 
a seguir : 
 
 
 
2 KMnO4 + 5 H2O2 + 3 H2SO4 1 K2SO4 2 MnSO4 + 8H2O + 
 
Contamos 10 + 6 = 16 H 
 
 
 
Finalmente: 
 
 
 
2 KMnO4 + 5 H2O2 + 3 H2SO4 1 K2SO4 + 2 MnSO4 + 8 H2O +Contamos 8 + 10 = 18 e descontamos 8, dando 10 átomos de oxigênio 
 
 
 
 
 
 
2 KMnO4 + 5 H2O2 + 3 H2SO4 ? 1 K2SO4 + 2MnSO4 + 8H2O + 
 
 
 
Quinto exemplo : Balancear a equação : 
 
Cl2 + 
NaOH 
 
 
? NaCl + NaClO3 + 
 
0 Oxidação : cada Cl perde 5 e– +5 
 
 
 
Cl2 + ? NaCl + NaClO3 + 
 
0 -1 
 
Redução: cada Cl ganha 1 e – 
 
 
Nesse caso, ocorre um tipo de reação chamada de auto oxi-redução, onde um mesmo elemento químico 
em parte se oxida e em parte se reduz. 
 
 
 
2º Passo : = 1 . 1 = = 5 . 1 = 5 
 
 
 
Cl2 + ? NaCl + NaClO3 + 
Evidentemente, nesse caso, os cálculos de só podem ser feitos no 2.º membro da equação. 
- 111 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
3º e 4º 
 
 
 
= 1 = 5 
 
Cl2 + 
 
? 5 NaCl + 1 NaClO3 + 
 
 
5º Passo: 
 
Contamos 5 + 1 = 6 N a 
 
 
 
3Cl2 + 6 ? 5 NaCl + 1 NaClO3 + 
 
 
 
 Contamos 5 + 1 = 6 Cl 
 
 
 
Por fim falta acertar o coeficiente do H2O, o que pode ser feito pela contagem dos átomos de hidrogênio ou de 
oxigênio: 
 
 
 
3 Cl2 + 6 NaOH ? 5 NaCl + 1 NaClO3 + 3 
 
 
 
 
EXERCÍCIOS 
 
Acertar os coeficientes das equações abaixo pelo método de oxi- 
redução, 
indicando os agentes oxidante 
 
1) KMnO4 + FeSO4 + ? K2SO4 + MnSO4 + Fe2(SO4)3 + 
 
2) MnO2 + NaI + H2SO4 Na2SO4 + MnSO4 + H2O + 
 
3) Bi2O3 + NaClO + ? NaBiO3 + NaCl + 
 
4) KMnO4 + HCl KCl MnCl2 + H2O + 
 
5) Hg + HNO3 Hg(NO3)2 + H2O + 
 
6) Hg + HNO3 Hg(NO3)2 + H2O + 
 
7) CuS + HNO3 ? Cu(NO3)2 + S + NO + 
 
 ? 
 
? 
 
10) HIO3 + HI I2 + 
 
11) KClO3 + H2SO4 ? HClO4 + ClO2 + K2SO4 +H2O 
 
12) C + HNO3 ? CO2 + NO2 H2O 
 
13) KMnO4 + H2C2O4 + H2SO4 K2SO4 + MnSO4 + + 
 
14) Cu + HNO3 ? Cu(NO3)2 + NO + 
- 110 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
 
 
 
 
15) Cu + HNO3 ? Cu(NO3)2 + NO2 + 
 
16) 
 
HgS + 
 
? 
 
Hg(NO3)2 + S + NO 
+ 
17) 
 
MnO2 + 
 
 
? 
 
MnBr2 + Br2 + 
 
18) NaBiO3 + + H2SO4 ? Na2SO4 + Bi2(SO4)3 + + 
 
19) Br2 + NaOH NaBr + NaBrO3 + 
 
20) Hg2(NO3)2 + ? HNO3 + HgS + 
 
 
RESPOSTAS 
 
1) 2 KMnO4 + 10 FeSO4 + 8 H2SO4 ? K2SO4 + 2 MnSO4 + 5 Fe2(SO4)3 
 
+ 8 H2O Agente oxidante: KMnO4 Agente redutor: FeSO4 
 
2) MnO2 + 2 NaI + 2 H2SO4 ? Na2SO4 + MnSO4 + 2 H2O + I2 
 
Agente oxidante: MnO2 Agente redutor: NaI 
 
3) Bi2O3 + 2 NaClO + 2 NaOH ? 2 NaBiO3 + 2 NaCl 
 
+ H2O Agente oxidante: NaClO Agente redutor: Bi2O3 
 
4) 2 KMnO4 + 16 HCl ? 2 KCl + 2 MnCl2 + 8 H2O + 5 Cl2 
 
Agente oxidante: KMnO4 Agente redutor : HCl 
 
5) 3 Hg + 8 HNO3? 3 Hg(NO3)2 + 4 H2O + 2 NO 
Agente oxidante: HNO3 Agente redutor: Hg 
6) Hg + 4 HNO3 ? Hg(NO3)2 + 2 H2O + 2 NO2 
 
Agente oxidante: HNO3 Agente redutor: Hg 
 
7) 3 CuS + 8 HNO3 ? 3 Cu(NO3)2 + 3 S + 2 NO + 
 
4 H2O Agente oxidante: HNO3 Agente redutor: CuS 
? 
 
Agente oxidante: K2Cr2O7 Agente redutor: H2O2 
? 
 
Agente oxidante: H2O2 Agente redutor: CrCl3 
 
10) HIO3 + 5 HI ? 3 I2 + 3 H2O 
Agente oxidante: HIO3 Agente redutor: HI 
11) 6 KClO3 + 2 H2SO4 ? 2 KClO4 + 4 ClO2 + 2 
K2SO4 + 2 H2O Agente oxidante: KClO3 Agente redutor: KClO3 
 
12) C + 4 HNO3 ? CO2 + 4 NO2 + 
 
2 H2O Agente oxidante: HNO3 Agente 
redutor: 
13) 2 KMnO4 + 5 H2C2O4 + 3 H2SO4 ? K2SO4 + 2 MnSO4 + 8 H2O + 10 CO2 
 
Agente oxidante: KMnO4 Agente redutor: H2C2O4 
 
14) 3 Cu + 8 HNO3 ? 3 Cu(NO3)2 + 2 NO + 4 
 
H2O Agente oxidante: HNO3 Agente redutor: Cu 
 
15) Cu + 4 HNO3 ? Cu(NO3)2 + 2 NO2 + 2 H2O 
- 111 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
2 2 
16) 3 HgS + 8 HNO3? 3 Hg(NO3)2 + 3 S + 2 NO + 4 
 
H2O Agente oxidante: HNO3 Agente redutor: HgS 
 
17) MnO2 + 4 HBr? MnBr2 + Br2 + 2 
H2O Agente oxidante: MnO2 
 Agente redutor: HBr 
18) 2 NaBiO3 + 2 H2O2 + 4 H2SO4? Na2SO4 + Bi2(SO4)3 + 6 H2O + 2 O2 
 
Agente oxidante: NaBiO3 Agente redutor: H2O2 
 
19) 3 Br2 + 6 NaOH ? 5 NaBr + NaBrO3 + 3 
 
H2O Agente oxidante e redutor: equação molecular – Br2 
 
20) Hg2(NO3)2 + H2S ? 2 HNO3 + HgS + Hg 
 
Agente oxidante e redutor: equação molecular – Hg2(NO3)2 
 
 
 
 
 
Equações iônicas 
 
Ao escrever equações de oxi-redução, deve-se tomar cuidado de escrever fórmulas 
somente para compostos ou íons que possuem existência química verdadeira, como MnO2, H3AsO3, 
HSO4
2 
. Mesmo em solução, não existem espécies Mn
4+
, As
3+ 
e As
5+
. 
 
Quando se usa a convenção iônica para escrever fórmulas, observam-se as seguintes regras: 
 
As substâncias iônicas são escritas na forma iônica somente se os íons estiverem separados uns dos outros 
no meio em que ocorre a reação. Por exemplo, se o sal estiver sólido deve ser representado 
pelo íon- fórmula. 
 
Ácidos fortes devem ser escritos na forma iônica, mas os ácidos fracos são sempre escritos 
forma molecular. 
 
Bases fortes devem ser escritas na forma iônica e bases fracas, que são insolúveis, na forma 
―molecular‖, assim como o hidróxido de amônio, que é fraca, apesar de ser solúvel. 
 
Íons complexos devem ser escritos na sua forma complexa inteira. Ex: [Fe(CN)6]
3-
, 
[Cu(NH3)4]
2+ 
, 
[Ag(CN)2] 
-
 
 
Baseado nas regras citada, escreveremos equações iônicas sem os seus íons espectadores. Ao invés de 
escrevermos: 
 
3 H2S + 8 HCl + K2Cr2O7 ? 3 S + 2 CrCl3 + 7 H2O 
 
3 H S + 8 
+ + ? 3 S + 2 C
3
r
+ 
+ 7 H O 
 
Neste caso o enxofre variou seu número de oxidação de – 2 para 0, oxidando-se e o cromo de +6 para 
+3, reduzindo-se. 
 
Outroexemplo: 
 
Misturando-se solução de KMnO4 (permanganato de potássio) com solução de KI (iodeto de potássio) 
em presença de H2SO4, obtém-se: 
 
2 KMnO4 
 
10 KI + 8 ? 
 
6 K2SO4 + 2 MnSO4 + 5 I2 + 8 
+ 
+ 10 I + 16 H
+
 ? 
H2O 2+
 
2 MnO4 
 
1 +2 zero 
Verifica-se que o manganês do permanganato passou a Mn
2+
, tendo seu nox variado de +7 a 
+2: o manganês reduziu-se. Por outro lado, o I 
– 
passou a I2 e, por isso, seu nox variou de –1 a zero: o iodo oxid 
- 112 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
A reação de oxi-redução em questão pode ser desdobrada em duas etapas, chamadas de semi-reações, 
assim 
 
2 MnO4 + 16 H+ + ? 2 Mn2+ + 8 H2O (semi-reação de 
 
10 I ? 5 I2 + 10 (semi-reação de oxidação)EXERCÍCIOS 
 
 
1) Na reação: Ag2O + H2O2 ? 2Ag + H2O + O2, a água oxigenada é oxidante ou redutora ? Expliqu 
 
2) Caracterize o oxidante e o redutor em cada uma das reações que se seguem: 
 
a) H2O2 
+ 
+ 2 H
+ 
? 2 Fe
3+ 
+ 2 H2 
Fe
2+
 
 
+ 2 H
+ 
? I2 
 
+ H2O 
 
c) 4 H2O2 + PbS ? PbSO4 + 4 H2O 
d) 2 MnO4 + 5 H2O2 + 6 H
+ 
? 2 Mn
2+ 
+ 8 H2O 
5 O2 
 
 
3) Escreva as equações das reações abaixo na forma iônica, excluindo os íons espectadores, apresentando 
as 
 
a) CrO3 + 2 NaOH Na2CrO4 + 
 
b) Mg + ZnSO4 ? Zn + 
 
c) 2 Ag + 4 NaCN H2O + 1/2 O2 ? 2 Na[Ag(CN)2] + 2 NaOH 
 
d) Hg2(NO3)2 + ? 2 HNO3 + HgS + 
 
e) Cu + 8 HNO3 ? 2 NO + 3 Cu(NO3)2 + 4 
 
 
RESPOSTAS 
1) É redutora pois oxida-se (passa de –1 a zero), perdendo elétrons que reduzem a prata de +1 
a zero. 
2) a) H2O2 - oxidante ; Fe
2+ 
- redutor b) H2O2 – oxidante ; I - redutor 
c) H2O2 – oxidante ; PbS - redutor d) MnO4 - oxidante ; H2O2 - redutor 
 
e) Ag - redutor ; NO3 - oxidante 
 
3) a) CrO3 + 2OH 
– 
? CrO4
2– 
+ H2O 
b) Mg + Zn
2+ 
? Zn + Mg
2+
 
c) 2 Ag + 4 CN
– 
+ H2O + ½ O2 ? 2[Ag(CN)2] 
– 
+ 2OH
–
 
d) Hg2
2+ 
+ H2S ? 2H
+ 
+ HgS + Hg 
e) Cu + 8 H
+ 
+ 2NO3
– 
? 2 NO + 3 Cu
2+ 
+ 4 H2O 
- 113 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
MÉTODO DO ÍON-ELÉTRON 
 
Este método é o que melhor permite balancear equações iônicas abreviadas de reações de oxi-redução. 
Por ele é possível balancear uma equação tendo apenas o conhecimento das espécies que se 
oxidam e se reduzem e do meio no qual ocorre a reação (ácido ou básico). Não é necessário o conhecime 
da equação 
global da reação. 
Abaixo são representadas as regras gerais deste método, que não devem ser encaradas de maneira rígida. 
Existem variações destas regras. O mais importante é a compreensão da idéia geral do método a fim de que ele 
possa ser utilizado corretamente. 
 
 
Escreva um arcabouço da equação que especifique as espécies que contêm os elementos qu 
sofrem 
 
Escreva um arcabouço da equação parcial para a espécie que se reduz, fazendo o 
 Denominado equilíbrio de átomos 
 
Acrescente os elétrons que correspondem à variação de nox do elemento, atentando para o fato 
de que 
 
Proceda ao equilíbrio das cargas na equação (referentes aos elétrons e íons) acrescentando H
+ 
(se o meio for 
ácido) ou OH
- 
(se o meio for básico), no membro da equação (reagente ou produto) em que estes 
forem necessários. Denominado equilíbrio de cargas 
 
Proceda ao balanceamento da massa na equação (átomos de hidrogênio e oxigênio que ainda n 
estão 
equilibrados) acrescentando H2O no membro em que ela for necessária (pode ser feito tanto no reagente 
 
Repita esse procedimento todo para a espécie que se oxida. 
 
Se houver mais de uma semi-equação de redução, proceda ao somatório de todas elas. Efetue o 
mesmo 
 
Multiplique cada equação parcial assim obtida por um número escolhido de tal modo que o número total de 
elétrons perdidos seja igual ao número total de elétrons ganhos. 
 
Some as duas equações parciais que resultam das multiplicações. 
 
Na equação global obtida, cancele todos os termos comuns aos dois membros. 
 
Confira o balanceamento de massa e de carga, se não estiver correto, refaça todo o balanceamento passo a 
passo. 
 
Exemplos: 
 
 
1) Equação iônica : I2 + H2S 
? 
H
+ 
+ I 
–1 
+
 
 
Equação parcial da espécie quese reduz : I2 ? I 
–1 
 
Equilíbrio de átomos: I2 ? 2 I 
–1 
 
Equilíbrio de elétrons: I2 + 2 e
– 
? 2 I 
–1
 
 
Equilíbrio de carga (meio ácido): a carga já está equilibrada ( - 2 (relativo aos e
–
) = - 2 ( relativo a 2 íons I
–
 
 
Equilíbrio de massa: a massa já está equilibrada (2 átomos de iodo antes e depois da reação) 
 
- 114 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Equação parcial da espécie quese oxida: H2S ? S 
- 114 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
 
4 
3 
4 
Equilíbrio de átomos: já está equilibrada (onde há variação de nox ! neste caso, o enxofre) 
 
Equilíbrio de elétrons: H2S ? S + 2 
 
Equilíbrio de carga (meio ácido): H2S ? S + 2 e
– 
+ 2 H
+
 
 
Equilíbrio de massa: já está equilibrada (2 átomos de H antes = 2 átomos de H depois 
 
Observação : O número de elétrons perdidos já é igual ao número de elétrons ganhos. 
 
Somando as equações : 
 
I2 + 2 e
– 
? 2 I 
–1
 
+ H2S ? S + 2 e
– 
+ 2 H
+
 
 
? (Equação já equilibrada) 
 
 
 
 
2) Equação iônica : MnO4
– 
C2O4
2– 
? MnO2 + CO3
2– 
(em meio 
 
Equação parcial da espécie quese reduz: MnO 
– 
? MnO2 
 
Equilíbrio de átomos: já está equilibrada (onde há variação de nox ! Mn) 
 
Equilíbrio de elétrons: MnO4
– 
+ 3 e
–
? 
 
Equilíbrio de carga (meio alcalino) : MnO4
–
 
MnO2 
 
+ 3 ? MnO2 + 4 
OH
–
 
Equilíbrio de massa: MnO4
– 
+ 3 e
– 
+ 2 H2O 
 
Equação parcial da espécie quese oxida : C2O4
2– ? CO 
2– 
 
Equilíbrio de átomos: 
 
Equilíbrio de elétrons: 
C2O4
2– 
 
C2O4
2–
 
? 2 CO3
2–
 
 
? 2 CO3
2–
 
 
 
 
+ 2 e
–
 
 
Equilíbrio de carga (meio alcalino): C2O4
2–
 + 4 OH
– 
? 2 CO3
2–
 2 e
–
 
 
Equilíbrio de massa: C2O4
2– 
+ 4 OH
– 
? 2 CO3
2– 
+ 2 e
– 
+ 2 
 
 
Igualando o nº de elétrons perdidos e ganhos: 
 
MnO 
–
 + 3 e
– 
+ 2 
H2O 
 
? MnO2 + 4 
OH
–
 
 
( x 2 ) 
C2O4
2–
 2 CO3
2– + 2 e
– 
+ 2 H2O ( x 
 
Somando as equações: 
2 MnO4
–
 + 6 e
– 
+ 4 H2O ? 2 MnO2 + 8 
 
+ 3 C2O4
2–
 + 12 OH
– 
? 6 CO3
2–
 + 6 e
– 
+ 6 H2O 
 
? 2 (Equação já equilibrada) 
 
 
- 12 - 12 
- 115 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
 
 
 
 
3) Equação iônica : I 
– + H2O2 ? I2 + H2O (em meio ácido 
 
 
Equação parcial da espécie quese reduz: H2O2 ? H2O 
 
Equilíbrio de átomos: H2O2 ? 2 H2O (onde há variação de nox ! O 
 
Equilíbrio de elétrons: H2O2 + 2 e
– 
?2 H2O 
 
Equilíbrio de carga (meio ácido): 2 H
+ 
+ H2O2 + 2 e
– 
?2 H2O 
 
Equilíbrio de massa: já está equilibrada 
 
 
Equação parcial da espécie quese oxida : I 
–
 ? I2 
 
Equilíbrio de átomos: 2 I 
– 
? I2 
? I2 + 2 
 
Equilíbrio de carga (meio ácido): já está equilibrada 
 
Equilíbrio de massa: já está equilibrada 
 
Observação: O número de elétrons perdidos já é igual ao número de elétrons ganhos. 
 
Somando as equações : 
2 I 
– 
? 
+ 2 H
+ + 
I2 + 
2 
e
– 
 
 
 
2 H2O 
 
- ? (Equação já equilibrada) 
 
 
 
 
EXERCÍCIOS 
 
Ajustar os coeficientes das equações pelo método do íon-elétron, indicandoos agentes oxidante e redutor. 
 
a) Cu + 
NO3
–
 
? Cu
2+ 
+ (meio ácido) 
? Zn
2+ 
+ NH4
+
 (meio ácido) 
 
c) Cr H
+ 
? C
3
r
+ 
+ H2 (meio ácido) 
 
d) MnO2 + Br 
–
 
 
e) IO3 
– 
+ ? 
HSO3
–
 
Br2 
 
I 
– 
Mn 
2+ 
 
+ SO4 
2–
 
(meio ácido) 
(meio ácido) 
 
 
g) MnO4 
– 
+ 
 
h) ClO2 + 
OH 
– 
? 
? NO3 
– 
+ Cl 
– 
( meio 
básico) 
 
? MnO4 
2– 
+ O2 + H2O 
? 
ClO3 
– 
+ ClO2 
– 
+ H2O 
 
Zn(OH)4 
2– 
+ NH3 (meio 
j) I 
– 
+ NO2 
–
 
H 
+
básico) 
 
- 116 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
l) Cl2 + H2O + SO2 SO4 
2– + Cl 
– 
H 
+
 
- 117 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
2– 
2 
2 
l) Cl + 2H O + SO ? SO 
2– 
+ 2Cl 
m) Cr2O7 
2– 
SO3 
2– 
+ H 
+ 
? Cr 
3+ + SO4 
2– 
+ 
 
n) MnO4 + H 
+ 
Mn
2+ 
SO4
 
+ ? + 2– + 
 
o) Co
2+ 
+ BrO 
– 
+ H
+ 
? 
Co
3+ 
+ Br2 + 
+ H
+ 
? Zn
2+ 
+ AsH3 + 
 
q) Cr
3+ 
+ MnO2 + OH ? CrO4
2 
Mn
2+ 
+ 
 
r) Bi
3+ 
+ 
 
2
 
+ ? SnO3
2 
+ H2O + 
Bi 
+
 
s) Cr2O7 + H2C2O4 H 
 
t) Cr(OH)3 + IO3 + ? CrO4
2- 
+ I + 
 
 
RESPOSTAS 
 
a) 3 Cu + 2NO3
– 
+ 8H 
+ 
? 3Cu
2+ 
+ 2NO + 4H2O 
oxidante : NO3
– 
redutor : Cu 
 
b) 4 Zn + NO3
– 
+ 10H 
+ 
? 4 Zn
2+ 
+ NH4
+ 
+3 
H2O 
oxidante: NO3
– 
redutor : Zn 
 
 
 
 
 
 
n) 2MnO4 
2– 
 
 
 
 
 
 
+ 5SO 3 
 
 
 
 
 
 
+ 6H 
 
 
 
 
 
 
+
? 2Mn
2+
 
 
 
 
 
 
 
+ 5S4 O 
 
+ 3+
 + 3H2Ooxidante :MnO 
– 
redutor: SO 
2–
 
c) 2Cr + 6H ? 2C+r 3H2 
oxidante: H
+ 
redutor: Cr 
4 3 
 
o) 2Coo
2+
xi+da2nBterO:B
– 
rO+ –4H
+
? 2rCeod
3
u
+
to+r1: BCro2++ 
d) MnOoxi+da2nBter: 
–M+n4O2H 
+ 
? Bred+rutMorn: B
2+r +
– 
2 H O
 
2H O
 
2 2 2 2 
 
 
e) IO3 
 
– + 3HSO3
– ? I – + 
3SO4 
 
2– + 3H + 
+ 4H O 
p) 4Zno+xida1nAtes:OA4s
3
O 
3+– 
 
11Hr
+
ed?utor4: ZZnn
2+ 
+ 
oxidante: IO3 
– 
redutor: HSO3
–
 1AsH3 
 
f) 14ClO 
– 
+ 6N H
 
 
+12OH
–
? 12NO 
– 
+14Cl
– 
q) 22Cr + 3MnO2 4OH ? 2CrO4 + 
3 2 4 3 4 
+18H2O 3+ 
oxidante:ClO3
– redutor: N2H4 
oxidante:MnO4
– 
redutor: OH
–
 
g) 4MnO4 
– 
+ OH 
– 
? 4MnO4 
2– 
+ O2 + 
2H2O 
 
3+ 2 
3Mn
2+ 
+ 2H2O 
oxidante :MnO2 redutor: Cr 
 
 
h) 2ClO2 + 2OH 
– 
 
 
? ClO3 
– 
 
 
+ ClO2 
– 
 
 
+ H2O 
oxidante :Bi
3+
 
r) 2Bi
3+ 
+ 3SnO 
2-
 
redutor: SnO2
2–
 
+ 6OH ? 
oxidante:ClO2 redutor: ClO2 
s) 1Cr2O7 + 3H2C2O4 
+ 
3H2O + 2Bi 
38SHnO3
2? 2Cr + 
 
i) 4Zn + NO3 
NH3
 
– 
+7OH
- 
+ 6H2O ? 4 
Zn(OH)4 
2– 
+
 oxidante :Cr2O7
2–
 redutor: H2C2O4 
oxidante :NO3
– 
redutor: I 
–
 
t) 2Cr(OH2 )3 + 1IO3+ 4OH ?
+
 
6CO2 + 7H2O 
2CrO4 
3+ + 
j) 2I 
– 
+ 
2NO2 
2H2O 
– 
+ 4H 
+ 
? I2 + 2NO + 
oxidante :IO3
– 
redutor: Cr(OH)3 
 
2 
oxidante :NO2
– 
redutor :I 
–
 
 
oxidante :Cr2O7
2– 
redutor: SO3
2– 
– 
2 2 2 4 
- 118 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
+ 4H 
+
 
 
1I + 5H O 
- 119 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Átomos 
 
Massa Atômica 
 
Abundância 
 
Oxigênio 16 
 
15,995 u 
 
99,759 % 
 
Oxigênio 17 
 
16,999 u 
 
0,037 % 
 
Oxigênio 18 
 
17,999 u 
 
0,204 % 
 
CAPÍTULO 8 
 
GRANDEZAS E UNIDADES 
 
Chamamos de grandezas os conceitos utilizados para descrever os fenômenos que 
pretendemos investigar, sempre com o objetivo de estabelecer as leis que os regem. A propriedade 
fundamental de uma grandeza é sua capacidade de ser medida. O comprimento, o tempo e a força 
são grandezas físicas, pois há aparelhos capazes de medi-las. 
 
Medir uma grandeza consiste em compará-la com outra grandeza padrão que se toma como unidade. O 
resultado dessa operação é uma quantidade; isto é, um número seguido da unidade utilizada, por exemplo: 50 
quilos (50 kg). 
 
Naturalmente, você já se pesou inúmeras vezes. Entretanto, você nunca soube e não sabe o seu 
peso absoluto. Todas as vezes que você se pesou, simplesmente comparou seu peso com o peso de um outro 
corpo tomado como padrão. Quando a balança marca 50 kg para o seu peso, está indicando que você pesa 50 
vezes mais que 1 kg, ou seja, que 50 é o seu peso relativo. O valor de uma grandeza será sempre igual ao 
produto de 
 
m = 50 x kg 
grandeza valor 
numérico 
unidade 
 
 
O quilograma é uma unidade prática, mas não é adequada para medir a massa dos átomos. Para se ter 
idéia, apenas 1g de ferro contém em torno de de átomos. Logo, a melhor unidade para avaliar a 
massa dos átomos é outro átomo. 
 
Massa Atômica 
 
A massa atômica (cujo símbolo é ma refere-se à massa do átomo de um dado elemento químico 
quando comparado a um padrão, que é arbitrário, e convencionado como sendo 
 
 
Este padrão é conhecido como unidade de massa atômica e seu símbolo é u 
 
As 
natureza. É feita uma 
 
 são calculadas a partir da abundância de seus isótopo 
na 
 
Por exemplo, o elemento oxigênio é constituído por três isótopos e cada átomo de oxigênio apresenta 
uma determinada massa e contribui com certa porcentagem na formação do elemento, conforme a 
tabela a seguir: 
 
 
 
 
 
 
 
 
 
 
 
Assim sendo, a massa do elemento oxigênio será: 
 
 
 
ma(O) = (15,995 x 99,759) + (16,999 x 0,037) + (17,999 x 0,204) 16 u 
 
100 
 
 
As tabelas periódicas contêm os valores das massas atômicas relativas (Ar) de todos os 
elementos químicos (considerando-se a composição isotópica natural dos elementos). 
- 120 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
A relação entre a massa atômica relativa (Ar, um nº adimensional) e a massa atômica (ma, 
expressa 
 
Assim, para cada 
elemento 
encontra nas tabelas periódicas. 
 
Exemplos: 
 
químico, o número que deve multiplicar a unidade u é aquele 
 
 
 
 
logo, ma (Na) = 23 u 
Na A r = 23 
 
logo, ma 
 
(Ca) = 40 u 
 
 
Massa Molecular e Massa-Fórmula 
 
Refere-se à massa da entidade da qual uma substância é feita. No caso de substâncias 
moleculares (formadas por ligações covalentes), a massa é denominada massa molecular, no caso das 
substâncias iônicas é denominada massa-fórmula e, em ambos os casos, corresponde à soma das massas 
atômicasdos átomos que 
as compõem. 
 
Exemplos: 
 
m(NH3) = ma(N) + 3 ma(H) = 17 u (massa molecular) 
 
 
 
Quantidade de Matéria 
 
Como visto anteriormente, mesmo massas pequenas das substâncias contém um número extremamente 
grande de átomos, moléculas ou agregados. Daí existir uma grandeza relacionada com o número de entidades 
elementares (átomos, íons, moléculas, etc.) presentes em uma determinada amostra de substância. Esta grandeza 
é denominada quantidade de matéria, seu símbolo é n e sua unidade é o mol Quando se utiliza a unidade 
mol, as entidades elementares devem ser especificadas, podendo ser átomos, moléculas, íons, etc. 
 
Mol: 
 
 
 
 
 
 
Constante de Avogadro 
 
Existe uma relação de proporcionalidade entre o número de entidades em uma amostra e sua quantidade 
de matéria. Daí pode-se afirmar que, para qualquer amostra de uma substância o seu número de entidades (N) é 
diretamente proporcional à sua quantidade de matéria (n): N n (quanto maior o número de entidades, maio 
o número de mols). 
 
A constante de proporcionalidade que permite a passagem de quantidade de matéria para 
número de entidades, conhecida como constante de Avogadro (N A) , nada mais é que o 
número de entidades por unidade de quantidade de matéria.. 
 
N = NA x 
n 
A constante de Avogadro tem seu valor medido experimentalmente e o valor mais recentemente obtido 
e recomendado é 6,02214 x 10
23
mol 1 
Então, para uma quantidade de matéria de 1 mol corresponderão, aproximadamente, 6,02 x 10
23 
entidades: 
 
 
1 mol = 6,02 x 10 23 entidades 
- 121 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Exemplo: 
 
Qual o número de moléculas existentes em 4,50 mol de amônia (NH3 ) ? 
 
N = NA x logo: 
 
N = 6,02 x 10 
23 
mol
1
 
 
x 4,50 mo 
 
N = 2,71 x 10 
24
 
 
ou 
1 mol 6,02 x 10 
23 
moléculas 
 
4,50 mol N 
 
N = 2,71 x 10 
24
 
moléculas 
 
Relação entre a unidade de massa atômica e a unidade de massa 
 
Pela definição de mol, 1 mol de carbono 12 pesa 12g e pela definição de massa 
atômica, 1 
átomo de carbono pesa 12 u. 
 
1 mol corresponde a 6,02 x 10
23 
entidades, logo, 1 mol de carbono 12 contém 6,0 
x 10
23
 
 
12g 
 
12 u 
6,02 x 10
23 
átomos 
 
1 átomo 
1g = 6,02 x 10 
23 
u 
12 g = 12 u x 6,02 x e 
1 u = 1,66 x 10 
-24 
g 
 
Exemplos: 
ma(H) = 1,0079 u = 1,6737 x 10 
-24 ma(O) = 15,999 u = 2,6567 x 10 
-23
 
g 
 
 
Para qualquer amostra de substância, a sua massa (m) é diretamente proporcional à sua quantidade de 
matéria (n), isto é m n (quanto maior o número de mols, maior a massa). 
 
A constante de proporcionalidade que permite a passagem da quantidade de matéria para 
massa, conhecida como massa molar, cujo símbolo é M, nada mais é do que a massa de uma substância por 
unidade 
de quantidade de matéria: m = M x n 
 
Por exemplo, as massas molares do dióxido de carbono e do hidróxido de sódio são M (CO2) = 44,0 
g/mol e M (NaOH) = 40,0 g/mol, valores esses obtidos a partir dos valores das massas 
moleculares , substituindo-se a unidade pela unidade 
 
Assim, para se obter os valores das massas molares, basta substituir a unidade de massa atômica, u, pela 
unidade g/mol nos valores de massas atômicas ou moleculares ou, simplesmente, acrescentar a unidade g/mol 
aos respectivos valores de massas atômicas relativas ou de massas moleculares relativas. 
Isto é possível porque o n
o 
de entidades em 1 mol é igual ao n
o 
de unidades de massa atômica em 1 
g. Exemplo: 
 
x g 
 
x = 40 g · u 
6,02 x 10
23 
u 
40 u 
como 6,02 · 10 
23 
= 1 mol , chega-se a: x = 40 g/mol 
- 120 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Convém ressaltar que, em cálculos, a massa molar é a grandeza que necessita ser usada e não massas 
atômicas ou moleculares. 
 
 
Qual a massa correspondente a 5,0 mol de ácido clorídrico (HCl) ? 
HCl massa molecular : ma (H) + ma (Cl) = 36,5 
u massa molar (M): M = 36,5 
 
 
1 mol 
 
5,0 mol 
 
 
 
 
ou 
 
m = M x n 
36,5 g 
 
m m = 
 
 
183 g 
 
logo: m = 36,5 g/mol x 5,0 mol = 
 
 
 
Volume Molar de um Gás 
 
Segundo hipótese de Avogadro, volumes iguais de quaisquer gases, nas mesmas de 
condições 
 
Partindo deste princípio, define-se volume molar como sendo o volume ocupado por 
1mol de 
qualquer gás 
 
Em determinadas condições, denominadas condições normais de temperatura e pressão (CNTP), o 
volume molar de qualquer gás é 22,4 L. 
 
P = 1 atm P = 1 atm P = 1 atm 
 
 
 
 
T = 273 K nHe = 1 mol 
( 4,0 g ) 
nO2 = 1 mol 
( 32,0 g ) 
nN2 = 1 mol 
( 28,0 g ) 
 
VHe = 22,4 L V(O2)= 22,4 L V(N2) = 22,4 L 
 
 
Assim, se tivermos, por exemplo, 2 mol de gás hidrogênio (H2) a 0ºC e 1 atm., teremos um volume de 
2 x 22,4 L, ou seja, 44,8 L. 
 
 
Exemplo: 
 
Qual a quantidade de matéria e o número de moléculas existentes em 55,0L de amônia (NH3), 
nas CNTP? 
 
1 mol 
 
n 
 
22,4 L 
 
55,0 L 
 
N = 2,46 mol 
 
1 mol 
 
2,46 mol 
6,02 x 10 
23 
moléculas 
 
N 
 
N = 1,48 x 10 
24
 
moléculas 
- 121 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
 
 
 
Resumo 
 
Unidade de massa atômica (u) : 
 
Massa atômica de um átomo (isótopo) : u 
 
Massa atô mica de u m elemen to quí mico: 
 
 
Massa molecular de u ma s ubstância: 
u 
 
Massa molecular: 
Massa–fórmula: 
 
 
 
 
 
 
 
massa atô mica 
massa molecular 
 
 
Quantidade de matéria 
 
mol. 
 
Constante de Avogadro (NA ): 
Massa molar (M): 
Vol u me molar: 
22,4L 
 
 
 
 
g/mol 
 
 
 
EXERCÍCIOS 
 
 
 
 
 
 
1) Determine a massa molecular (ou massa-fórmula) e a massa molar: 
 
a) NaF b) H2S c) CO2 d) O2 e) FeCl2 f) NH4OH 
 
2) Calcule a quantidade de matéria (n
o 
de mols) em: 
 
a) 20 g de H3PO4 
 
c) 9,7 g de HCl 
 
3) Calcular as massas (em gramas) de: 
 
a) 5,0 mol de gás cloro (Cl2) 
 
b) 3,0 mol de gás sulfídrico (H2S) 
 
c) 2,0 mol de gás carbônico (CO2) 
b) 1,02 x 10 
24 
moléculas de C2H4 
d) 6,02 x 10 
4 
moléculas de H2O 
 
 
 
d) 2,5 mol de gás oxigênio (O2) 
 
e) 2,5 mol de átomo de oxigênio (O) 
 
f ) 0,60 mol de átomos de ferro (Fe) 
 
4) Calcule o número de átomos (ou íons) em: 
 
a) 10,0 g de hélio 
 
b) 10,0 g de gás nitrogênio (N2) 
 
c) 16,0 g de óxido cúprico (CuO) 
- 122 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
5) Calcule a massa, em gramas, de: 
 
a) 1 átomo de hélio b) 1 molécula de N2 c) 1 agregado de NaCl 
 
6) Nas CNTP, qual a quantidade de matéria (n
o 
de mols) e qual o n
o 
de moléculas de 
 
a) 11,2 L de H2 
 
b) 1,5 L de Cl2 
 
c) 500 mL de CO2 
 
d) 250 mL de F2 
 
e) 112 mL de NH3 
 
f ) 22,4 mL de HCN 
 
7) Tem-se 44,8 L de CO2, nas CNTP. Pede-se: 
 
a) quantidade de matéria do gás 
b) n
o 
de moléculas do gás 
c) n
o 
de átomosde carbono 
 
 
d) n
o 
de átomos de oxigênio 
e) n
o 
total de átomos 
f ) massa (em gramas) do gás 
 
8) Sabendo-se que a massa atômica do elemento flúor é 19 u, calcule: 
 
a) a massa molar do gás flúor (F2); 
b) o n
o 
de moléculas em 3,80 g de F2; 
c) o n
o 
de átomos contidos na massa do item b; 
d) a massa em gramas de 1,2 x 10 
24 
moléculas de flúor; 
e) a quantidade de matéria (n
o 
de mols) de moléculas de F2 em 380 g; 
 
f ) o volume correspondente a 120 g de F2, nas CNTP; 
 
g) a massa em gramas correspondente a 80,0 L de F2 (nas CNTP); 
h) o n
o 
de moléculas em 250 L de F2 (nas CNTP). 
 
 
9) O carbono ocorre na natureza como uma mistura de átomos dos quais 98,90% são 
12 
C e 1,10% são 
13 
C 
a) Explique o significado das representações 
12
C e 
13
C. 
 
b) Com esses dados, calcule a massa atômica do carbono natural. 
Dado: massas atômicas: 
12 
C = 12,000 u e 
13 
C = 13,003 u 
 
10) Considerando que a taxa de glicose no sangue de um indivíduo é 90 mg em 100mL de sangue, e 
que o 
volume sangüíneo deste indivíduo é de 4,0 L, determine: 
a) o n
o 
de mols de glicose existentes nos 4,0 L de sangue; 
b) o n
o 
de moléculas de glicose existente nos 4,0 L; 
 
c) o n
o 
de total de átomos na glicose existente nos 4,0 L de sangue. 
 
 
11) Na reação do óxido de enxofre com oxigênio para originar trióxido de enxofre, verifica-se qu 
64g de 
dióxido consomem 16g de oxigênio. 
 
a) Quais as massas de dióxido de enxofre e de oxigênio necessárias para que se obtenha 1,6g de trióxido de 
enxofre? 
n
o
 
b) Determine o de mols correspondentes às massas encontradas no item a (dióxido de enxofre 
SO2; 
oxigênio – O2 ) 
c) Determine o n
o 
de moléculas de trióxido de enxofre (SO3) obtidas. 
 
d) Considerando-se as CNTP, qual o volume de O necessário para se obter 320g de SO ? 
- 123 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
12) 56 g de óxido de cálcio (CaO) reagem completamente com 44 g de gás carbônico (CO2), 
formando carbonato de cálcio (CaCO3). 
 
a) Qual a massa de óxido de cálcio necessária para se obter 25g de produto de reação? 
 
b) Qual o volume CO2 usado para se obter 250 g de CaCO3 ? Considere as CNTP. 
 
c) Se 89,6 L de CO2 forem usados, que massa de carbonato de cálcio será obtida, considerando as CNTP? 
 
13) Considere um copo contendo 90 mL de água (d = 1 g/mL). Determine: 
a) n
o 
de mols de moléculas de água 
b) n
o 
de moléculas de água 
c) n
o 
de átomos de oxigênio 
d) n
o 
de átomos de hidrogênio 
e) n
o 
de átomos total 
 
14) Um composto Al2(XO4)3 
apresenta 
uma massa-fórmula igual a 342 u. Determine a massa 
 
15) Uma pessoa normal elimina por dia cerca de 30,0 g de uréia, pela urina. Quantos átomos de nitrogênio são 
eliminados diariamente através da urina? 
 
Dado: M da uréia [CO(NH2)2] = 60,0 g/mol 
 
16) A concentração de íons fluoreto em uma água de uso doméstico é de 5,0 x 10 
–5
mol/L. Se 
uma pessoa ingerir 3,0 L dessa água por dia, ao fim de um dia, qual a massa, em miligramas, de fluoreto que 
essa pessoa ingeriu? 
 
17) De um cilindro contendo 640 mg de gás metano (CH4) foram retiradas 1,204 x 10 
21 
moléculas. 
Quantos mols de CH4 restaram no cilindro? 
 
18) A concentração normal do hormônio adrenalina (C9H13NO3) no plasma sangüíneo é de 6,0 x 1 
8 
g/L. Quantas moléculas de adrenalina estão contidas em 1L de plasma? 
 
19) Um liga que contém 75% de ouro; 12,5% de prata e 12,5% de cobre (% em massa) pode ser chamada de 
ouro 18 K. Pergunta-se: 
 
a) Em 1,00 g dessa liga qual é a massa real de ouro? 
 
b) Nessa liga, existem mais átomos de prata ou de cobre? 
 
 
20) O corpo humano apresenta em torno de 18% da sua massa em átomos de carbono. Como base nesse dado, 
qual o n
o 
de mols de átomos de carbono no corpo de um indivíduo que pesa 100 kg? 
 
21) O Brasil produz, por ano, aproximadamente, 5,0 x 10 
6 
toneladas de ácido sulfúrico (H2SO4); 1,2 x 10 
6 
toneladas de amônia (NH3) e 1,0 x 10 
6 
toneladas de soda cáustica (NaOH). Transformando tonelada em 
mols, a ordem decrescente de produção dessas substâncias será ... 
 
22) A região metropolitana de São Paulo tem cerca de 8.000 km
2
. Um automóvel emite, diariamente, cerca de 
20 mol de CO. Supondo que esse gás se distribua uniformemente por toda a área metropolitana até uma altura 
de 10km, quantas moléculas de CO emitido por esse automóvel serão encontrados em 1m
3 
do ar metropolitano ? 
 
23) Para evitar a propagação de doenças como a cólera, a água para beber é desinfetada pela adição de cloro 
(Cl2) à razão mínima de 0,20 mg/kg de água. Para obter essa água clorada, quantas moléculas de 
água são necessárias, aproximadamente, para cada molécula de cloro? 
 
24) Uma das formas de medir o grau de intoxicação por mercúrio em seres humanos é a determinação de sua 
presença nos cabelos. A OMS estabeleceu que o nível máximo permissível, sem risco para a saúde, é 
de 50 ppm, ou seja, 5,0 x 10 
5 
g de mercúrio por grama de cabelo. Nesse sentido, a quantos 
átomos de mercúrio corresponde essa quantidade? 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
25) Considere um balão de aniversário contendo 2,3 L de ar seco. Aproximadamente 20% deste 
gás são 
constituídos por oxigênio (O2). Supondo que 1 mol de gás ocupa aproximadamente um volume de 23 L, a 25 
ºC e 1 atm, o número aproximado de moléculas de oxigênio presentes no balão será : 
a) 1,2 x 10
22
 
moléculas b) 6,0 x 
10
23 
moléculas c) 
0,46 moléculas 
22 
 
26) Nas condições normais de temperatura e pressão uma pessoa em aspiração forçada pode encher o pulmão 
com 3 litros de ar. Nesta aspiração, que quantidade de matéria de nitrogênio e oxigênio entrou no pulmão? 
Dado Composição volumétrica do ar : 71% N2 , 28 % O2 e 1% argônio 
 
27) Não é apenas o clorofluorcarbono, um gás usado em aerossóis, aparelhos de refrigeração e plásticos, que 
afeta na Antártida a camada de ozônio que protege a Terra dos raios ultravioleta do Sol. O 
cientistas identificaram recentemente mais dois poderosos inimigos do ozônio. São eles o clorofórmio de metila 
(CH3Cl3) 
e o tetracloreto de carbono (CCl4), usados na fabricação de tintas e graxas para a indústria automobilística e 
ainda como cola de tapete. 
Com relação ao solvente tetracloreto de carbono citado no texto, e sabendo-se que as massas atômicas 
do carbono = 12 u e do cloro = 35,5 u, determine: 
a) Número de moléculas existentes em 300 g de solvente. 
b) Massa, em gramas, correspondente a 5,0 x 10 
24 
moléculas de CCl4 
 
28) Considere a constante de Avogadro igual a 6 x 10 
23 
entidades/mol . 
a) Determine a quantidade de matéria de CO2 existente em 88 g de gelo seco (CO2(s)). 
b) Determine o número de moléculas de CO2 nesta amostra. 
c) Determine o número de átomos de oxigênio nesta amostra 
 
29) A densidade da água a 25ºC é 1,0 g/mL. Qual o número de átomos de hidrogênio contidos em uma gota de 
água, de volume 0,05 mL ? Considere a constante de Avogadro igual a 6 x 10 
23 
entidades/mol. 
 
30) Um medicamento usado como antipirético e analgésico contém 90 mg de ácido acetilsalicílico(C9H8O4) por 
comprimido. Quantas moléculas dessa substância há em cada comprimido? 
 
 
31) Responda: 
a) Qual a massa, em gramas, de 2,70 mol de mercúrio? 
b) Qual a massa, em gramas, de 9 x 10 
23 
átomos de iodo ? 
c) Qual a massa, em gramas de 1 átomo de polônio ? 
 
32) Segundo dados da CETESB, deve ser decretado Estado de Emergência quando é atingida a concentração de 
46 mg de monóxido de carbono (CO) por m
3 
de ar; nessa situação, são proibidas as atividades industriais e a 
circulação de veículos a gasolina. Se forem detectados 2,0 x 10
–2 
mol de CO por metro cúbico de ar, deverá se 
decretado Estado de Emergência? 
 
33) O isocianato de metila, H3C N C O, é um líquido volátil e tóxico. Tolera-se, no máximo, 5 · 10 
5 
g do 
seu vapor por metro cúbico de ar. Qual é o número aproximado de moléculas de isocianato de metila por metro 
cúbico de ar na condição de tolerância máxima? 
Dado: massa molar do isocianato de metila = 57 g/mol 
 
34) Se um dentista usou em seu trabalho 30 mg de amálgama de prata, cujo teor de prata é 72 % (em massa), 
qual o número de átomos de prata que seu cliente recebeu em sua arcada dentária ? 
 
35) Ligas constituídas de platina e ródio, com diferentes composições são utilizadas como 
sensores de 
temperatura. Para 1,00 g de uma liga contendo apenas platina e ródio, na proporção de 10% em massa de ródio, 
calcule a massa e o número de átomos de platina. 
- 125 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
36) A análise de um amálgama usado na restauração de dentes revelou a presença de 40% (em 
massa) de 
mercúrio; prata e estanho completam os 100% restantes. Um dentista que usa 1,0 g desse 
amálgama em cavidades dentárias de um cliente está, na realidade, usando quantos gramas de mercúrio? 
 
37) O ferro é um elemento essencial na alimentação humana para formação de hemoglobina. Apenas 10 % do 
ferro do feijão são absorvidos pelo organismo humano. Supondo que em 100 g de feijão encontremos 0,2 % de 
ferro e que cada átomo de ferro formará uma molécula de hemoglobina, quantas moléculas de 
hemoglobina 
 
38) No sangue de um adulto há aproximadamente 2,9 g de ferro, que estão contidos em 2,6 x 10
13
 
glóbulos vermelhos. Calcule o número de átomos de ferro em cada glóbulo vermelho. 
 
39) O mercúrio, na forma iônica, é tóxico porque inibe certas enzimas. Uma amostra de 50,0 g de atum de uma 
grande remessa foi analisada, e constatou-se que tinha 2,1 x
7
 10 mol de Hg
2+
. 
Considerando-se que os alimentos com conteúdo de me4rcúrio acima de 5,0 x 10 g por 
quilograma de alimento não podem ser comercializados, demonstre se a remessa de atum deve ou não ser 
 
40) O chumbo é um metal tóxico que pode ser absorvido pelos seres humanos via 
gastrointestinal. Os 
encanamentos antigos eram feitos com canos de chumbo, o que causava um envenenamento lento das pessoas 
que os utilizavam. Supondo que a análise da água consumida por essas pessoas revelasse uma concentração de 
8,5 x 10 
– 4 
g de chumbo / 100 mL de H2O : 
a) Qual a massa de chumbo, em miligramas, ingerida por uma pessoa ao beber um copo contendo 200 m 
dessa água ? 
 
41) Se cada um dos 26 estados brasileiros produzisse, anualmente, 4,6 milhões de toneladas de soja, o tempo 
necessário para produzir 1 mol de grãos de soja (admita o peso médio de um grão como sendo 1 g ) seria de : 
a) 1 mês 
b) 2,5 anos 
c) 1 século 
d) 2,5 séculos 
e) a idade provável do sistema solar (5 x 10 
9 
anos) 
 
42) Linus Pauling, prêmio Nobel de Química e da Paz, faleceu recentemente aos 93 anos. Era um 
ferrenho defensor das propriedades terapêuticas da vitamina C. Ingeria diariamente 2,1 x 10 
–2
mol dessa vitamina 
 
Dose diária recomendada de vitamina C (C6H6O6) ....62 mg 
 
Quantas vezes, aproximadamente, a dose ingerida por Pauling é maior que a recomendada? 
a) 10 b) 60 c) 1,0 x 10
2 
d) 1,0 x 10
3 
e) 6,0 x 10
4
 
 
43) Tem-se uma amostra de 560 g de ferro metálico e outra de lítio metálico de mesma massa. Em qual amostra 
há maior número de átomos? Justifique. 
 
44) Considere um cubo do metal alumínio e um cubo do metal ouro, ambos com um volume de 1,0 cm
3
. A 25 
ºC, a densidade do alumínio é 2,7 g/cm
3 
e a do ouro é 18,9 g/cm
3
. De acordo com essas informações e 
sabendo- se que a massa atômica do alumínio é 27 u e a do ouro é 197 u, pode-se afirmar que: 
a) No cubo de ouro existem aproximadamente 7 vezes mais átomos do que no cubo de alumínio. 
b) No cubo de alumínio existem aproximadamente 7 vezes mais átomos do que no cubo de ouro. 
c) No cubo de ouro existem aproximadamente 1,9 x 10
23 
átomos. 
d) No cubo de alumínio existem aproximadamente 2,7 x 10
23 
átomos. 
e) O número de átomos é aproximadamente o mesmo nos dois cubos. 
 
45) Um descendente do rei Midas disputou uma prova nos Jogos Olímpicos, ficou em segundo lugar e recebeu 
uma medalha de prata pura pesando 20 g. Porém assim que a tocou, cada um dos átomos de prata transformou- 
se em um átomo de ouro. 
a) Calcule a nova massa dessa medalha. 
- 126 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
b) Explique por que essa transformação praticamente não altera o volume da medalha 
 
Densidade da prata: 10,6 g/cm
3
 
Densidade do ouro: 19,3 g/cm
3
 
massas molares: prata = 108 g/mol 
ouro = 197 g/mol 
 
 
46) A dose diária recomendada do elemento cálcio para um adulto é de 800 mg. Suponha certo 
suplemento 
nutricional a base de casca de ostras que seja 100% CaCO3. Se um adulto tomar diariamente dois tabletes desse 
suplemento de 500 mg cada um, qual a porcentagem de cálcio da quantidade recomendada essa 
a) 25% b) 40% c) 50% d) 80% e) 125% 
 
47) O conteúdo de cálcio de um leite em pó é de 20,05 gramas por quilograma. Para a ingestão de 0,1 mol de 
cálcio, a massa aproximada a ser ingerida desse leite, em gramas, é: 
a) 200 b) 10 c) 50 d) 100 e) 1000 
 
48) Peixes machos de certa espécie são capazes de detectar a massa de 3,6–68 x 10 g de 
2-fenil-etanol, substância produzida pelas fêmeas, que está dissolvida em 1 milhão (1 x 10
6
) de litros 
de água. Supondo-se diluição uniforme na água, indique o número mínimo de moléculas de 2-fenil-etanol por 
litro de água, detectado 
pelo peixe macho. 
Dados: massa molar do 2-fenil-etanol = 122 g/mol ; Constante de Avogadro = 6,0 x 10
23 
moléculas/mol 
a) 3 x 10 
– 16
 
b) 3,66 x 10 
– 6
 
c) 1,8 x 10 
8
 
d) 1,8 x 10 
22
 
 
49) Um estudante do primeiro ano do curso de Química da Unicamp, após uma aula sobre tamanho relativo de 
cátions e ânions e sobre fórmulas químicas, foi almoçar no restaurante universitário. Para mostrar aos colegas o 
que havia aprendido, resolveu fazer uma analogia com a mistura de arroz e feijão contida no seu prato. Primeiro 
estimou o número de grãos de arroz e de feijão, tendo encontrado uma proporção: dois de feijão para sete de 
arroz. Depois, considerando o tamanho relativo dos grãos de arroz e de feijão e fazendo analogia com o tamanho 
relativo dos cátions e ânions, escreveu a ―fórmula química‖ do ―composto feijão com arroz‖, representando 
o feijão por F e o arroz por A. 
a) Qual a ―fórmula química‖ escrita pelo estudante? 
b) Se no total houvesse 100 feijões no prato, quantos mols de arroz havia no prato? 
c)Quantos mols do ―composto feijão com arroz‖ havia no prato? 
 
50) Ao corrigir as respostas da questão anterior (aquela do feijão com arroz) da primeira fase do 
Vestibular 
Unicamp/95, a banca de Química constatou que um certo número de candidatos não têm (ou não tinham) idéia 
de grandeza representada pela unidade mol, de fundamental importância em Química.Respostas do tipo 210 mol 
de arroz apareceram com certa freqüência. 
a) Calcule a massa, em toneladas, correspondente a 210 mol de arroz, admitindo que a massa de um grão de 
arroz seja 20 mg. 
b) Considerando que o consumo mundial de arroz seja de 3 x 10
8 
toneladas/ano, por quantos 
anos seria possível alimentar a população mundial com 210 mol de arroz ? 
 
51) A água oxigenada é empregada, freqüentemente, como agente microbicida de ação oxidante 
local. A 
liberação do oxigênio, que ocorre na sua decomposição, é acelerada por uma enzima, presente no sangue. Na 
limpeza de um ferimento, esse microbicida, liberou, ao se decompor, 4,48 L de oxigênio por segundo. Nessas 
a) 2,4 b) 12 c) 24 d) 48 
Mostre seus cálculos 
 
52) O ácido cítrico é utilizado em indústrias de alimentos como conservante dos produtos. Em 
uma dada 
- 127 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
número de mols de ácido cítrico existente em uma lata com 300 mL deste refrigerante ? dado: ácido cítrico = 
C6H8O7 
 
53) O metanol (CH3OH) é uma substância infinitamente solúvel na água. A quantidade em gramas de metanol 
que deve ser acrescentada a 2,00 mol de H2O, para preparar uma solução que contenha o mesmo número de 
moléculas de H2O e CH3OH será: 
a) 64 g b) 32 g c) 36 g d) 3 g e) 30 g 
 
54) Em cada 100 g de suplemento alimentar ENSURE ( da ABBOTT Lab. Do Brasil Ltda) há 1, 
mg do 
a) 2,0 x 10 
–3 
mol de 
Mn 
b) 20,0 x 10 
–3 
mol de Mn 
d) 0,02 x 10 
–3 
mol de Mn 
 
55) Um fertilizante de larga utilização é o nitrato de amônio de fórmula NH4NO3. 
Para uma determinada cultura, o fabricante recomenda a aplicação de 1 litro de solução 0,5 mol/L de NH4NO3 
por m
2 
de plantação. 
A figura abaixo indica as dimensões que o agricultor utilizará para o plantio. 
70 m 
 
50 m 
 
 
 
 
 
 
100 m 
 
 
A massa, em kg, de nitrato de amônio que o agricultor deverá empregar para fertilizar sua cultura, de acordo 
com a recomendação do fabricante, é igual a: 
 
a) 136 b)148 c) 164 d) 180 
 
56) Um comprimido antiácido contém 210 mg de bicarbonato de sódio (NaHCO3). A quantidade de matéria 
desta substância existente no comprimido é: 
a) 2,1 x 10 
–1 
b) 2,5 x 10 
–3 
c) 1,5 x 10 
–6 
d) 1,5 x 10 
21 
e) 6,0 x 10 
23
 
 
57) Para evitar a contaminação de legumes pelo bacilo da cólera, eles devem ser imersos em uma solução de 
hipoclorito de sódio (NaClO). Esta solução pode ser obtida dissolvendo-se 1 colher de sopa (10 mL) de água 
sanitária em água de modo a obter-se 1 litro de solução. Se a água sanitária contém 38 g de NaClO por litro de 
produto, determine, na solução usada para imergir os legumes : 
a) A massa de NaClO em 1 litro de solução. 
b) O número de mols de NaClO em 1 litro de solução. 
 
58) A massa, em gramas, da mistura formada por 2 mol de moléculas de água, 2 mol de átomos de sódio e 6 x 
10
23 
moléculas de glicose (C6H12O6), é igual : 
a) 119 g b) 131 g c) 238 g d) 262 g e) 524 g 
 
59) Suponha que sua assinatura, escrita com uma lapiseira de grafite, pese 1,2 mg. O número aproximado de 
átomos de carbono gasto nesse autógrafo será: 
a) 6,0 x 10 
18
 
átomos 
c) 6,0 x 10 
20
 
b) 6,0 x 10 
19
 
átomos 
 
60) A impressão desta página consumiu cerca de 8 mg de tinta. Calcule a massa e o número de 
átomos de 
carbono utilizados para imprimir esta página, supondo que 90% da massa da tinta seja constituída pelo elemento 
- 128 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
RESPOSTAS 
 
 
1) a) m = 42u e M = 42 
g/mol b) m = 34u e M = 34 
g/mol c) m = 44u e M = 44 
g/mol d) m = 32u e M = 32 
g/mol 
e) m = 127u e M = 127 g/mol 
f ) m = 35u e M = 35 g/mol 
2) a) 0,20 mol b) 1,69 mol 
–19
 
11) a) 1,28g SO2 e 0,32g O2 
 
b) 0,02 mol SO2 e 0,01 mol O2 
c) 1,2 x 10
22 
moléculas deSO3 
 
d) 44,8 L 
 
e) 26,9 L SO2 e 13,4 L O2 
 
12) a) 14 g b) 56,0 L c) 400 g 
 
13) a) 5,0 mol 
b) 3,0 x 10 
24 
moléculas 
c) 0,27 mol d) 10 
 
3) a) 355 g b) 102 g 
c) 88 g d) 80 g 
e) 40 g f ) 34 g 
24
 
mol 
 
 
 
 
 
 
23
 
 
c) 3,0 x 10 
24 
átomos de oxigênio 
d) 6,0 x 10 
24 
átomos de hidrogênio 
e) 9,0 x 10 
24 
átomos 
14) ma ( X ) = 32 u 
4) a) 1,50 x 10 
c) 2,42 x 10 
23
 
b) 4,30 x 10 
15) 6,02 x 10 
23 
átomos 
 
16) 2,9 mg 
5) a) 6,6 x 10 –24 g b) 4,65 x 10 –23 g 
 
17) 3,80 x 10 
–2 
mol 
c) 9,72 x 10 –23 g 
 
18) 2,0 x 10 
14 
moléculas 
6) a) 5,00 x 10 
–1 
mol = 3,01 x 10 
23
 
–2 22
 
 
19) a) 0,75 g b) cobre 
moléculas b) 6,7 x 10 
moléculas 
mol = 4,0 x 10 
20) 1,5 x 10
3 
mol 
21) NH3 (7,1 x 10
10 
mol) > H2SO4 (5,7 
x 
c) 2,23 x 10 
–2
 mol = 1,34 x 10 
22
 
10o
1l0) > NaOH (2,5 x 10
10 
mol) 
moléculas d) 1,12 x 10 
–2 
mol = 6,74 x 10 
21 
moléculas e) 5,00 x 10 
–3 
mol = 3,01 x 
10 
21 
moléculas 
f ) 1,00 x 10 
–3 
mol = 6,02 x 10 
20 
moléculas 
 
7) a) 2,00 mol 
 
 
22) 1,5 x 10 
11 
moléculas 
23) 1,9 x 10
7 
moléculas de água 
24) 1,5 x 10
17 
átomos 
 
25) Letra a 
b) 1,20 x 10 
24 
moléculas 
c)1,20 x 10 
24 
átomos de carbono 
d) 2,40 x 10 
24 
átomos de oxigênio 
e) 3,60 x 10 
24 
átomos f ) 88,0 g 
8) a) 38,0 g/mol 
b) 6,02 x 10 
22 
moléculas c) 1,20 x 10 
23 
moléculas d) 75,7 g 
e) 10,0 mol f) 70,7 L 
g) 136 g h) 6,72 x 10 
24 
moléculas 
 
9) a) Representa o número de massa dos átomos. 
b) 12,01 u 
–2
 
2 2 
26) 9,51 x 10
–2 
mol N e 3,75 x 10
–2 
mol O 
27) a) 1,17 x 10 
24
 
moléculas b) 1279g ˜ 1,3 
x 10
3 
g 
c) 1,30 x 10 
–1 
mol 
 
28) a) 2,0 mol 
b) 1,2 x 10 
24 
moléculas c) 2,4 x 10 
24 
átomos 
29) 3 x 10 
21 
átomos de H 
30) 3,01 x 10 
20 
moléculas 
 
31) a) 543 g 
b) 191g 
–22
 
- 129 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
10) a) 2,0 x 10 mol havecr)á 35,650xm1g0 de gCO/m
3
. 
- 130 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à 
Educação Profissional 
 
33) 5,3 x 10 
17 
moléculas 
34) 1,2 x 10 
20 
átomos 
35) 2,77 x 10 
21 
átomos 
36) 0,40g de Hg ˜ 1,2 x 10 21 átomos 
37) 2 x 10 
20 
moléculas de hemoglobina 
38) 1,2 x 10 
9 
átomos 
 
39) Deve ser confiscada. O teor de mercúrio na amostra é de 8,44 x 10 
-4 
g/kg, 
ultrapassando o valor máximo permitido. 
40) a) 1,7 x 10 
-3
g b) 8,2 x 10 
-6 
mol 
 
41) letra e 
 
42) letra b 
 
43) Na amostra de lítio. Como sua massa atômica é oito vezes menor que a do 
ferro será necessário umnúmero oito vezes maior de átomos para que 
haja a mesma massa dos dois. 
 
44) letra e 
 
45) a) 36,5g 
 
b) Porque há um aumento da massa acompanhado de um 
aumento na densidade. 
Ag : 10,6g -------- 1 cm
3
 
20g --------- x x ˜ 1,9 cm3 
 
 
Au : 19,3g -------- 1 cm
3
 
36,5g --------- x x ˜ 1,9 cm3 
 
46) letra c 
 
47) letra a 
 
48) letra c 
49) a) A7F2 b) 5,8 x 10 
-22 
mol de arroz 
c) 8,3 x 10 
-23 
mol do composto arroz e feijão 
50) a) 2,52 x 10 
18 
t b) 8,4 x 10 
9 
anos 
 
51) letra c 
52) 3,75 x 10 
-2 
mol 
 
53) letra a 
 
54) letra d 
 
55) letra a 
 
56) letra b 
57) a) 0,38g b) 5,0 x 10 
-3 
mol 
 
58) letra d 
 
59) letra b 
- 131 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à 
Educação Profissional 
 
60) 3,6 x 10 
20 
átomos 
- 130 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
CAPÍTULO 9 
 
ESTEQUIOMETRIA 
 
Jeremias Benjamim RICHTER foi o fundador da estequiometria, ou seja, a 
determinação das quantidades de substâncias envolvidas numa reação química a partir da 
equação correspondente. Estas quantidades podem estar expressas em massa, quantidade de 
matéria, número de átomos ou volume de substâncias, já que há uma correspondência entre as diversas 
grandezas utilizadas. 
 
É de extrema importância no laboratório e na indústria, pois permite que se faça a 
previsão, sem a necessidade do procedimento experimental, da quantidade de produtos que 
 
Estequiometria envolvendo reações sem excesso de reagente 
 
 
Para a resolução de problemas deste tipo, devemos relembrar algumas relações básicas. 
 
Para elementos a massa atômica expressa em gramas corresponde à massa molar, que contém uma 
quantidade de matéria equivalente a 1 mol de átomos, ou seja, 6,02 x 10 
23 
átomos, que, se forem de um 
gás nas CNTP, ocuparão um volume de 22,4 L. 
 
ma (g) = Massa molar = 1 mol de átomos = 6,02 x 10 23 átomos = 22,4 L (CNTP) 
 
 
 
Para substâncias moleculares ou iônicas , a massa atômica expressa em gramas 
corresponde à 
massa molar, que contém uma quantidade de matéria equivalente a 1 mol de moléculas, ou seja, 6,02 x 
10 
23 
moléculas (ou agregados, se a substância for iônica), que, no caso de substâncias 
 
 
mm (g) = Massa molar = 1 mol de moléculas = 6,02 x 10 23 moléculas = 22,4 L 
(CNTP) 
 
 
 
Os cálculos são sustentados pela Lei de Conservação das Massas (Lei de Lavoisier), pela 
Lei das 
Proporções Fixas (Lei de Proust) e pela Lei das Proporções Volumétricas Constantes (Lei de Gay 
Lussac), desde que em condições iguais de temperatura e pressão. 
 
Se tomarmos os coeficientes de uma reação devidamente balanceada, ou seja, cujo número de átomos 
nos reagentes é igual ao número de átomos nos produtos, teremos a partir deles a proporção de cada substância 
Exemplo: Considere a reação de combustão completa do etanol: 
 
 
 
 
 
Podemos concluir que: 
C2H5OH + CO2 + 
Dado: ma (C) = 12u; ma (H) = 1u; ma (O) 
= 
 
 Reação balanceada: 
Tipo de relação: 1 C2H5OH + 3 O2 2 CO2 + 3 H2O 
 
Em massa 
 
Em no de mols 
Em no de moléculas 
 
 
 
 
 
 
 
 
Em volume (CNTP) 
- 131 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
Estabelecidas as proporções acima, podemos fazer inúmeros cálculos envolvendo os reagente 
e os 
produtos dessa reação, combinando as relações de várias maneiras diferentes. 
 
Exemplos: 
 
1 x 46 g de etanol 
 
207 g de etanol 
3 x 18 g de água 
 
x 
 
 
x = 243 g de água 
 
 
b) Qual a quantidade de matéria de oxigênio necessário para queimar completamente 230 g de etanol? 
 
1 x 46 g de etanol 
 
230 g de etanol 
 
3 mol de água 
 
x 
 
 
 
x = 15 mol de água 
 
 
c) Qual o número de moléculas de gás carbônico obtido pela queima de 336 L de oxigênio? 
 
3 x 22,4 L de O2 
 
336 L 
2 x 6,02 x 10 
23 
moléculas de CO2 
 
x x = 6,02 x 10 
24 
moléculas de CO2 
 
 
d) Qual o volume de CO2 liberado, nas CNTP, na queima de 60 litros de etanol (capacidade média do 
tanque de um carro)? Considere a densidade do etanol igual a 0,789 g/mL 
 
0,789 g 
 
x 
 
1 mL 
 
6,0 x 10 
4 
mL x = 4,7 x 10 
4 
g 
 
 
46 g de 
etanol 
2 x 22,4 L de CO2 
 
y 
 
 
y = 4,6 x 10 
4 
L de CO2 
 
 
e) Qual a massa de água obtida pela reação de 20,16 L de gás oxigênio com o etanol ? 
 
3 x 22,4 L de 
O2 
 
 1 mL 
 
 x 
 
 
 
EXERCÍCIOS 
 
 
 
x = 16,2 g de H2O 
 
 
 
 
 
 
 
1) Sabendo-se que a decomposição do clorato de potássio (KClO3) se dá segundo a equação balanceada: 
2 KClO3 2 KCl + 3 
 
Qual a massa de cloreto de potássio (KCl) obtida na decomposição de 40 g de clorato de potássio ? 
 
2) Um astronauta elimina 470,4 L de gás carbônico por dia (nas CNTP). Suponha que se utilize hidróxido de 
sódio para absorver o gás produzido, segundo a equação: 
2 NaOH + Na2CO3 + 
 
Qual é a massa de hidróxido de sódio necessária por dia de viagem? 
- 132 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
3)Um operário faz, diariamente, a limpeza do piso de mármore de um edifício com ácido 
muriático (HCl 
 
CaCO3 + 2 CaCl2 + H2O + 
 
e, supondo que, em cada limpeza ocorre reação de 50,0 g de mármore, qual o volume de gá 
carbônico 
 
 
4) As superfícies de alumínio recém preparadas reagem com oxigênio para formar uma camada dura de óxido, 
que protege o metal de posterior corrosão. A reação é: 
 
4 Al + 3 2 Al2O3 
 
Quantos gramas de O2 são necessários para reagir com 0,300 mol de alumínio? 
 
5) O etileno, C2H4, queima no ar para formar CO2 e H2O, de acordo com a equação 
C2H4 + 3 2 CO2 + 2 
 
Quantos gramas de CO2 serão formados ao se inflamar 1,93 g de etileno? 
 
6) A reação de síntese do sulfeto de mercúrio II é: 
Hg + HgS 
 
Se usarmos 3,20 g de enxofre na reação, qual a massa (em gramas) e a quantidade de matéria de HgS obtido? 
 
7) A hidrazina, N2H4, e o peróxido de hidrogênio, são usados como propelente de foguetes. Eles reagem de 
acordo com a seguinte equação: 
7 H2O2 + 2 HNO3 + 8 
 
a) Qual a quantidade de matéria de HNO3 formada a partir de 0,025 mol de hidrazina? 
 
b) Qual a quantidade de matéria de peróxido requerida, se 1,25 mol de água forem produzidos? 
c) Qual a quantidade de matéria de água formada quando 1,87 mol de HNO3 forem produzidos? 
d) Qual a quantidade de matéria de peróxido requerida para produzir 220 g de hidrazina? 
e) Quantos gramas de peróxido serão necessários para produzir 45,8 g de HNO3? 
 
8) É dada a equação: C3H6O + 4 3 CO2 + 3 
Na combustão de 12,0 x 10 
23 
moléculas de propanona (C3H6O), qual o volume, em litros, de gás 
carbônico liberado nas CNTP? 
 
9) Qual a quantidade de matéria de nitrogênio consumido em sua reação com 101 litros de 
hidrogênio, nas 
3 H2 + 2 NH3 
 
10) Prata reage com ácido nítrico (HNO3) em quantidades estequiométricas segundoa equação 
3 Ag + 4 3 AgNO3 + NO + 2 
Sabendo-se que na reação participam 4,80 x 10 
21 
átomos de prata, quais serão: 
 
a) A massa de AgNO3 formada; 
 
b) O volume de NO formado (CNTP); 
 
c) O número de moléculas de água formada. 
 
11) 5,0 g de pólvora (constituída de KNO3, enxofre e carbono) em proporções estequiométricas, reagem pela 
equação abaixo, na detonação de um projétil de revólver. Qual será o volume de gases 
produzidos nas 
2 KNO3 (s) + S (s) + 2 C 
(s) 
K2SO4 (s) + N2 (g) + 2 CO 
- 133 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
12) Rodando a 60 km/h, numa viagem de 5 horas de duração, um automóvel tem um consumo de 10 km/L de 
combustível. Sabendo-se que o combustível usado é o etanol (C2H5OH) e admitindo-se a queima completa 
do mesmo, calcular o volume de gás carbônico, em metros cúbicos, emitido pelo carro. 
Dados: 
Densidade do etanol = 0,8 kg/L; M (etanol) = 46 g/mol ; 
Volume molar de CO2 nas condições da queima = 25 L/mol. 
 
13) O éter etílico é o éter comum vendido em farmácia, cuja principal aplicação está relacionada à sua ação 
anestésica. A combustão completa de 14,8 mg de éter etílico (C4H10O) irá produzir gás carbônico e água, de 
acordo com a equação: 
 
 
Determine: 
C4H10O + 6 4 CO2 + 5 
 
a) a massa em mg de oxigênio consumido; 
b) o volume em m
3 
de CO2 
produzido; 
 
c) o número de moléculas de água produzidas. 
 
14) A obtenção de etanol, a partir de sacarose por fermentação, pode ser representada pela seguinte equação: 
C12H22O11 (s) + H2O ( 4 C2H5OH ( ) + 4 CO2 
Calcule a massa (em kg) de sacarose necessária para produzir um volume de 50 L de etanol, suficiente para 
encher o tanque de um automóvel. 
Dados: densidade do etanol = 0,8 g/cm
3
; M (etanol) = 46 g/mol; M (sacarose) = 342 g/mol 
 
15) Quantos mols de O2 são obtidos a partir de 2,0 mol de N2O5, de acordo com a equação: 
2 N2O5 + 2 K2O2 4 KNO3 + O2 
 
 
16) Um tubo de ensaio contendo certa quantidade de clorato de potássio foi aquecido 
completa 
decomposição do sal, segundo a reação da questão nº 1. Sabendo-se que o tubo de ensaio contendo o clorato de 
potássio pesou 22,46 g antes do aquecimento e que a diminuição de massa após o aquecimento foi de 0,96g. 
 
 
17) O octano é um dos principais componentes da gasolina. A capacidade média de um tanque de automóvel é 
de 60 L e a densidade do octano é 0,70 g/mL. Qual o volume de ar necessário, nas CNTP, p 
queimar completamente o conteúdo de um tanque cheio de octano? 
Admitir que a na composição do ar, 20% seja de gás oxigênio (% em volume). 
2 C8H18 + 16CO2 + 18 
 
 
18) O vidro de garrafa é obtido fundindo areia (SiO2), calcário (CaCO3) e carbonato de sódio 
(Na2CO3). A 
Na2CO3 + CaCO3 + 6 Na2O.CaO.6SiO2 + 2 
CO2 
 
Use essa reação para prever a quantidade de areia necessária para fabricar 5.000 garrafas de cerveja, sabendo 
que cada garrafa pesa 400g. 
 
 
19) Calcule a massa de clorato de potássio necessária para a produção de 33,6 L de oxigênio (CNTP). 
 
20) Considerando a combustão do etanol, qual o volume de gás carbônico obtido pela queima de 
230 g de 
 
21) Dissolveram-se 11,7 g de cloreto de sódio (NaCl) em água. À solução resultante adicionou-se nitrat 
de 
- 134 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
22) A obtenção do ácido sulfúrico (H2SO4), industrialmente, poder ser feita a partir da pirita (FeS2), de acordo 
com a equação: 
4 FeS2 + 15 O2 + 8 2 Fe2O3 + 8 
Determine a massa, em toneladas, de ácido sulfúrico, obtida a partir de 48 toneladas de pirita. 
 
23) Calcule o volume de H2 (g), em litros, liberado nas CNTP quando 80 mg de cálcio reagem completamente 
com água. 
Ca + 2 Ca(OH)2 + 
 
24) Calcule a massa, em mg, de NaOH necessária para reagir completamente com 448 mL de CO2 nas CNTP. 
 
25) Dada a equação: 
 
 
C6H12O6 + 6 6 CO2 + 6 
Se na combustão de açúcar foram obtidos 792 g de gás carbônico, calcule a massa e o número de moléculas 
de açúcar utilizadas na reação. 
 
 
26) Verifica-se, experimentalmente, que 0,5 mol de uma substância A2 reage com 1,5 mol de B2 produzindo 
1,0 mol de um único produto. A substância obtida tem fórmula: 
 
a) AB b) AB2 c) AB3 d) A2B3 e) A5B15 
 
 
27) A reação da soda cáustica com hidrogenocarbonato de sódio pode ser representada pela equação 
 
NaOH + Na2CO3 + 
 
Nessa transformação, quantos quilogramas de carbonato de sódio são obtidos a partir de 100 mol de 
hidróxido de sódio? 
 
a) 53,0 b) 21,2 c) 10,6 d) 5,3 e) 1,6 
 
 
 
28) O estômago de um paciente, que sofra de úlcera duodenal, pode receber, através de seu suco gástrico,0,24 
mol de HCl por dia. Suponha que ele use um antiácido que contenha 26 g de Al(OH)3 por 1000 mL 
de medicamento. O antiácido neutraliza o ácido clorídrico de acordo com a reação: 
Al(OH)3 + 3 AlCl3 + 3 
 
O volume apropriado de antiácido que o paciente deve consumir por dia, para que a neutralização do HCl 
seja completa, é : 
 
a) 960 mL b) 720 mL c) 240 mL d) 80 mL e) 40 mL 
 
 
29) A nitroglicerina (C3H5N3O9), sob impacto, decompõe-se produzindo gases que, ao se expandirem, provocam 
uma violenta explosão. 
impacto 
4 C3H5N3O9( 6 N2(g) + O2(g) + 12 CO2 (g) + 10 H2O (g) 
 
Indique a opção que apresenta o cálculo do volume, em litros, de gás produzido pela explosão de 908 g 
de nitroglicerina, "nas condições ambientes". 
 
Dados: 
Massa molar da nitroglicerina = 227 g/mol ; volume molar de gás "nas condições ambientes" = 25L/mol 
 
a) 725 L b) 22,4 L c) 649,6 L d) 362,5 L e) 324,8L 
 
30) As características dos alimentos, tais como a cor, o sabor, o valor nutritivo, etc., podem ser 
melhoradas 
adicionando-se a eles certas substâncias denominadas aditivos de alimentos. O acetato de etila (C4H8O2) , por 
exemplo, é usado para dar sabor de maçã e menta, quando sozinho ou misturado. Com relação a esse aditivo, 
sabendo-se que sua queima gera gás carbônicoe va po r d’ ág u a , pergunta-se : 
- 135 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
0,05 
 
 
 1,60 g 
 
 
 
 
 
 
 
b) Qual o volume gasoso final obtido, para a massa usada no item a, considerando-se que nas 
condições da 
 
31) Hidreto de lítio (LiH) era usado com a finalidade de, em contato com a água, gerar gás para inflar botes 
salva-vidas. Calcule a massa de LiH necessária para inflar um bote salva-vidas com 244L de gás, a 25 
o
C e 
atm de pressão. ( Dados : VM(25 
o
C, 1atm) = 24,4L ; M(LiH) = 7,9 g/mol ) 
 
LiH + LiOH + 
 
 
32) A reação entre a dimetilidrazina - (CH3)2N2H2 - e tetróxido de dinitrogênio é usada como propelente d 
foguetes espaciais. Os produtos da reação são água, dióxido de carbono e nitrogênio molecular. 
 
a) Escreva a equação química que representa esta reação. 
 
b) Calcule a massa de N2O4, em quilogramas, necessária para reagir com 30 kg de dimetilidrazina. 
 
 
33) O fosgênio (COCl2), um gás utilizado em guerras, é venenoso porque, quando inalado, reage com a água dos 
pulmões, gerando ácido clorídrico, que pode levar à morte. A massa de HCl, expressa em gramas, que se forma 
quando é produzida a massa de 11,0 g de CO2 pelareação do fosgênio, é igual a : 
 
a) 11,0 b) 12,2 c) 16,0 d) 18,2 e) 27,8 
 
 
34) A cebola, ao ser cortada, desprende SO2 que, em contato com o ar transforma-se em SO3. Est 
gás, em contato com a água dos olhos, transforma-se em ácido sulfúrico, causando grande ardor e, 
conseqüentemente, as 
lágrimas. Supondo que a cebola possua 0,1 mol de SO2 e o sistema esteja nas CNTP, determine o volume 
de a) 2,24 L b) 5 L c) 44,8 L d) 4,48 L e) 22,4 L 
 
35) O óxido nitroso, N2O, é conhecido como "gás hilariante" e foi um dos primeiros anestésicos 
serem descobertos. Esse gás pode ser obtido pelo aquecimento cuidadoso de nitrato de amônio sólido. 
 
a) Escreva a equação da decomposição por aquecimento do nitrato de amônio em óxido nitroso e água. 
b) Calcule a massa de nitrato de amônio necessária para se obter 880 g de óxido nitroso. 
 
36) Desde que o homem descobriu o fogo ele vem poluindo a atmosfera com gases nocivos e fuligem. Um dos 
cinco principais poluentes é o gás sulfuroso (dióxido de enxofre), lançado à atmosfera pela 
combustão de combustíveis fósseis e de muitos minérios metálicos contendo enxofre ou compostos de enxofre. 
A concentração média anual deste gás no ar atmosférico é de 0,03 ppm (0,03 partes por milhão), ou seja, 
0,03 mol de gás sulfuroso em 10
6 
mol de ar atmosférico. Concentrações maiores que esta, considerada 
limite, trazem prejuízos à população e ao meio ambiente. Por exemplo, se a concentração deste gás no ar 
atmosférico 
chegar ao valor de 0,2 ppm, indivíduos que sofrem de doenças respiratórias crônicas, como bronquite ou asma, 
começam a tossir e a experimentar severas dificuldades na respiração. 
Parte do gás sulfuroso contido no ar atmosférico é convertido em gás sulfúrico (trióxido de enxofre), que, 
reagindo com a água no ar atmosférico ou nos pulmões, transforma-se em ácido sulfúrico. 
 
a) Baseando-se na concentração máxima permissível do gás sulfuroso no ar atmosférico, quantos gramas 
deste gás há em 10
6 
mol de ar atmosférico? 
 
b) Para uma pessoa asmática começar a ter tosse e dificuldade na respiração, quantas moléculas de 
gás sulfuroso deve haver, no mínimo, em 10
6 
mol de ar atmosférico? 
 
c) Qual a equação química da transformação de gás sulfuroso em gás sulfúrico? 
 
d) Que valores completarão a tabela abaixo? 
 
- 136 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
e) Para se produzir 39,24 g de ácido sulfúrico, quantos mols de gás sulfúrico são necessários 
 
37) Em um creme dental, encontra-se um teor de flúor de 1,9 mg desse elemento por grama de dentifrício. O 
flúor adicionado está contido no composto ―monofluorfosfato de sódio‖, Na2PO3F cuja massa molar 
144 
g/mol. 
 
a) 0,144 g b) 0,190 g c) 1,44 g d) 1,90 g 
 
38) A acidez estomacal é causada pelo excesso de ácido clorídrico. Os medicamentos à base de hidróxido de 
alumínio vêm sendo cada vez mais utilizados com o objetivo de diminuir essa acidez. A posologia recomendada 
para um adulto é de 10 a 14 colheres de 5,0 mL, ao dia, contendo cada uma delas 0,30 g de 
hidróxido de 
alumínio. 
 
a) Escreva a equação química que represente a reação que irá ocorrer no estômago. 
 
b) Quantos mols de ácido são neutralizados quando se tem um consumo diário de 13 colheres, de 5,0 mL, de 
 
39) Ao tomarmos 15 mL de leite de magnésia ( 1 colher de sopa ) para combater a azia, estamos ingerindo cerca 
de 1160 mg de hidróxido de magnésio. 
 
a) Escreva a equação química que represente a reação que irá ocorrer no estômago. 
 
b) Calcule a massa de ácido clorídrico que pode ser neutralizada ao tomarmos os 15 mL do medicamento. 
 
 
 
40) Nas estações de tratamento de água, eliminam-se as impurezas sólidas em suspensão através do arraste por 
flóculos de hidróxido de alumínio, produzidos na reação do sulfato de alumínio com hidróxido d 
cálcio. Sabendo-se que, para tratar 1,0 x 10
6 
m
3 
de água foram adicionadas 17 toneladas de sulfato de alumínio: 
 
a) Escreva a equação da reação. 
 
b) Calcule a massa de hidróxido de cálcio , em t , necessária para reagir completamente com esse sal. 
 
41) As antigas pias de mármore das cozinhas têm sido substituídas, porque, sendo o mármore 
formado 
principalmente por carbonato de cálcio, é atacado por ácidos, presentes no suco de limão, vinagre, refrigerantes 
e outros. 
A ―água de cloro‖, usada em limpeza, contém ácido clorídrico, com o qual o carbonato de cálcio da pia reage. 
a) Escreva a equação da reação do carbonato de cálcio com o ácido clorídrico. 
b) Determine o volume de gás que se desprende, nas CNTP, quando 150g de carbonato de cálcio reagem 
 
42) Certos solos, por razões várias, costumam apresentar uma acidez relativamente elevada. A diminuição dessa 
acidez pode ser feita pela adição ao solo de carbonato de cálcio, CaCO3, ou de hidróxido de cálcio, Ca(OH)2, 
ocorrendo uma das reações abaixo representadas: 
 
CaCO3 + H
+
 
2 
H
+
 
 
Ca
2+ 
 
Ca
2+
 
 
+ CO2 + 
H2O 
 
Um fazendeiro recebeu uma oferta de fornecimento de carbonato de cálcio ou de hidróxido de cálcio, ambos a 
um mesmo preço por quilograma. Qual dos dois seria mais vantajoso, em termos de menor custo, para adicionar 
à mesma extensão de terra? Justifique. 
 
43) Coletou-se água do rio Tietê, na cidade de São Paulo. Para oxidar completamente toda matéria 
orgânica 
contida em 1,00 L dessa amostra, microorganismos consumiram 48,0 mg de oxigênio (O2). Admitindo que a 
matéria orgânica possa ser representada por C6H10O5 e sabendo que sua oxidação completa produz CO2 
e 
 
a) 20,5 mg b) 40,5 mg c) 80,0 mg d) 160 mg e) 200 mg 
- 137 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
44) Fosfogênio, COCl2 , é um gás venenoso. Quando inalado, reage com a água dos pulmões para 
produzir ácido clorídrico, que causa graves danos pulmonares, levando, finalmente, à morte; por causa disso, j 
foi até 
COCl2 + CO2 + 2 
Se uma pessoa inalar 198 mg de fosfogênio, a massa de ácido clorídrico, em gramas, que se 
forma nos 
a) 1,09 x 10 
1 
b) 1,46 x 10 
1 
c) 2,92 x 10 
1 
d) 3,65 x 10 
2 
e) 7,30 x 10 
2
 
 
45) Em julho de 1997, houve um acidente com um avião da TAM. Ocorreu uma explosão, 
danificando a 
aeronave e fazendo uma vítima fatal. Algum tempo depois, a perícia constatou que a explosão se deveu a uma 
bomba que tinha como um dos componentes o nitrato de amônio. 
A decomposição térmica do nitrato de amônio produz grande volume de gases e considerável quantidad 
2 NH4NO3 (s) 2 N2(g) + O2 (g) + 4 H2O 
 
Supondo que o fabricante dessa bomba tivesse utilizado 160 g de nitrato de amônio, o volume tot 
de gás 
 
a) 33,6 b) 44,8 c) 67,2 d) 156,8 e) 313,6 
 
46) Suponha que a gasolina seja formada exclusivamente por C8H18. Sabendo que um tanque de 
automóvel contém 57,00 kg de gasolina e 11,50 kg de etanol (C2H5OH), determine o volume, em m
3
, de 
gás carbônico lançado na atmosfera pela combustão completa do combustível contido no tanque. 
 
Dados: Massas molares : gasolina = 114 g/mol e etanol = 46 g/mol 
 
Volume molar do gás nas condições da queima = 27L/mol 
 
47) O bromo é obtido industrialmente a partir da água do mar. O brometo de sódio presente na água do mar é 
submetido a uma reação de deslocamento utilizando-se gás cloro.a) Equacione a reação do processo. 
 
b) Qual a massa (em gramas) de brometo de sódio necessária para a obtenção de meio mol de bromo? 
 
c) Qual o volume de gás cloro ( em L, nas CNTP) necessário para processar inteiramente 103 g de NaBr? 
 
d) Quantos átomos de bromo são obtidos quando processamos 51,5g de brometo? 
 
e) Teoricamente é possível obter iodo pelo mesmo processo? Por que? 
 
48) Para obtermos 416g de sulfato férricoatravés de uma reação de salificação, quantos gramas de ácido ser 
utilizados? Equacione e dê os nomes dos reagentes. 
 
 
49) Neutralizamos completamente uma amostra de ácido fosforoso e obtivemos 572g de fosfito de magnésio. 
Qual foi a base utilizada e quanto pesava (em gramas) a amostra do ácido? 
 
50) Para obtermos 3,5 mol de hidróxido de estrôncio através da hidratação de seu óxido, qual a 
massa (em 
- 138 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
RESPOSTAS 
 
 
 
1) 24 g 2)1680 g 
 
2) 11,2 L 4)7,20 g 
 
5) 6,06 g 
 
6) 23,3 g = 0,1 mol 
26) c 27) c 28) c 29) a 
 
30) C4 H8O2 + 5 O2 4 CO2 (g) + 4 H2O(g) 
 
a ) 48 g b) 77,3 L 
 
31) 79 g 
 
7) a)5,0.10 
–2
mol 32) a) (CH3) 2 N H2 + 2 N2 O 2 CO 2 + 3 N2 + 4 H2 O b) 92 Kg 
 
b) 1,09 mol 
c)7,48mol 
d) 48,1 mol 
e) 86,5 g 
8) 134 L 9) 1,50 mol 
 
10) a) 1,36 g 
 
b) 59,5 mL 
 
c) 3,20 . 10 
21
 
 
11)1,3 L 12) 26 m
3
 
 
13) a) 38,4 mg 
33) d 34) a 
 
35) a) NH4NO3 N2O + 2 H2O b) 1600 g 
 
36) a) 1,92 g b) 1,204 . 10
23 
moléculas 
 
c) SO2 + ½ O2 SO3 
 
d) 0,8g de O2 0,05 mol SO3 4g SO3 
 
0,1 mol SO2 0,1 mol SO3 8 g SO3 
 
e) 0,4004 mol = 4,004 x 10 
1 
mol 
 
37) c 
 
38) a) Al(OH)3 + 3 HCl AlCl3 + 3 H2O b) 0,15 mol = 1,5 x 10 
1 
mol 
 
 
b) 2,0 . 10 
–5 
m
3 
39) a) Mg(OH)2 + 2 HCl MgCl 2 + 2 H2 O b) 1,46 g 
 
c) 6 .10 
20
 
 
14) 74 kg 15) 1,0 mol 
 
16) 20,01 g 
 
17) 5,2 . 10
5 
L de ar 
 
18) 1,51 . 10
3 
Kg 
 
19) 123 g 20) 224 L 
 
21) 28,7 g 22) 78 
 
23) 4,5 . 10 
2 
L 
 
24) 1,6 .10 
3 
mg 
 
25) 540 g e 
 
1,8 x 10 
24 
moléculas 
40) a) Al2(SO4)3 +3 Ca(OH)2 3CaSO4 +2Al(OH)3 b) 11t 
 
41) a) CaCO3 + 2 HCl CaCl2 + + H2O + CO2 b) 33,6 L de CO2 
 
42) Escolheria o hidróxido,pois uma massa menor (74g) é capaz de 
neutralizar a mesma acidez que 100 g de carbonato. 
 
43) b 44) b 45) d 46) 121,5 m
3
 
 
47) a) Cl2 + 2 NaBr Br2 + 2 NaCl 
 
b) 103 g c) 11,2 L d) 3,01 x 10
23 
átomos 
 
e) Sim, pois o cloro é mais reativo que o iodo, podendo deslocar o 
iodeto presente na água do mar. 
 
48) 3 H2SO4 +2 Fe(OH)3 Fe2(SO4)3 + 6 H2O – 306 g de ácido sulfúrico 
 
49) H3PO3 + Mg(OH)2 MgHPO3 + 2 H2O – 451 g de ácido fosforoso 
 
50) SrO + H2O Sr (OH)2 – 364 g de SrO 
- 139 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
Estequiometria envolvendo reações com excesso de reagente 
 
 
As reações químicas ocorrem sempre numa proporção constante, que corresponde ao número de mols, 
indicados pelos coeficientes. Se uma das substâncias que participa da reação estiver em quantidade maior que a 
proporção correta, ela não será consumida totalmente. Essa quantidade de substância que não reage é chamada 
excesso Em geral, é usado o reagente mais barato em quantidade maior do que a exigida pela 
proporção correta. Veja um exemplo: 
 
Quando o antimônio (Sb) em pó é misturado ao gás cloro (Cl2), ocorre uma reação violenta. A equação 
que representa essa reação é: 
 
2 Sb (s) + 3 Cl2 2 SbCl3 (s) 
 
Se, no entanto, num experimento misturarmos 2 mol de antimônio sólido a 5 mol de gás cloro, qual será 
a quantidade de matéria máxima , possível, de cloreto de antimônio III (SbCl3) sólido obtida? 
 
De acordo com a equação: 2 mol de Sb reagem com 3 mol de Cl2, produzindo 2 mol de SbCl3. 
 
Como, no nosso sistema, temos somente 2 mol de antimônio, este irá reagir completamente com 3 mol 
de gás cloro. Dessa forma, restarão 2 mol de gás cloro sem reagir e ocorrerá a formação de 2 mol de cloreto de 
antimônio III. O reagente que foi consumido totalmente – neste caso, o antimônio – indicará a 
quantidade 
máxima de produto que será formada, sendo denominado reagente limitante. O outro reagente, neste caso, 
 
 
 
Reagente (Sb) 
 
Reagente (Cl2) 
 
Produto (SbCl3) 
No experimento 2 mol 5 mol 
Reagem 2mol 3 mol 2 mol 
Excesso 2 mol 
 
 
EXERCÍCIOS 
 
 
 
 
 
 
 
 
1) Para a obtenção da amônia (NH3) foram usados 100 mL de gás nitrogênio (N2) e 240 mL de gás hidrogênio 
(H2), nas mesmas condições de pressão e temperatura. Determine: 
 
a) o volume de amônia produzido b) o volume final do excesso de reagente 
 
 
2) O acetileno, C2H4, queima ao ar para formar CO2 e H2O. Qual a massa de gás carbônico 
formada ao se inflamar uma mistura contendo 1,93 g de acetileno e 5,92g de oxigênio? 
 
 
3) Reagindo-se 11,7g de cloreto de sódio com 15,0 g de nitrato de prata, pergunta-se : 
 
a) Qual a massa do precipitado obtido? 
 
b) Qual a massa e a quantidade de matéria do excesso de reagente? 
 
4) Quantos gramas de ZnS podem ser formados quando 12,0 g de Zn reagem com 4,50g de S? Quanto (em 
gramas) e que elemento permanecerá sem reagir? 
 
5) Que quantidade de amônia (NH3) pode ser obtida a partir de 12 g de N2 e 12g de H2? A 
que volume corresponde essa massa nas CNTP? 
- 140 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
6) Adicionou-se 0,24 mol de hidróxido de sódio a uma solução de 0,20 mol de cloreto férrico 
a) Calcule a quantidade de matéria de hidróxido formada? 
b) Calcule a quantidade de matéria e % do excesso de reagente? 
 
7) 210 g de ácido sulfúrico reagem com 130 g de zinco, produzindo sulfato de zinco e gás hidrogênio 
a) Qual a massa de sulfato de zinco obtida? 
b) Qual o volume de gás hidrogênio obtido, nas CNTP? 
 
 
8) Foram misturados 147 g de ácido sulfúrico e 100 g de hidróxido de sódio. Pede-se calcular 
a) A massa de sulfato de sódio formada; 
b) A massa do reagente que sobra após a reação. 
 
9) O gás sulfídrico (H2S) reage com o anidrido sulfuroso (SO2) segundo a reação: 
 
2 H2S + 3 S + 2 
 
Qual a quantidade de matéria máxima de S obtida quando se faz reagir 5,0 mol de H2S com 2,0 mol de SO2? 
 
10) Cromo metálico pode ser produzido pela redução de Cr2O3 com Al segundo a equação 
 
2 Al + Al2O3 + 2 
 
Qual a massa ( em kg ) de cromo produzida pela reação de 5,4 kg de Al com 20,0 kg de Cr2O3 ? 
 
11) 0,28 mol de átomos de ferro reage com 0,40 mol de moléculas de oxigênio para formar o óxido de ferro III. 
Qual a substância em excesso e que massa ( em gramas) desta sobra após a reação ? 
 
12) A reação para a produção do pesticida organoclorado DDT é: 
 
CCl3CHO + 2 (ClC6H4)2CHCCl3 + 
 
a) Calcular a massa de DDT que se forma quando 100 g de CCl3CHO reagem com 100g de C6H5Cl; 
 
b) Indicar o reagente em excesso e a massa ( em gramas) do excesso. 
 
13) Uma das reações para identificação do íon Fe
+3 
em solução é a sua precipitação como hidróxido férric 
[ Fe(OH)3 ] frente a um hidróxido qualquer. Supondo a reação: 
 
Fe
+3 
+ 
 
Fe(OH)3 + 
 
Qual a quantidade de matériade íons ferro III existentes em uma solução, sabendo-se que foram obtidas 2,14g 
de Fe(OH)3, quando esta foi tratada com excesso de NaOH ? 
 
14) Mistura-se uma solução contendo 14 g de nitrato de prata com igual massa de cloreto de sódio, calcule: 
 
a) Massa de cloreto de prata formado; 
 
b) Porcentagem do excesso de reagente. 
 
 
15) 8,0 g de gás oxigênio e 2,0 g de gás hidrogênio são colocados em um recipiente e inflama-se a mistura. 
Quantos gramas de água se formam e quanto de um deles permanece inalterado, caso isso ocorra? 
 
 
16) O óxido de sódio reage com ácido clorídrico formando sal e água. Se 186 g de óxido reagirem com 120 g de 
ácido, quantos gramas de sal serão formados? 
 
17) A reação completa entre 5,0 g de gás carbônico e 8,0 g de hidróxido de sódio, produz .........g de Na2CO3, 
restando ..........g do reagente colocado em excesso. 
- 141 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
18) Faz-se reagir 25,0 g de anidrido fosfórico (P2O5) com 25,0 g de óxido de cálcio (CaO). Qual a massa de 
produto formado? 
P2O5 + Ca (PO3)2 
 
19) Qual a quantidade máxima de carbonato de cálcio que pode ser preparada a partir da mistura de 2,0 mol de 
carbonato de sódio e 3,0 mol de cloreto de cálcio ? 
 
20) Misturam-se 1,0 kg de CS2 e 2,0 kg de Cl2 num reator onde se processa a transformação 
 
CS2 + 3 CCl4 + 
 
Quais são as massa de CCl4 formado e do reagente em excesso que resta após a reação? 
 
 
21) Que quantidade de NH3, em gramas, pode ser obtida a partir de uma mistura de 140 g de N2 com 18 g de 
H2? A que volume esta massa corresponde se o volume molar for de 18 L/mol ? 
 
 
22) Seja a reação: 
 
2 C7H6O3 (aq) 
 
ácido salicílico 
 
 
+ C4H6O3 
 
anidrido acético 
 
 
2 C9H8O4 (aq) + 
H2O 
 
Se misturarmos 5,60 g de ácido salicílico com 2,04 g de anidrido acético, quantos gramas de aspir 
serão 
obtidas? 
 
Dados : 
 
 
23) 5,6 gramas de óxido de cálcio são postos a reagir com 5,4 gramas de dióxido de carbono. Determinar: 
 
a) A massa do composto formado; 
 
b) o composto em excesso ; 
 
c) a massa do excesso. 
 
24) Considerando a reação de 100g de óxido de rubídio com 100g de ácido sulfúrico, qual a massa (em gramas) 
e o nome do sal formado? 
 
 
25) Um astronauta elimina cerca de 450 L de gás carbônico por dia (CNTP). Suponha que se utilize hidróxido 
de lítio para absorver o gás produzido. 
 
a) Qual a massa de hidróxido de lítio necessária por dia de viagem? 
 
b) Que massa (em gramas) de água será formada quando 4,0 mol de hidróxido de lítio reagir com 3,0 mol de 
gás carbônico? 
 
 
26) Quando cobre metálico é aquecido com enxofre, por síntese, forma-se sulfeto de cobre I. Que massa de 
produto pode ser obtida se aquecermos 100 g de cobre e 50,0 g de enxofre? 
 
27) A quantidade máxima de hidróxido férrico que pode ser preparada a partir da mistura de 888 g de brometo 
férrico e 612 g de hidróxido de potássio é: 
a) 321 g b) 1500 g c) 1070 g d) 276 g e) 548 g 
 
28) Hidrogeno carbonato de sódio, NaHCO3, também chamado bicarbonato de sódio, é o principal constituinte 
do fermento em pó usado para substituir o levedo ou levedura na preparação de pão e outras massas. 
Quando se utiliza o levedo, este fermenta o açúcar, liberando CO2 (g) que faz crescer a 
massa antes do seu cozimento; quando se utiliza o fermento em pó, CO2 (g) é obtido pela decomposição 
do bicarbonato através do calor dos fornos ou pela reação do mesmo com substâncias ácidas. 
A equação química abaixo indica um processo para preparar o fermento em pó utilizado na fabricação 
de pães e bolos: 
- 142 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
NaCl (aq) + NH3(aq) + CO2 (g) + H2O NaHCO3 (aq) + NH4Cl 
 
Misturando-se cloreto de sódio, amoníaco e gás carbônico, 25,0 g de cada, qual a massa de fermento obtida? 
 
29) Os aromatizantes, na sua grande maioria, são ésteres. O butirato de metila, que ocorre na maçã, pode ser 
obtido através da reação do ácido butírico com o metanol: 
C3H7COOH + CH3OH C3H7COOCH3 + 
Ácido butírico Metanol H2O 
 
O número de mols de butirato de metila que pode ser obtido a partir de 3,52 g de ácido butírico e 1,60 g de 
metanol, supondo o consumo total do reagente limitante, é: 
 
a) 0,04 b) 0,05 c) 0,07 d) 4,08 e) 5,10 
 
30) A reação ocorrida quando se misturam 63 g de propeno com 150 g de hidreto de bromo, pode formar, no 
máximo, quantos gramas de produto? 
 
 
a) 82,5 b) 123 
C3H6 + 
HBr 
C3H7Br 
 
d) 184,5 e) 213 
 
 
31) O ácido acético reage com o etanol, produzindo acetato de etila e água, conforme a equação: 
 
CH3COOH + C2H5OH CH3COOC2H5 + 
 
Ácido acético Etanol 
H2O 
 
Numa determinada experiência, misturou-se 6,00 g de ácido acético com 6,90 g de etanol. Após a reaçã 
se 
 
a) 0,23 g de 
etanol 
b) 3,00 g de ácido acético 
e) 2,30 g de etanol 
 
c) 1,50 g de ácido 
 
32) O sulfato de cobre II é um sal com ampla aplicação na agricultura (fungicida, fertilizante, componente da 
ração de animais, etc.). Ele é obtido industrialmente através de um processo que, de forma simplificada, pode 
ser representado pela seguinte equação: 
CuO(s) + CuSO4(aq) + H2O( 
 
Em relação ao sistema contendo 10,0 mol de CuO e 1,30 kg de H2SO4, pode-se afirmar que : 
 
a) A adição de maior quantidade de H2SO4 ao sistema aumenta a massa de CuSO4 
formada. b) A quantidade de CuSO4 formada será inferior a 13 mol. 
c) A quantidade de CuSO4 (em mol), no final da reação, será igual à quantidade de H2SO4 (em mol) no 
início da reação. 
 
d) A solução resultante será neutra após a reação ter-se completado (não levar em conta o carát 
do sal obtido). 
 
33) Em um cilindro, com êmbolo móvel, foi realizada a combustão completa de 20,0 mL de propano com 130 
mL de oxigênio puro, de acordo com a equação não equilibrada : 
C3H8 (gás) + O2 (gás) CO2(gás) + H2O (gás 
 
Admitindo-se que os valores de pressão e temperatura sejam os mesmos no início e no fim da combustão, o 
volume final da mistura gasosa no interior do cilindro será igual a : 
 
a) 100 mL b) 102 mL c) 150 mL d) 140 mL e) 170 mL 
 
*Não esquecer o excesso de O2 ! 
 
34) O ácido clorídrico reage com permanganato de potássio segundo a equação: 
16 HCl + 2 KMnO4 2 KCl + 2 MnCl2 + 5 Cl2 + 8 H2O 
Calcule a massa de água formada quando 4,8 . 10
24 
moléculas de HCl reagem com 2,4 x 10
24
 
agregados de 
- 143 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
35) O gás de cozinha é formado principalmente pelos gases butano e propano. A reação que 
ocorre no 
queimador do fogão é a combustão destes gases. A equação não equilibrada abaixo representa a combustão do 
C4H10 + O2 CO2 + 
 
A massa de água que pode ser obtida a partir da mistura de 10,0 g de butano com 10,0 g de oxigênio é: 
 
a) 20,0 g b) 3,10 g c) 4,33 g d) 15,5 g e) 10,0 g 
 
 
 
 
 
 
 
 
 
RESPOSTAS 
 
 
1) a) 160 mL b)20mL 
 
2) 5,43 g 
 
3) a) 12,7 g b) 6,5 g = 0,11 mol 
 
4) 13,6 g de ZnS e 2,86 g de Zn 
 
5) 15 g NH3 = 19 L 
 
6) a) 8,0 x 10 
–2 
mol b) 0,12 mol = 60% 
 
7) a) 322 g b) 44,8L 
 
8) a) 178 g b) 24,5 g de H2SO4 
 
9) 6,0 mol 
 
10) 10,4 kg11) oxigênio: 0,19 mol 
 
12) a) 158 g b) 35g CCl3CHO 
 
13) 2,00 x 10 
–2 
mol 
 
14) a) 11,8 g b) 66% 
 
15) 9,0 g de H2O e 1,0 g de H2 inalterado 
 
16) 192 g 
 
17) 11 g e 0,6 g 
 
18) 34,9 g 
 
19) 200 g = 2,0 x 10
2 
g 
 
20) 1,4 Kg e 0,3 Kg de CS2 
21) 102 g NH3 (excesso de N2 ) 
 
22)7,2 g de aspirina (excesso de ác. salicílico) 
 
23) a) 10 g b) CO2 c) 1,0 g 
 
24) 142,5 g de sulfato de rubídio 
 
25) a) 964 g b) 36 g ( CO2 em excesso) 
 
26) 125 g ( S em excesso) 
 
27) letra a 
 
28) 35,9 g de NaHCO3 
 
29) letra a 
 
30) letra d 
 
31) letra e 
32) a) não , pois o H2SO4 está em excesso 
b) sim, haverá formação de 10,0 mol de 
CuSO4 ( CuO é o limitante ) 
 
c) não , idem a 
d) não , idem a 
33) letra e 
 
34) 72 g de H2O 
 
35) letra c 
- 144 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Estequiometria envolvendo reações sucessivas 
 
Quando o cálculo envolve uma série de reações sucessivas, há uma série de procedimentos aos quais 
devemos estar atentos. 
 
Devemos tomar o cuidado de igualar os coeficientes das substâncias que saem de uma reação e entram na 
reação seguinte, antes de estabelecermos qualquer relação que envolva estas substâncias. 
 
4 FeS2 + 11 
O2 
 
2 SO2 + O2 
 
2 Fe2O3 + 8 
SO2 
 
2 SO3 
 
 
 
Se quisermos calcular as de reagentes e produtos envolvidos nessa seqüência de 
teremos primeiro que igualar os coeficientes das substâncias que saem de uma equação e entram na outra. 
Como saem 8 mol de SO2 da 1ª equação, devemos multiplicar a 2ª por 4. Ficaremos então com 8 mol 
de SO3 na 2ª equação e por isso multiplicamos a 3ª equação por 8. 
 
4 FeS2 + 11 
O2 
 
8 SO2 + 4 O2 
 
2 Fe2O3 + 8 
SO2 
 
8 SO3 
 
 
Se os cálculos que interessam envolvem substâncias que aparecem uma única vez em todas as 
reações, 
poderemos trabalhar normalmente com essas substâncias, de modo semelhante ao que fazíamos 
quando trabalhávamos com apenas uma reação. 
 
Exemplo: 
 
Se os cálculos envolvem a relação entre o FeS2 gasto e o H2SO4 obtido, substâncias que aparecem 
uma 
 
4 FeS2 8 H2SO4 
ou, por simplificação, 
1 FeS2 2 H2SO4 
 
Se os cálculos que interessam envolvem alguma substância que aparece como reagente em mais de um 
reação ou como produto em mais de uma reação, devemos trabalhar com a quantidade 
total desta substância. 
 
 
Exemplo: 
 
Se os cálculos envolvem a relação entre O2 gasto e H2SO4 obtido, a proporção usada será 
 
15 O2 [ 11 O2 (1.ª reação ) + 4 O2 (2.ª reação 8 H2SO4 
 
 
 
Se os cálculos que interessam envolvem alguma substância que aparece (numa mesma 
quantidade) no 
produto de uma reação e no reagente da outra reação, devemos considerar apenas uma vez essa quantidade. 
 
Exemplo: 
 
8 SO2 8 H2SO4 
 
ou, por simplificação 
 
1 SO2 1 H2SO4 
- 145 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
I) Na2S + CO2 + 
H2O 
 
II) CaO 
 
 
+ 
 
 
H2O 
 
 
Exemplos de aplicações: 
 
Dados: massas atômicas (u) : H = 1 ; O = 16 ; S = 32 ; Fe = 56 
 
Qual a massa de ácido sulfúrico obtido a partir de 24 kg de FeS2? 
 
1 FeS2 
120 g 
 
24000 g 
 
 
 
 
 
 
x = 39200 g 39 kg 
 
2 H2SO4 
2 x 98 g 
 
x 
 
 
Qual o volume de oxigênio necessário para se obterem 98 kg de H2SO4? 
 
15 O2 
 
15 x 22,4 L 
 
x 
 
8 H2SO4 
 
8 x 98g 
 
98 x 10
3 
g 
x = 4,2 x 10
4 
L O2 
 
 
Quantos mols de H2SO4 podem ser obtidos a partir de 44,8 L de SO2, nas CNTP? 
 
1 SO2 
 
22,4 L 
 
44,8 L 
 
 
 
 
 
 
x = 2 mol H2SO4 
 
1 H2SO4 
 
1 mol 
 
x 
 
 
 
EXERCÍCIOS 
 
 
 
 
 
 
 
 
 
 
1) Considere as reações : 
HCOOH( ) 
4 CO (g) + Ni 
(s) 
 
 
CO ( g ) + H2O ( ) 
Ni(CO)4 ( ) 
CO obtida pela decomposição total de 10 mol de seja 
totalmente aproveitada na produção de Ni(CO)4, quantos mols desta última substância serão obtidos ? 
 
 
2) Em um laboratório foram preparadas diferentes substâncias, de acordo com as seguintes reações 
Na2CO3 + H2S 
Ca(OH) 2 
 
CaCO3 
 
+ 2 NaOH 
 
Sabendo que a reação I consumiu 0,50 mol de CO2, que a reação II formou 2,0 mol de hidróxido de cálcio e 
que os reagentes da reação III foram obtidos através das reações I e II, qual a quantidade máxima de hidróxido 
de sódio que pode ser obtida? 
- 146 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
3) Pela seqüência de reações: 
 
 
C + O2 
 
CO2 + 
 
 
CO2 
 
 
 
 
NaHCO3 
 
Qual a massa de bicarbonato de sódio obtida a partir de 1,00g de carbono? 
 
 
4) As equações abaixo mostram a obtenção do clorato de sódio, a partir do dióxido de manganês: 
 
MnO2 + MnCl2 + 2 H2O + 
HCl Cl2 
 
Calcule a massa de MnO2 necessária à obtenção de 21,3 g de clorato de sódio. 
 
 
5) Deseja-se obter 10 toneladas de ferro metálico a partir do carvão, segundo as reações: 
 
2 C + O2 
 
3 CO + 
 
2 CO 
 
2 Fe + 3 
 
Qual a massa, em toneladas, de carvão consumido na produção de ferro? 
 
 
6) Certa massa de ferro é oxidada a óxido férrico; a seguir, este último reage com ácido sulfúrico produzindo 
80,0 g de sulfato férrico. Qual a massa inicial de ferro? 
 
 
7) Da reação entre o peróxido de bário e ácido sulfúrico resultam água oxigenada e um precipitado. A água 
oxigenada assim obtida pode ser decomposta na presença de luz e com a adição de 
catalisadores. Relativamente às transformações descritas, pedem-se: 
 
a) As equações das reações de formação e decomposição do H2O2. 
 
b) A massa de peróxido de bário necessária para que sejam produzidos 5,60 L de gás oxigênio, medidos 
nas CNTP. 
 
 
8) O gás resultante da combustão de 160 g de enxofre reage completamente com hidróxido de sódio. Calcule a 
massa obtida de sulfito de sódio obtido. 
 
 
9) O gás hidrogênio liberado na reação de alumínio com ácido clorídrico reage completamente com 
óxido 
cúprico produzindo 12,6 g de cobre metálico e água. Qual a massa de alumínio que reagiu com 
 
 
10) Óxido de potássio reage com água e o produto obtido é colocado em contato com uma solução de ácido 
fosfórico. A partir de 2,0 mol de óxido de potássio, quantos mols se obtêm de fosfato de potássio? 
 
 
11) Certa porção de cálcio reagiu com água formando hidróxido e gás hidrogênio. O hidróxido 
formado na 
reação neutralizou completamente 49,0 g de ácido fosfórico. Calcule o volume de hidrogêni 
 
 
12) Decompôs-se, através de aquecimento, 2,45 kg de clorato de potássio. O gás obtido foi 
empregado na 
combustão de alumínio. Qual o volume de oxigênio obtido na decomposição e qual a massa de ácido nítrico 
 
 
13) Qual a massa de clorato de potássio, em quilos, necessária para a produção de oxigênio suficiente 
para 
- 147 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
14) Considerando as seguintes etapas: 
 
a) ácido sulfúrico reagindo com zinco metálico; 
b)gás produzido na reação (a) reagindo com gás cloro; 
c) o produto da reação (b) reagindo com uma solução de nitrato de prata; 
 
Quantos gramas de ácido sulfúrico são necessários para produzir 30,0 g de precipitado? 
 
 
15) Em excesso de oxigênio queimamos 93,0 g de fósforo. O produto obtido da combustão é 
recolhido em 
 
 
16) Para a obtenção de 5,2 g de sulfito de magnésio foi realizado um processo que constou da 
seguintes 
I. 
II. 
III. 
IV. 
V. 
Combustão de x gramas de enxofre dióxido de enxofre 
Combustão de y gramas de magnésio óxido de magnésio 
Dióxido de enxofre + água ácido representado por A 
Óxido de magnésio + água base representada por B 
Ácido A + Base B sulfito de magnésio + água 
 
a) Escreva as equações das reações citadas. 
b) Calcule os valores de x e y para que seja obtida a massa citada de sulfito de magnésio 
 
 
17) Uma das formas de poluição de nossos dias é a chuva ácida. Ela provoca a destruição de 
monumentos 
históricos através da corrosão provocada pelo ácido. A origem desta forma de poluição encontra-se na queima 
 
a) queima (combustão) do enxofre produzindo anidrido sulfuroso ; 
b) queima (combustão) do anidrido sulfuroso produzindo anidrido sulfúrico ; 
c) reação do anidrido sulfúrico com água 
 
Considerando-se que em 100 litros de gasolina encontram-se 3,2 mg de enxofre, qual a quantidade 
(em gramas) de ácido sulfúrico formada pela queima deste volume de combustível? Escreva as equações 
das reações. 
 
18) Duas das reações que ocorrem na produção do ferro são representadas por: 
I . carvão + oxigênio monóxido de carbono 
II. Óxido de ferro III + monóxido de carbono ferro + dióxido de 
 
O monóxido de carbono formado na primeira reação é consumido na segunda. Considerando 
apenas 
estas duas etapas do processo, calcule a massa aproximada, em kg, de carvão consumido na produção de uma 
 
 
19) Uma amostra de prata reage com ácido nítrico diluído segundo a reação 
3 Ag + 4 HNO3 3 AgNO3 + NO + 2 H2O 
 
Após a reação, adiciona-se ácido clorídrico, obtendo-se um precipitado branco que pesou 0,0911 g. Que 
massa de prata reagiu inicialmente? 
 
20) O gás resultante da reação entre 9,8 g de ácido sulfúrico e 7,0 g de zinco metálico foi misturado com outro 
gás, proveniente da reação entre 14,6g de ácido clorídrico e x g de dióxido de manganês expressa abaixo: 
MnO2 + 4 HCl MnCl2 + Cl2 + 2 H2 O 
 
Esta mistura gasosa foi exposta à luz, havendo reação de síntese total, com formação de 1,5 L de produto. A 
partir destas informações, qual a massa de dióxido de manganês empregada na reação com HCl considerando 
que o processo se deu nas CNTP? 
- 148 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
 
 
 
RESPOSTAS 
 
 
1) 2,5 mol 2)1,0 mol NaOH 3) 7,00 
 
4) 52,2 g 5) 3,2 t 6) 22,4 g 
 
7) a) BaO2 + H2SO4 BaSO4 + H2O2 
 
2 H2O2 2 H2O + O2 
 
b) 84,5g 
 
8) 630 g 9) 3,6 g 10)1,3 mol 
11) 16,8 L H2, 30 g de Ca e 77,5 g de sal 
 
12) a) 672 L O2 b) 7,56 kg HNO3 
 
13) 2,92 kg 14) 10,2 g de ácido sulfúrico 
 
15) 3,0 mol 16) b) x = 1,6g de S e y = 1,2g de Mg 
17) 9,8 x 10
– 3 
g 18) 320 kg 
 
19) 0,0686 g = 6,86 x 10
– 2 
g 20) 2,9g deMnO2 
 
 
 
 
Estequiometria envolvendo substâncias impuras 
 
Salvo na indústria farmacêutica e em outras que estejam diretamente ligadas à sua saúde 
pública, é 
normal o uso de reagentes impuros, que contêm, além da substância que irá efetivamente reagir, outras tantas 
misturadas. 
 
Por exemplo, numa amostra de calcário (carbonato de cálcio impuro), é comum encontrar areia, carvão 
e outras substâncias. Faz-se então uma análise do material e determina-se seu grau de purez 
Se for constatado, por exemplo, que em cada 100 g de calcário existem apenas 80 g de carbonato de cálcio e os 
outros 
20 g são impurezas diversas, dizemos que o calcário é 80% puro ou que o teor de carbonato no calcário é de 80 
%. 
 
Determinado o grau de pureza, pode-se trabalhar normalmente com o reagente. 
 
Para calcularmos a quantidade de produto obtido a partir de determinada quantidade de reagente impuro, 
basta considerar apenas a parte pura do mesmo, ou seja, a pureza disponível. A quantidade 
de produto obtida será, então, proporcional a essa parte pura do material. 
 
 
 
CaCO3 + CaSO4 + H2O + 
 
100g de CaCO3 
80 % de 250 g 
 
200 g 
————— 
 
————— 
22,4 L de CO2 
 
x 
 
 
x = 44,8 L de O2 
 
 
 
 
1 mol de CaCO3 
 
80% de 5,0 mol 
 
4,0 mol 
————— 
 
————— 
136 g de CaSO4 
 
x 
 
 
x = 544 g de CaSO4 
 
 
Para calcularmos a quantidade de substância impura que deverá ser usada na obtenção de 
determinada 
quantidade de produto, devemos proceder da seguinte maneira: 
 
Calculamos a quantidade teórica, considerando o reagente 100% puro, necessária para se obter a quantidade 
- 149 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
 
 
A quantidade real de reagente que deverá ser usada é uma quantidade superior à teórica 
de tal 
 
Exemplo: 
 
 
 
 
CaCO3 + CaSO4 + H2O + 
 
100g de CaCO3 
 
x 
————— 22,4 L de CO2 
 
————— 11,2 L 
 
x = 50,0 g de CaCO3 (quantidade teórica) 
 
 
 
 
50,0 g de CaCO3 
 
y 
————— 
 
————— 
80% 
 
100% 
 
y = 62,5 g de CaCO3 (quantidade real) 
 
 
 
 
Estequiometria envolvendo rendimento de reação 
 
Até o momento, estamos encarando as reações químicas como processos onde as massas dos reagentes, 
desde que misturadas na proporção correta, se transformam totalmente em produtos. Na prática, é muito pouco 
provável que isto ocorra, pois, muitas vezes, uma parte de um ou de ambos os reagentes é 
consumida em reações paralelas ou, então, uma parte de produto é perdida no momento em que ele é retirado 
do sistema onde ocorreu a reação química. Quando a massa total dos reagentes, em quantidades 
estequiométricas, é convertida 
em produtos, dizemos que a reação teve . Esse valor é o rendimento teórico, mas, 
em geral, o rendimento real ou seja, aquele obtido na experiência, é menor. O rendimento 
 
 
Rendimento teórico ————— 100% 
Rendimento real ————— x 
 
 
Para que possamos determinar a porcentagem do rendimento real, devemos antes determinar o rendimento 
teórico, a partir das quantidades estequiométricas. 
 
Exemplo: 
 
 
 
N2 + 3 2 NH3 
 
28g N2 ————— 34 g NH3 
70g N2 ————— x x = 85g (teórico 
 
 
85 g NH3 
y 
————— 
————— 
100% 
40% 
 
y = 34g (real) 
 
 
Para calcularmos a quantidade de substância deverá ser usada na obtenção de determinada quantidade de 
produto, considerando um rendimento inferior a 100 %, devemos proceder da seguinte maneira: 
- 150 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Calculamos a quantidade teórica, considerando o rendimento de 100% , necessária para se 
obter a 
quantidade de produto desejada. 
 
A quantidade real de reagente que deverá ser usada é uma quantidade superior à 
teórica, de tal forma que a quantidade teórica correspondaao rendimento efetivo que a reação consegue 
 
Exemplo: 
 
 
 
N2 + 3 2 NH3 
 
28g N2 ————
— 
x N2 ————— 
34 g NH3 
500g x = 412 g 
 
 
412 g NH3 ————— 
y ————— 100% 
 
y = 1030 g (real) 
 
 
 
 
EXERCÍCIOS 
 
 
 
 
 
 
1) A combustão do álcool etílico gera, como produtos, gás carbônico e água. De posse dessa informação, na 
queima de 100 g de álcool hidratado, com 92% de pureza, qual será a massa de água formada? 
 
 
2) Uma amostra de 200 g de CaCO3 impuro, com 90% de pureza, reage com excesso de HCl. Quais 
as massas de H2O e CO2 formadas? 
 
 
3) 100 g de carbonato de cálcio impuro são tratados com ácido clorídrico. O gás, recolhido convenientemente, 
pesou 39,6 g. Admitindo-se que as impurezas não reajam com HCl, qual a pureza do carbonato de cálcio ? 
 
 
4) Uma amostra de 12,5 g de carbonato de magnésio impuro foi tratada com excesso de 
solução de ácido sulfúrico, tendo-se obtido nessa reação, 600 cm
3 
de gás carbônico 
medidos nas CNTP. Qual o teor de carbonato de magnésio amostra? 
 
 
5) Uma indústria queima diariamente 1,2 x 10 
3 
kg de carvão (C) com 90% de pureza. Supondo que a 
queima tenha sido completa, qual o volume de oxigênio necessário (CNTP)? 
 
 
6) O nitrogênio, juntamente com água, pode ser obtido pela decomposição térmica do nitrito de amônio. 
 
Calcule o volume obtido de nitrogênio, nas CNTP, pela decomposição de 12,8 g de nitrito de 
amônio, supondo que o rendimento da reação seja 80% em massa. 
 
 
7) Qual a massa de água obtida pela reação completa entre 4,0 g de H2 e 40 g de O2, se o rendimento da reação 
for de 75%? 
- 151 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
8) Fazendo-se reagir 158 g de Na2S2O3 com quantidade suficiente de I2, segundo a reaçã 
 
2 Na2S2O3 + 2 NaI + Na2S4O 
 
obteve-se 105 g de Na2S6O4. Qual o rendimento da reação? 
 
 
9) 12,25 g de ácido fosfórico com 80 % de pureza são totalmente neutralizados por hidróxido de sódio numa 
reação que apresenta rendimento de 90%. Qual a massa de sal obtida? 
 
 
10) Ácido nítrico impuro reage com magnésio metálico (Mg), produzindo 2,24 L de H2, medidos nas CNTP. 
Calcular: 
 
a) a massa de magnésio consumida; 
b) a massa de ácido nítrico impuro gasta, sabendo que sua pureza é 80%. 
 
 
 
11) Na reação : 2 SO2 + 2 SO3, considerando as CNTP, calcule 
 
a) o volume de gás oxigênio necessário para reagir completamente com 6,40g de SO2; 
 
b) a massa de SO3 obtida se a reação tem rendimento de 80%. 
 
 
12) Desejamos preparar 1,0 m
3 
de gás oxigênio, nas CNTP. Que massa de peróxido de sódio contendo 10% 
de impurezas devemos usar? 
13) Ao queimarmos 2,00 g de uma substância orgânica, obtivemos 2,70 x 10
3 
mL de gás carbônico 
(CNTP). Qual a porcentagem de carbono na amostra? 
 
 
14) Uma amostra de sulfato férrico impuro tem 15% de umidade. 1,000g do mesmo foram dissolvidos em água, 
reagindo com cloreto de bário e obtendo-se 1,167g de precipitado. Qual a percentagem de sulfato 
férrico na amostra seca e na amostra úmida? 
 
 
15) Misturando-se 2,0 mol de gás hidrogênio com 1,0 mol de gás oxigênio, quantos mols de água devem ser 
obtidos, com rendimento de reação de 90% ? 
 
 
16) 80 g de enxofre reagem com oxigênio, produzindo 128 g de SO2. Determine o rendimento da reação. 
 
 
17) A combustão de 36,0 g de grafite (C) provocou a formação de 118,8 g de gás carbônico. Qual o rendimento 
da reação? 
 
 
18) Para a obtenção de gás nitrogênio em laboratório, utiliza-se a decomposição térmica do nitrito de amônio. 
Sabendo-se que a partir de 3,20 g de nitrito de amônio obteve-se 0,896 L de gás nitrogênio (CNTP), calcule o 
rendimento da reação. 
 
 
19) É possível obter gás oxigênio pela decomposição térmica do clorato de potássio. Usando-se 
clorato de 
potássio 80% puro e considerando um rendimento de 70%, qual a massa de KClO3 necessária para se obter um 
 
 
20) Foram obtidos 3,72 kg de Ca3(PO4)2 pela reação do H3PO4 com 80% de pureza e Ca(OH)2 com 90% 
d pureza. Calcule as massas de ácido fosfórico impuro e hidróxido de cálcio impuro utilizadas na reação. 
 
 
21) Calcule a massa de ferro que pode ser obtida a partir da hematita, cujo teor de óxido férrico é de 85% , 
quando consideramos a reação de 1000g de hematita com monóxido de carbono: 
 
Fe2O3 + 3 2 Fe + 3 
- 152 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
22) A combustão de uma determinada massa de enxofre gerou 6,4 g de dióxido de enxofre. Sabendo-se que o 
rendimento é 80%, pede-se: 
 
a) a massa de enxofre b) o volume de O2 gasto ( CNTP) 
 
 
23) 26,1 g de dióxido de manganês são tratados com ácido clorídrico concentrado. Qual o volume 
de cloro 
 
MnO2 + 4 MnCl2 + Cl2 + 
2 
 
 
24) Queimamos 1,000 g de fósforo impuro em excesso de gás oxigênio e recolhemos o produto em água, tendo- 
se completado o volume até 1000 mL. Desta solução foram retirados 10,00 mL que reagiram com bicarbonato 
de sódio obtendo-se um gás que, nas CNTP, ocupou 20,16 mL. Calcular a porcentagem de fósforo na amostra. 
 
 
25) 2,000 g de cloreto de sódio com 5% de umidade foram dissolvidos em água, até completar o volume de 
200,0 mL. Destes, 20,00 mL foram tratados com solução de nitrato de prata, dando um precipitado que pesou 
0,4305g. Qual a percentagem de cloreto de sódio na amostra seca? 
 
 
26) Em excesso de oxigênio queimamos 93,0 g de fósforo. O produto obtido da combustão é recolhido em água, 
quantos mols de ácido fosfórico são obtidos ? 
 
27) Uma amostra de 500 kg de calcário (com teor de 80% em CaCO3) foi tratada com ácido 
fosfórico para formar CaHPO4. 
a) Escreva a equação da b) Calcule a massa, em kg, do sal formado. 
 
28) Uma amostra de 2,0 g de minério de carbonato de cálcio ao ser tratada com ácido clorídrico, produziu 1,5 x 
10 
–2 
mol de CO2. Equacione o processo e calcule a % em massa de CaCO3 na amostra. 
 
29) Uma cervejaria produz 10 milhões de latas de cerveja por mês. As latas são de alumínio e a metalúrgica que 
as fabrica utiliza 70% de alumínio reciclado. Considerando-se que o alumínio é produzido segundo a reação 2 
Al2O3 4 Al + 3 O2 , com 100% de rendimento, e que cada lata tem 18 g de Al, a quantidade de Al2 
necessária para atender à produção mensal da cervejaria é : 
 
a) 340 t b) 304 t c) 102 t d) 54 t e) 27 t 
 
30) O gás hidrogênio pode ser obtido em laboratório a partir da reação de alumínio com ácido sulfúrico. Um 
analista utilizou uma quantidade suficiente de H2SO4 para reagir com 5,4 g do metal e obteve 5,71 litros do gás 
nas CNTP. Nesse processo, o analista obteve um rendimento aproximado de: 
 
a) 75% b) 80% c) 85% d) 90% e) 95% 
 
 
31) O óxido nitroso, N2O, é conhecido como "gás hilariante" e foi um dos primeiros anestésicos 
serem descobertos. Esse gás e água podem ser obtidos pelo aquecimento cuidadoso de nitrato de amônio sólido 
Se a decomposição de 400g de uma amostra impura de nitrato de amônio forneceu 84 L de gás hilariante nas 
CNTP, pergunta-se : 
a) Qual a pureza da amostra, considerando um rendimento de 100%? 
b) Utilizando–se 200 g do nitrato de amônio cuja pureza foi determinada no item a,quantos gramas de água 
serão obtidos se o rendimento da reação for de 60%? 
 
32) A nitroglicerina(C3H5N3O9) , sob impacto, decompõe-se produzindo gases que, ao se 
expandirem, provocam uma violenta explosão. 
impacto 
4 C3H5N3O9(l) 6 N2(g) + O2(g) + 12 CO2 (g) + 10 H2O (g) 
 
Calcule o volume, em litros, dos gases produzidos pela explosão de 908 g de 
nitroglicerina, 
considerando um rendimento de reação de 85%. 
- 153 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
33) Em uma reação de síntese do gás amoníaco (amônia), utilizou-se 3,36 litros de gás nitrogênio e 3,36 litros 
de gás hidrogênio. O rendimento do processo foi de 50 % e os gases estavam todos nas CNTP. Qual o volume 
de gás amoníaco obtido? 
 
34) Hidreto de lítio pode ser preparado segundo a equação: 
2 Li (s) + H2 (g) 2 LiH (s) 
 
Admitindo que o hidrogênio é medido nas CNTP, calcule : 
 
a) A massa de hidreto de lítio que pode ser produzida na reação de 14,0 g de lítio, cujo teor é de 75 %, com 
11,2 L de hidrogênio. 
 
b) O rendimento da reação se, com as quantidades de reagentes acima indicadas, ocorrer a formação de 6,32 
de LiH 
 
35) O químico francês Antoine Lavoisier ficaria surpreso se conhecesse o município de Resend 
a 160 
quilômetros do Rio. É lá, às margens da Via Dutra, que moradores, empresários e o poder público seguem à 
risca a máxima do cientista que revolucionou o século XVIII ao provar que, na natureza, tudo se transforma. 
Graças a uma campanha que já reúne boa parte da população, Resende é forte concorrente ao título de capital 
nacional da reciclagem. Ao mesmo tempo em que diminui a quantidade de lixo jogado no aterro sanitário, a 
comunidade faz sucata virar objeto de consumo. Nada se perde. (Revista DOMINGO) 
 
2 Al2O3 (s) 4 Al (s) + 3 O2 
a) Considerando-se um rendimento de 80 % no processo, qual a massa de alumínio obtida na reciclagem de 
255 kg de sucata contendo 70 % de Al2O3? 
 
b) Qual o teor de óxido de alumínio na sucata se, a partir de 6,0t dela, forem obtidas 1,5 t de alumínio , nu 
processo cujo rendimento foi de 65%? 
 
 
36) Na reação de 3,00g de sódio metálico com água (produzindo gás hidrogênio e o hidróxido correspondente), 
houve desprendimento de 1,42 L de gás, nas CNTP. Qual a pureza do sódio usado? 
 
37) A pirolusita (mineral cujo principal constituinte é o óxido de manganês IV) reage com ácido 
clorídrico 
produzindo cloreto de manganês II, água e cloro gasoso. 
 
a) Que volume de cloro (em litros) pode ser obtido, nas CNTP, a partir de 43,5 g de pirolusita com 83,8% de 
pureza? 
 
b) Que volume de cloro (em litros) pode ser obtido, fora das CNTP, a partir de 90,0 g de pirolusita (com a 
mesma pureza do item a ) se o rendimento for de 95,0 % e o volume molar nas condições da experiência for 
igual a 30,0 litros /mol ? 
 
c) Se forem obtidos 50,0 g de cloreto de manganês II a partir de uma amostra de 50,0 g de pirolusita, qual o teor 
 
 
38) Sabe-se que o clorato de potássio se decompõe pelo aquecimento em cloreto de potássio e gás oxigênio. Se 
a decomposição de 2,45g de uma amostra de um minério contendo clorato de potássio forneceu 0,336 L de gás 
oxigênio nas CNTP, pergunta-se : 
 
a) a pureza da amostra. 
 
b) considerando-se a pureza encontrada no item a, quantos kg de KCl serão obtidos se utilizarmos 500kg deste 
minério ? 
 
 
39) Uma amostra contendo 2,12g de carbonato de sódio ( Na2CO3) foi tratada por ácido clorídrico, obtendo-se 
375 mL de gás carbônico medidos nas CNTP. Qual o rendimento da reação? 
 
40) Misturou-se 79,0 g de tiossulfato de sódio e 60,0 g de ácido sulfúrico. Considerando-se que o rendimento do 
processo foi de 75%, calcule: 
a) A massa, em gramas, de enxofre produzido. 
b) O volume, em litros, de dióxido de enxofre obtido a 30 ºC, onde o volume molar é de 24,9 L/mol. 
- 154 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
41) Na reação de anidrido carbônico com hidróxido de sódio foram obtidos 14,9 g de sal. Quais foram as massas 
usadas dos reagentes, considerando que para realizar a reação utilizou-se soda cáustica cujo teor de hidróxido de 
sódio era de 40 % ? 
 
42) Uma das riquezas minerais do Brasil é a hematita, cujo principal constituinte é o Fe2O3, que é empregada na 
obtenção do ferro. Esse processo é feito em alto-forno, usando-se carvão como redutor. Em uma das reações 
ocorridas nesse processo formam-se o metal e monóxido de carbono, segundo a equação: 
Fe2O3 + 3 2 Fe + 
 
a) Calcule a massa de hematita necessária, considerando um teor de Fe2O3 de 63 % , para a obtenção de 5,0 
toneladas de ferro. 
 
b) Calcule a massa de carvão,que apresenta 80 % de pureza, a ser empregada para que se obtenha 3,0 toneladas 
de ferro 
 
c) Calcule a massa de hematita necessária, em kg, considerando-se uma pureza de 70% , para a obtenção de 
5,0 · 10
3 
litros de CO, se a reação estiver ocorrendo nas CNTP. 
 
43) A obtenção do ácido sulfúrico (H2SO4), industrialmente, poder ser feita a partir da pirita (FeS2), de acordo 
com as equações: 
4 FeS2 + 11 
O2 
2 SO2 + O2 
2 Fe2O3 + 8 
SO2 
2 SO3 
Determine a massa de ácido sulfúrico obtida, em toneladas, a partir de 48 toneladas de pirita, cujo teor de 
FeS2 é de 78 %, considerando um rendimento de processo de 60 %. 
 
44) 12,0 g de magnésio reagem com ácido clorídrico. O gás liberado reagiu com iodo gasoso, com rendimento 
de 50,0 %. O produto formado nesta segunda etapa reagiu com nitrato de cálcio formando com 
um dos produtos, um sal. Este, em reação com carbonato de sódio, produziu 20,0 g de precipitado. Qual a 
percentagem 
 
45) Reagindo 11,2 g de N2 com 1,8 g de H2 obtiveram-se 5,1 g de amônia. 
a) Qual o rendimento desta reação? 
b) Se a amônia produzida na reação for oxidada (reação com oxigênio) produzindo gás nitrogênio e água, que 
massa de água (em gramas) poderá ser obtida? 
 
46) Uma amostra de carbonato de cálcio foi aquecida até total decomposição do mesmo. O gás 
liberado foi 
borbulhado em uma solução de hidróxido de sódio. À solução obtida adicionou-se sulfato de alumínio, obtendo- 
se um precipitado que depois de filtrado e seco pesou 16,38 g. Qual a massa de carbonato de cálcio na amostra, 
 
47) A produção industrial de metanol, CH3OH, a partir do metano, CH4, e a combustão do metanol em motores 
de explosão interna podem ser representadas, respectivamente, pelas equações I e II. 
 
I. 3 CH4 (g) + 2 H2O (g) + CO2 4 CH3OH (g) 
II. CH3OH (g) + 3/2 CO2 (g) + 2 H2O 
Supondo que o CO2 da reação representada em (I) provenha da atmosfera, e considerando apenas essas 
duas reações, (I) e (II), responda se a seguinte afirmação é verdadeira: ―A produção e o consumo de metanol não 
alteraria a quantidade de CO2 na atmosfera―. Justifique a sua resposta. 
 
48) A análise de uma amostra de cloreto de sódio – o sal usado na preparação de alimentos – revelou que 100 g 
da mesma apresenta 55 g de cloro. A porcentagem de pureza dessa amostra é aproximadamente igual a 
 
a) 22,5% b) 45% c) 54% d) 90% e) 100% 
 
49) Um lote de sal grosso, com especificação de conter no mínimo 90% de sal, é suspeito de estar adulterado 
com areia. A uma amostra de 250 g do produto seco foi adicionada quantidade suficiente de águ 
e, após filtração, o resíduo, separado e seco, pesou 50 g. Justifique a conclusão possível. 
- 155 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
50) O óxido de titânio (TiO2) é usadoem grande quantidade como pigmento branco para tintas e indústrias de 
plásticos, cerâmicas e papéis. Grande parte do titânio pode ser encontrada na natureza sob a form 
de um 
mineral denominado ilmenita, cuja fórmula aproximada é FeTiO3. Um processo muito usado na obtenção do 
2 FeTiO3 + 2 Cl2 + 2 FeCl2 + 2 TiO2 
+ 
 
a) Se partirmos de 1,0 kg do mineral ilmenita, contendo 90% de FeTiO3, que massa, em gramas, de óxido de 
titânio puro pode ser obtida teoricamente? 
b) Se obtivermos 7,0t de óxido de titânio a partir de 16,0t de ilmenita, qual o teor de FeTiO3 no mineral usado 
c) Se estivermos trabalhando a 25 ºC, qual o volume, em m
3
, de CO2 obtido a partir de 500 kg de ilmenita 7 
% pura, num rendimento de 58 %, se o volume molar for de 24 ,4 L/mol ? 
 
51) Um fermento químico utilizado para fazer bolos é o sal bicarbonato de amônio (NH4HCO3). 
Quando aquecido esse sal se decompõe em dióxido de carbono, amônia e água, todos gasosos na temperatura e 
que o 
bolo é feito. Determine: 
 
a) O volume de gás carbônico obtido (volume molar = 38 L/mol ) a partir de 25,0 g de fermento que apresenta 
80,0 % de pureza em bicarbonato de amônio.. 
 
 
52) Em 1990 foram consumidos em nosso país, cerca de 164 bilhões (164 x 10
9
) de cigarros. A massa de um 
cigarro que é queimada corresponde a aproximadamente 0,85 g. Considerando que 40 % da massa do cigarro 
sejam do elemento carbono, quantas toneladas de dióxido de carbono os fumantes lançaram na atmosfera em 
1990 no Brasil? 
Dado: 1 tonelada (1t) = 10
6 
g 
 
53) O jornal Correio Popular, de Campinas, publicou (23/06/89) a seguinte notícia (trechos): 
 
...―Ativistas do grupo ecológico ―Greenpeace‖ impediram, ontem, que um navio soviético recebesse uma 
carga de lixo tóxico europeu, que seria transportado para o Brasil. O material constituído de mil toneladas de 
metais pesados como [cobre], chumbo, cádmio e cromo, seria entregue a empresa brasileira (...) que faria a 
reciclagem do que ele tinha em cobre.O ―Greenpeace‖ denunciou, porém, que apenas 5% da carga era 
constituídas por esse elemento (...) 
Pergunta-se: 
 
a) Que massa de cobre haveria nessa carga? 
 
b) Qual a massa de sulfato de cobre pentahidratado, CuSO4.5H2O, que poderia ser obtida caso todo cobre fosse 
transformado neste sal ? 
 
54) O sal nitrato de amônio é utilizado na agricultura como fertilizante nitrogenado, contendo aproximadamente 
33% de N. Sua obtenção dá-se pela reação de síntese entre o ácido nítrico e a amônia. 
 
a) Calcule a massa, em toneladas, de NH3 necessária para produzir 8,0 toneladas de fertilizante nitrato d 
amônio. 
 
b) Calcule a massa, em toneladas, de ácido nítrico 50% puro necessária para produzir a mesma 
massa do fertilizante especificada no item a. 
 
55) Alguns analistas pensam que, no futuro, o gás hidrogênio será largamente utilizado como combustível. Esse 
gás será produzido pela eletrólise da água, no processo dado pela equação: 
H2O ( H2(g) + ½ O2 
Qual volume de gás hidrogênio, nas CNTP, seria obtido pela decomposição de 5,00 · 10
3 
mol de água 
admitindo-se um rendimento de 80% ? 
a) 8,96 x 10
4
L b) 1,12 x 10
4
L c) 4,48 x 10
4
L d) 2,24 x 10
4
L e) 5,60 x 10
3
L 
 
56) O medicamento ― leite de magnésia ― é uma suspensão de hidróxido de magnésio. Esse 
medicamento é 
- 156 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
Sabe-se que, quando utilizamos 12,2 g desse medicamento neutraliza-se certa quantidade do ácido clorídrico, 
produzindo 16,0 g de cloreto de magnésio. 
O grau de pureza desse medicamento, em termos de hidróxido de magnésio é igual a: 
 
a) 90% b) 80% c) 60% d) 40% e) 30% 
 
 
57) O ácido sulfúrico é obtido industrialmente por um processo que se inicia com a queima do 
enxofre. O 
produto imediato desta queima é o dióxido de enxofre, que em presença de excesso de oxigênio 
(queima completa) origina o trióxido. O ácido é então obtido pela reação deste último com água. 
Dada: NA = 6,02 · 10
23 
entidades/mol 
 
a) Qual o volume ( em L ) de anidrido sulfuroso (nas CNTP) gerado pela queima de 25,0 mol de enxofre 76 % 
puro ? 
b) Qual a massa ( em kg ) de anidrido sulfúrico obtido a partir da queima de 25,0 mol de enxofre co 
um rendimento de reação de 94 % ? 
c) Qual a massa ( em kg ) de ácido sulfúrico obtido a partir da queima de 25,0 mol de enxofre 57 % puro num 
processo cujo rendimento em média é de 82 % ? 
d) Quantos mols de oxigênio são necessários para queimar completamente 48,0 t de enxofre? 
e) Quantas moléculas de trióxido de enxofre precisam reagir completamente com água para que sejam obtidos 
 
 
58) A substância simples fósforo é obtida a partir do mineral fosforita, (fosfato de cálcio). Uma 
mistura de 
fosforita, areia (dióxido de silício) e carvão é aquecida em forno elétrico. O resultado é a redução do fósforo 
(formando a variedade alotrópica fósforo–branco, cuja atomicidade é 4), formando ainda metassilicato de cálcio 
e monóxido de carbono. 
Considerando uma fosforita cujo teor de fosfato de cálcio seja de 80% e dada NA = 6,02 · 10
23 
entidades/mol: 
 
a) Quanto de fósforo branco ( em kg ) serão obtidos a partir de 1,5 t de fosforita? 
 
b) Quantos kg de areia serão necessários para a reação do item a se a areia usada possui um teor de dióxido de 
silício de 95 % ? 
 
c) Qual a quantidade de matéria de carvão consumida no item a se o teor de carbono no carvão 
 
 
59) Na metalurgia do manganês utiliza-se um processo conhecido como aluminotermia. O princípi 
desse 
processo é uma reação de deslocamento metálico, no qual a pirolusita (dióxido de manganês) é aquecido em 
presença de alumínio. Considerando a pirolusita como tendo uma pureza de 90%: 
a) Quantas toneladas de pirolusita são necessários para obter 1,1 t de manganês, num processo com 58 % de 
rendimento? 
b) Quanto de alumínio ( em g ) será necessário para processar 6 mols de dióxido, se o alumínio usado possui 
 
 
60) Um dos processos industriais de obtenção de mercúrio é a ustulaçãodo cinábrio (sulfeto mercúrico). Nesse 
processo o minério é aquecido com oxigênio obtendo-se o metal e tendo como subproduto o anidrido sulfuroso. 
 
a) Qual a massa ( em t) de cinábrio, cujo teor de sulfeto mercúrico é de 52%, é necessária para a obtenção de 
2,50 x 10
4 
mol do metal 
? 
 
b) Qual o volume de gás sulfuroso ( em L, nas CNTP) obtido pela ustulação de 180g de cinábrio 65 % puro 
onde foram empregados 50,0 L de ar ( A composição volumétrica do ar em termos de oxigênio é em torno de 
20 % em volume )? Pensar em excesso!!!!!! 
 
c) Quantos mols de mercúrio são obtidos quando processamos 812g de cinábrio, 80 % puro, 
com um rendimento de 67% ? 
 
d) Quantos litros de ar (nas CNTP) são necessários para obter 67,0 g de metal? Considere a composição citada 
- 157 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação Profissional 
 
no item c. 
- 158 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
RESPOSTAS 
 
 
 
 
1)108g 2) 32,4 g H2O e 79,2 g CO2 
 
3) 90,0% 4) 18,0% 5) 2,0 x 10 
6 
L 
 
6) 3,58 L 7) 27g 8) 78,0% 
 
9) 14,76 g 10) a) 2,40 g Mg b) 15,75 g 
 
11) a) 1,12 L O2 b) 6,40 g 12) 7,7 kg 
 
13) 72,5 % 14) 79% (seca) e 67%(úmida) 
 
15) 1,8 mol 16) 80 % 17) 90,0 % 
 
18) 80 % 19) 43,8 g 
 
20) 2,9 Kg de H3PO4 e 2,9 Kg de Ca(OH)2 
 
21) 595 g 22) b) 4,0 g de S c) 2,8 L de O2 
23) 6,05 L 24) 93 % 25) 92 % 
 
26) 3,0 mol 27) b) 544kg 28) 75% 
 
29) letra a 30) letra c 31) a) 75% b) 40,5g 
 
32) 863L 33) 1,12L 34) a) 8,00g b) 79,0% 
 
35) a) 75,6kg b) 73% 36) 97% 
 
37) a) 9,40L b) 24,7L c) 69,0% 
 
38) a) 50,0% b) 152kg 39) 83,7% 
 
40) a) 12,0g b) 9,3L 
 
41) 6,18g de CO2 e 28,1g de NaOH 
 
42) a) 11t b) 1,2t c) 17kg 
 
 
 
 
 
 
43) 36 t 44) 80,0 % 45) a) 50% b) 8,1g 46) 22,10g 
 
47) alteraria, pois é consumido 1mol de gás carbônico e são gerados 4 mol após a combustão. 
 
48) letra d 49) a amostra possui 80% de sal, estando abaixo da especificação. 
 
50) a) 474g b) 81% c) 15,0m
3
 
 
51) a) 9,62L b) 79,6% 
 
52) 2,05· 10
5
t 53) a) 50t b) 196t 54) a 1,7t b) 12,6t 
 
55) letra a 56) letra b 
 
57) a) 426L b) 1,88kg c) 1,15kg d) 2,25 · 10
6 
mol e) 6,02 · 10
26 
moléculas 
 
58) a) 240kg b) 734 kg c) 2,3 · 10
4 
mol 
 
59) a) 3,0t b) 260g 
 
60) a) 11t b) 10,0L c) 1,87 mol d) 37,5L ar 
- 159 - 
Escola Estadual de Educação Profissional [EEEP] Ensino Médio Integrado à Educação 
Profissional 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Referências bibliográficas 
 
 
 
Usberco 
Usberco 
Usberco 
Carvalho 
Carvalho 
Salvador 
Salvador 
Salvador 
Química 
Química 
Química 
Química Moderna 1 
 
Química Moderna 3 
 
Gallo 
 
. Química : da teoria à realidade 
 
 
Peruzzo, 
cotidian
o 
 
Peruzzo, 
cotidian
o 
Fonseca 
Fonseca 
Feltre 
Nabuco 
inorgânic
a 
 
 
 
 
 
 
 
 
 
 
 
 
Química 
Canto Química: na abordagem 
 
 
Canto Química: na abordagem 
 
 
Química geral 
 
Química Integral 
 
 
 
Barros Química: e 
 
Politi 
 
Brady 
 
Química: curso completo 
 
Humiston Química Geral, 
 
 
Silva, Silva Curso de Química 
 
 
Novais, Química , 
Hino do Estado do Ceará
Poesia de Thomaz Lopes
Música de Alberto Nepomuceno
Terra do sol, do amor, terra da luz!
Soa o clarim que tua glória conta!
Terra, o teu nome a fama aos céus remonta
Em clarão que seduz!
Nome que brilha esplêndido luzeiro
Nos fulvos braços de ouro do cruzeiro!
Mudem-se em flor as pedras dos caminhos!
Chuvas de prata rolem das estrelas...
E despertando, deslumbrada, ao vê-las
Ressoa a voz dos ninhos...
Há de florar nas rosas e nos cravos
Rubros o sangue ardente dos escravos.
Seja teu verbo a voz do coração,
Verbo de paz e amor do Sul ao Norte!
Ruja teu peito em luta contra a morte,
Acordando a amplidão.
Peito que deu alívio a quem sofria
E foi o sol iluminando o dia!
Tua jangada afoita enfune o pano!
Vento feliz conduza a vela ousada!
Que importa que no seu barco seja um nada
Na vastidão do oceano,
Se à proa vão heróis e marinheiros
E vão no peito corações guerreiros?
Se, nós te amamos, em aventuras e mágoas!
Porque esse chão que embebe a água dos rios
Há de florar em meses, nos estios
E bosques, pelas águas!
Selvas e rios, serras e florestas
Brotem no solo em rumorosas festas!
Abra-se ao vento o teu pendão natal
Sobre as revoltas águas dos teus mares!
E desfraldado diga aos céus e aos mares
A vitória imortal!
Que foi de sangue, em guerras leais e francas,
E foi na paz da cor das hóstias brancas!
Hino Nacional
Ouviram do Ipiranga as margens plácidas
De um povo heróico o brado retumbante,
E o sol da liberdade, em raios fúlgidos,
Brilhou no céu da pátria nesse instante.
Se o penhor dessa igualdade
Conseguimos conquistar com braço forte,
Em teu seio, ó liberdade,
Desafia o nosso peito a própria morte!
Ó Pátria amada,
Idolatrada,
Salve! Salve!
Brasil, um sonho intenso, um raio vívido
De amor e de esperança à terra desce,
Se em teu formoso céu, risonho e límpido,
A imagem do Cruzeiro resplandece.
Gigante pela própria natureza,
És belo, és forte, impávido colosso,
E o teu futuro espelha essa grandeza.
Terra adorada,
Entre outras mil,
És tu, Brasil,
Ó Pátria amada!
Dos filhos deste solo és mãe gentil,
Pátria amada,Brasil!
Deitado eternamente em berço esplêndido,
Ao som do mar e à luz do céu profundo,
Fulguras, ó Brasil, florão da América,
Iluminado ao sol do Novo Mundo!
Do que a terra, mais garrida,
Teus risonhos, lindos campos têm mais flores;
"Nossos bosques têm mais vida",
"Nossa vida" no teu seio "mais amores."
Ó Pátria amada,
Idolatrada,
Salve! Salve!
Brasil, de amor eterno seja símbolo
O lábaro que ostentas estrelado,
E diga o verde-louro dessa flâmula
- "Paz no futuro e glória no passado."
Mas, se ergues da justiça a clava forte,
Verás que um filho teu não foge à luta,
Nem teme, quem te adora, a própria morte.
Terra adorada,
Entre outras mil,
És tu, Brasil,
Ó Pátria amada!
Dos filhos deste solo és mãe gentil,
Pátria amada, Brasil!
	capa.pdf
	Página 1

Mais conteúdos dessa disciplina