Prévia do material em texto
MATERIALS SCIENCE AND ENGINEERING An Introduction William D. Callister, Jr. - John Wiley & Sons,Inc., New York,NY,1991. 1. INTRODUÇÃO 1.1 - PERSPECTIVA HISTÓRICA 1.2 - CIÊNCIA E ENGENHARIA DE MATERIAIS A disciplina de ciência dos materiais envolve investigação das correlações que existem entre as estruturas e propriedades de materiais. Em contraste, engenharia de materiais é, com base nestas correlações estrutura-propriedade, o projeto ou a engenharia da estrutura de um material para produzir um predeterminado conjunto de propriedades. Através de todo este texto nós damos atenção às correlações entre propriedades dos materiais e elementos estruturais. "Estrutura" é neste ponto um termo nebuloso que merece alguma explicação. Brevemente, a estrutura de um material usualmente relaciona-se ao arranjo de seus componentes internos. Estrutura subatômica envolve elétrons dentro dos átomos individuais e interações com o seu núcleo. Num nível atômico, estrutura abrange a organização dos átomos ou moléculas entre si. O próximo reino estrutural maior, que contém grandes grupos de átomos que estão normalmente aglomerados entre si, é denominado "microscópico", significando aquilo que é submetido à observação direta usando algum tipo de microscópio. Finalmente, os elementos estruturais que podem ser visto com ôlho nu são denominados "macroscópicos". A noção de "propriedade" merece elaboração. Enquanto usado em serviço, todos os materiais são expostos a estímulos externos que evocam algum tipo de resposta. Por exemplo, uma amostra submetida a forças irá experimentar deformação, ou uma superfície de metal polido refletirá luz. Propriedade é um traço (característica) de um material em termos do tipo e magnitude de resposta a um específico estímulo imposto. Geralmente, definições de propriedades são feitas independente da forma e tamanho do material. Virtualmente todas as importantes propriedades de materiais sólidos podem ser grupadas em 6 diferentes categorias: (a) mecânica; (b) elétrica; (c) térmica; (d) magnética; (e) ótica, e (f) deteriorativa. Para cada uma existe um tipo característico de estímulo capaz de provocar diferentes respostas. Propriedades mecânicas relacionam deformação a uma carga ou força aplicada; exemplos incluem módulo elástico e resistência mecânica. Para propriedades elétricas, tais como condutividade elétrica e constante dielétrica, o estímulo é um campo elétrico. O comportamento térmico de sólidos pode ser representado em termos de capacidade calorífica e condutividade térmica. Propriedades magnéticas demonstram a resposta de um material à aplicação de um campo magnético. Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Para propriedades óticas, o estímulo é eletromagnético ou radiação de luz, índice de refração e refletividade são representativas propriedades óticas. Finalmente, características deteriorativas indicam a reatividade química de materiais. Os capítulos que se seguem discutem propriedades que caem dentro de cada uma destas 6 classificações. Por que nós estudamos materiais? Muitos dos cientistas aplicados ou engenheiros, sejam eles mecânicos, civis, químicos, ou elétricos, estarão uma vez ou outra expostos a um problema de projeto envolvendo materiais. Exemplos poderíam incluir uma engrenagem de transmissão, a superestrutura para um prédio, um componente para refinaria de óleo, ou um "chip" de microprocessador. Naturalmente, cientistas de materiais e engenheiros são especialistas que estão totalmente envolvidos na investigação e projeto de materiais. Muitas vezes, um problema de materiais é um de seleção do material certo dentre muitos milhares que são disponíveis. Existem vários critérios nos quais a decisão final é normalmente baseada. Antes de mais nada, as condições em serviço devem ser caracterizadas, de vez que estas ditarão as propriedades requeridas do material. Somente em ocasiões raras um material possuirá uma combinação máxima ou ideal de propriedades. Assim pode ser necessário perder uma característica para ter uma outra. O exemplo clássico envolve resistência mecânica e dutilidade; normalmente, um material tendo uma alta resistênca mecânica terá apenas uma limitada dutilidade. Em tais casos, um compromisso razoável entre duas ou mais propriedades pode ser necessária. Uma segunda consideração de seleção é qualquer deterioração de propriedades de materiais que pode ocorrer durante operação em serviço. Por exemplo, significativas reduções em resistência mecânica podem resultar da exposição a temperaturas elevadas ou ambientes corrosivos. Finalmente, provavelmente a consideração soprepujante é aquela da economia: O que o produto acabado custará? Pode-se encontrar um material que tenha um conjunto ideal de propriedades mas seja proibitivamente caro. Aqui de novo, algum compromisso é inevitável. O custo de uma peça acabada inclui também qualquer despesa incorrida durante a fabricação para produzir a desejada forma. Quanto maior for a familiaridade de um engenheiro ou cientista com as várias características e correlações estrutura-propriedade, bem como técnicas de processamento de materiais, tanto mais proficiente e confiável ele ou ela será para fazer escolhas judiciosas de materiais baseadas nestes critérios. 1.3 - CLASSIFICAÇÃODE MATERIAIS Materiais sólidos têm sido convenientemente agrupados em 3 classificações básicas: (a) metais; (b) cerâmicas, e (c) polímeros Este esquema é baseado principalmente na constituição química e estrutura atômica, e muitos materiais caem num distinto grupamento ou num outro, embora existam alguns intermediários.Em adição, existem 2 outros grupos de importantes materiais de engenharia: (d) compósitos, e (e) semicondutores. Compósitos consistem de combinações de 2 ou mais diferentes materiais, enquanto que semicondutores são utilizados por causa de suas desusuais características elétricas. Uma breve Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight explanação dos tipos de materiais e características representativas é oferecida no texto. Capítulos subsequentes exploram em algum detalhe os vários elementos estruturais e propriedades para cada um. (a) METAIS Materiais metálicos são normalmente combinações de elementos metálicos. Eles têm grande número de elétrons não localizados, isto é, estes elétrons não estão amarrados a particulares átomos. Muitas propriedades de metais são diretamente atribuíveis a estes elétrons.Metais são extremamente bons condutores de eletricidade e de calor e não são transparentes à luz visível: a superfície de um metal polido tem aparência lustrosa. Além disso, metais são bastante fortes, ainda deformáveis, que respondem pelo seu extensivo uso em aplicações estruturais. (b) CERÂMICAS Cerâmicas são compostos entre elementos metálicos e não-metálicos: eles são muito frequentemente óxidos, nitretos e carbetos. A larga faixa de mateiais que caem dentro desta classificação inclui cerâmicas que são compostas de minerais de argilas, cimento e vidro. Estes materiais são tipicamente isolantes à passagemde eletricidade e de calor, e sãomais resistentes a altas temperaturas e ambientes rudes do que metais e polímeros. Com relação ao comportamento mecânico, cerâmicas são duras mas muito frágeis. (c) POLÍMEROS Polímeros incluem os materiais familiares plástico e borracha. Muitos deles são compostos orgânicos que são quimicamente baseados em carbono, hidrogênio, e outros elementos não metálicos; além disto, êles têm muito grandes estruturas moleculares. Estes materiais têm tipicamente baixas densidades e podem ser extremamente flexíveis. (d) COMPÓSITOS Têm sido engenheirados um número de materiais compósitosque consitem mais doque um tipo de material. Fiberglass é um exemplo familiar, no qual fibras de vidro são embutidas dentro de um material polimérico. Um compósito é projetado para exibir uma combinação das melhores características de cada um dos materiais componentes. "Fiberglass" adquire resistência mecânica das fibras de vidro e flexibilidade do polímero. Muitos dos recentes desenvolvimentos de material têm envolvido materiaiscompósitos. (e) SEMICONDUTORES Semicondutores têm propriedades elétricas que são intermediárias entre os condutores elétricos e os isolantes. Além disso, as características elétricas destes materiais são extremamente sensíveis à presença de diminutas concentrações de átomos impurezas, cujas concentrações podem ser controladas ao longo de muito pequenas regiões espaciais. Os semicondutores tornou possível o advento do circuito integrado que revolucionou totalmente a eletrônica e as indústrias de Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Note Os compostos ou moléculas orgânicas são as substâncias químicas que contêm na sua estrutura carbono e hidrogênio, e, muitas vezes, também oxigênio, nitrogênio, enxofre, fósforo, boro, halogênios e outros. As moléculas orgânicas podem ser: Naturais: São as sintetizadas pelos seres vivos, denominadas biomoléculas, que são estudadas pela bioquímica. Artificiais: São substâncias orgânicas que não existem na natureza e têm sido fabricadas pelo homem, como os plásticos. A maioria dos compostos orgânicos puros são produzidos artificialmente. A etimologia da palavra "orgânico" significa que procede de "organos", relacionada com a vida, em oposição ao inorgânico que teria o significado de tudo que carece de vida. Para os químicos antigos, as substâncias orgânicas eram provenientes de fontes animais ou vegetais, e as substâncias inorgânicas seriam aquelas de procedência mineral. Agostinho Highlight computadores (sem mencionar as nossas vidas) ao longo das 2 décadas passadas. 1.4 - NECESSIDADES DE MATERIAIS MODERNOS A despeito do tremendo progresso que tem sido feito no entendimento e desenvolvimento de materiais dentro dos poucos anos passados, remanescem desafios tecnológicos requerindo materiais mesmo mais sofisticados e especializados. Algum comentário é apropriado nesta consideração para completar a perspectiva de materiais. Energia é um interesse corrente. Existe uma reconhecida necessidade para encontrar novas e econômicas fontes de energia e, em adição, usar as fontes atuais mais eficientemente. Materiais desempenharão sem dúvida um papel significativo nestes desenvolvimentos. Por exemplo, a conversão direta de energia solar em energia elétrica tem sido demonstrada. Células solares empregam materiais bastante complexos e caros. Para assegurar uma tecnologia viável, materiais que são altamente eficientes neste processo de conversão ainda menos custosos devem ser desenvolvidos. Energia nuclear mantém alguma promessa, mas as soluções para muitos problemas que remanecem irá necessariamente envolver materiais, desde combustíveis até estruturas de recipientes para instalações para guarda de resíduos radioativos. Além disto, qualidade ambiental depende da nossa capacidade para controlar a poluição do ar e da água. Técnicas de controle da poluição empregam vários materiais. Em adição, os métodos de processamento e refino de materiais têm que ser melhorados de maneira que eles produzam menor degradação ambiental, isto é, menor poluição e menos despojo da paisagem a partir da mineração de matérias primas. Significativas quantidades de energia são envolvidas no transporte. Redução de peso dos veículos transportadores (automóveis, aeronaves, trens, etc.), bem como o aumento das temperaturas de operação dos motores, melhorarão eficiência de combustível. Novos materiais estruturais de alta resistência e baixa densidade remanescem para serem desenvolvidos, bem como materiais que têm maiores capacidades de temperatura, para uso em componentes de motores. Muitos materiais que nós usamos são derivados de recursos que não são renováveis, isto é, não capazes de serem regenerados. Estes incluem polímeros, para os quais a matéria prima principal é o óleo, e alguns metais. Estes recursos não renováveis estão se tornando gradualmente esgotados, o que implica na necessidade descobrir reservas adicionais ou o desenvolvimento de novos materiais tendo propriedades comparáveis e impacto ambiental menos adverso. Esta última alternativa é um grande desafio para os cientistas de materiais e engenheiros de materiais. MATERIAIS SCIENCE AND ENGINEERING: An Introduction - William D. Callister, Jr., Second Edition, John Wiley & Sons, Inc., New York,NY,1991. 2. ESTRUTURA ATÔMICA E LIGAÇÃO INTERATÔMICA 2.1 - INTRODUÇÃO Algumas das importantes propriedades de materiais sólidos depende dos arranjos geométricos dos átomos, e também das interações que existem entre os átomos ou moléculas constituintes. Este Capítulo, por meio de preparação para subsequentes discussões, considera vários conceitos fundamentais e importantes, isto é: (a) estrutura, (b) configurações eletrônicas em átomos e na tabela periódica, e (c) os vários tipos de ligações interatômicas primárias e secundárias que mantém juntos os átomos que compõem um sólido. Estes tópicos são revistos brevemente, sob a suposiçào de que um pouco do material é familiar ao leitor. ESTRUTURA ATÔMICA 2.2 - CONCEITOS FUNDAMENTAIS Cada átomo consiste de um núcleo muito pequeno composto de prótons e neutrons, que são circundados por elétrons em movimento. Tanto elétrons quanto prótons são eletricamente carregados, a magnitude da carga sendo 1,60 x 10-19C, que é negativa em sinal para elétrons e positiva para prótons; neutrons são eletricamente neutros. As massas destas partículas subatômicas são infinitesimalmente pequenas; prótons e neutrons têm aproximadamente a mesma massa, 1,67 x 10-27kg, que é significativamente maior do que aquela de um elétron, 9,11 x 10-31 kg. Cada elemento químico é caracterizado pelo número de prótons no núcleo, ou o número atômico (Z). Para um átomo eletricamente neutro ou completo, o número atômico também é igual ao número de elétrons. Este número atômico varia em unidades inteiras desde 1 para o hidrogênio até 94 para o plutônio, o de número atômico mais alto dentre os elementos que ocorrem na natureza (naturalmente). A massa atômica (A) de um átomo específico pode ser expressa como a soma das massas dos prótons e dos neutrons. Embora onúmero de prótons é o mesmo para todos os átomos de um dado elemento, o número de neutrons (N) pode ser variável. Assim, átomos de alguns elementos têm 2 ou mais diferentes massas atômicas, sendo eles denominados isótopos. O peso atômico corresponde à média pesada das massas atômicas de isótopos que ocorrem naturalmente. A unidade de massa atômica (u.m.a., ou amu em inglês) pode ser usada para cálculos de peso atômico. Foi estabelecida uma escala na qual 1 u.m.a. é definida como 1/12 da massa atômica do isótopo mais comum do carbono, carbono 12 (isto é, 12C) (A = 12,00000). Dentro deste esquema, as massas de prótons e neutrons são ligeiramente maiores do que a unidade, e A – Z + N (2.1) O peso atômico de um elementoou peso molecular de um composto podeser especificado com base em u.m.a. por átomo (ou molécula) ou em massa por mol de material. Num mol de uma substância existem 6,023 x 1023 (número de Avogadro) átomos ou moléculas. Estes dois esquemas de peso atômico estão relacionados entre si através da seguinte equação: 1 u.m.a./átomo (ou molécula) = 1 g/mol Por exemplo, o peso atômico do ferro é 55,85 u.m.a./átomo, ou55,85g/mol. Algumas vezes o uso de u.m.a. por átomo ou molécula é conveniente; em outras ocasiões g (ou kg)/mol é preferido; este últimoé usado neste livro. 2.3 - ELÉTRONS EM ÁTOMOS Modelo Atômico de Bohr Durante a última parte do século dezenove verificou-se que muitos fenômenos envolvendo elétrons em sólidos poderíam ser explicados em termos de mecânica clássica. O que aconteceu foi o estabelecimento de um conjunto de princípios e leis que governam sistemas de entidades atômicas e subatômicas, que ficaram conhecidos como mecânica quântica. Um entendimento do comportamento de elétrons em átomos e sólidos cristalinos necessariamente envolve a discussão de conceitos de mecânica quântica. Entretanto, uma exploração detalhada destes princípios está além do escopo deste livro, e apenas um tratamento muito superficial e simplificado é dado. Um dos primeiros frutos da mecânica quântica foi o simplificado modelo atômico de Bohr, no qual elétrons são supostos revolver ao redor do núcleo do átomo em orbitais discretos, e a posição de qualquer particular elétron é mais ou menos bem definida em termos de seu orbital. Este modelo do átomo está representado na Figura 2.1. Figura 2.1 - Representação esquemática do átomo de Bohr. Um outro importante princípio de mecânica quântica estipula que as energias de elétrons são quantizadas; isto é, elétrons são permitidos ter apenas valores específicos de energia. Um elétron pode mudar de energia, mas ao fazer isto efetua um salto quântico quer a um outro permitido nível de energia mais alto (com absorção de energia) ou a um nível de energia mais baixo (com emissão de energia). Às vezes é conveniente pensar que estes níveis permitidos de energias de elétrons como estando associado com níveis de energia ou estados de energia. Estes estados não variam continuamente com energia, isto é, estados adjacentes são separados por energias finitas. Por exemplo, permitidos estados para o átomo de hidrogênio de Bohr estão representados na Figura 2.2a. Estas energias são tomadas como sendo negativas, enquanto que a referência zero é o elétron não ligado ou o elétron livre. Naturalmente, o elétron livre associado com o átomo de hidrogênio preencherá apenas um destes estados. Figura 2.2 - (a) Os 3 primeiros estados de energia de elétron para o átomo de hidrogênio de Bohr. (b) Estados de energia de elétron para as 3 primeiras cascas do átomo de hidrogênio mecânico- ondulatório. (Adaptado a partir de W.G. Moffatt, G.W.Pearsall,and J. Wullf, The Structure and Properties of Materials, Vol.I, Structure, p. 10, Copyright , 1964 por John Wiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons, Inc.). Agostinho Highlight Agostinho Highlight Agostinho Highlight Assim o modelo de Bohr representa uma primeira tentativa para descrever elétronsem átomos, em termos tanto da posição (orbitais dos elétrons) quanto da energia (níveis de energia quantizados). Modelo Atômico Mecânico-Ondulatório Verificou-se eventualmente que o modelo atômico de Bohr tinha algumas limitações significativas por causa de sua incapacidade de explicar vários fenômenos envolvendo elétrons. A resolução destas deficiências foi encontrada com o desenvolvimento do que se tornou conhecido como a mecânica ondulatória (uma subdivisão da mecânica quântica), e um mais adequado modelo do átomo. No modelo mecânico-ondulatório, considera-se que um elétron exibe características tanto de onda quanto de partícula, e o movimento de um elétron é descrito por matemática que governa o movimento de onda. Uma importante consequência da mecânica de onda é que elétrons não são mais tratados como partículas se movendo em orbitais discretos; em vez disto, considera-se posição como decorrente da probabilidade deum elétron estar em várias localidades ao redor do núcleo. Em outras palavras, posição é descrita por uma distribuição de probabilidade ou nuvem de elétron. A Figura 2.3 compara entre si os modelos de Bohr e de mecânica-ondulatória para o átomo de hidrogênio. Ambos estes modelos são usados ao longo de todo o curso neste livro; a escolha depende de qual dos 2 modelos torna a explicação mais simples. Figura 2.3 - Comparação dos modelos atômicos de (a) Bohr e (b) mecânico-ondulatório em termos de distribuição de elétron. (Adaptado de Z.D. Jastrzebski, The Nature and Properties of Engineering Materials , 3a. Edição, p.4 , Copyright 1987 por JohnWiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons,Inc.). Números Quânticos Usando a mecânica ondulatória, todo elétron num átomo é caracterizado por4 parâmetro, denominados números quânticos. O tamanho, forma e orientação espacial da densidade de probabilidade de um elétron são especificados por 3 números quânticos. Além disto, os níveis de energia de Bohr se separa em subcamadas de elétrons, e números quânticos ditam o número de estados dentro de cada subcamada. Camadas são especificiadas por um número quântico principal n, que pode tomar valores inteiros começando com a unidade; algumas vezes estas camadas são designadas pelas letras K, L, M, N, O, e assim por diante, que correspondem, respectivamente, a n = 1, 2, 3, 4, 5, ....., como indicado na Tabela 2.1. Dever-se-ía também notar que este número quântico, e somente êle, está também associado com o modelo de Bohr. Tabela 2.1 - O número de Estados de Elétrons Disponíveis em Algumas das Camadas e Subcamadas de Elétrons. Agostinho Typewriter s Agostinho Typewriter O segundo número quântico, l, significa subcamada, que é denotada por uma letra minúscula - um s, p, d, ou f. Em adição , o número de camadas para os vários valores de n estão representados na Tabela 2.1. O número de estados de energia para cada subcamada é determinado pelo número quântico, ml . Para uma subcamada s existe um único estado de energia, enquanto que para subcamadas p, d, e f, existem 3, 5 e 7 estados, respectivamente (Tabela 2.1). Na ausência de um campo magnético externo, os estados dentro de cada subcamada são idênticos. Entretanto, quando um campo magnético é aplicado estes estados de subcamadas se dividem, cada estado assumindo uma energia ligeiramente diferente. Associado a cada elétron se encontra um momento de spin, que deve estar orientado ou para cima ou para baixo. Relacionado a este momento de spin encontra-se o quarto número quântico, ms , para o qual são possíveis 2 valores ( + 1/2 e -1/2), um para cada uma das orientações de spin. Assim o modelo de Bohr foi refinado mais uma vez pela mecânica ondulatória, na qual a introdução de 3 novos números quânticos dá origem a subcamadas eletrônicas dentro de cada camada. Uma comparação entre estes dois modelos com base nisto é ilustrada nas Figuras 2.2a e 2.2b, para o átomo de hidrogênio. Um diagrama completo de nível de energia para as várias camadas e subcamadas usando o modelo de mecânica ondulatória é mostrado na Figura 2.4. Vale a pena notar várias características do diagrama. Primeiro, quanto menor for o número quântico principal, tanto menor o nível de energia; por exemplo, a energia de um estado 1s é menor do que aquela de um estado 2s, que por sua vez é menor do que aquela de um estado 3s. Segundo, dentro de cada camada a energia de uma subcamada cresce com o valor do número quântico l. Por exemplo, a energia de um estado 3d é maior do que aquela de um estado 3p, que é maior do que aquela de um estado 3s. Finalmente, pode haver superposição em energia de um estado numa camada com estados numa camada adjacente, que é especialmente verdadeiro de estados d e f; por exemplo, a energia de um estado 3d é maior do que aquela para um estado 4s. Figura 2.4 - Representação esquemática das energias relativas dos elétrons para as várias camadas e subcamadas (fonte: K.M.Ralls, T.H.Courtney, e J. Wulff, Introduction to Materials Science and Engineering, p. 22 Copyright 1976 by John Wiley & Sons,New York, Reprinted by permission of John Wiley & Sons). Configurações Eletrônicas A discussão precedentes tratou principalmente dos estados eletrônicos - valoresde energia que são permitidos aos elétrons. Para determinar a maneira na qual estes estados são preenchidos com elétrons, nós usamos o princípio de exclusão de Pauli, um outro conceito mecânico-quântico. Este princípio estipula que cada estado eletrônico pode manter não mais do que 2 elétrons, que devem ter spins opostos. Assim, as subcamadas s, p, d e f podem acomodar cada uma, respectivamente, um total de 2, 6, 10 e 14 elétrons; Tabela 2.1 sumaria um número máximo de elétrons que podem ocupar cada uma das primeiras 4 camadas. Tabela 2.1 - O número de estados eletrônicos disponíveis em algumas das Camadas e Subcamadas Eletrônicas. Naturalmente, nem todos os estados possíveis num átomo são preenchidos com elétrons. Para muitos átomos, os elétrons preenchem os mais baixos possíveis estados de energia nas camadas e subcamadas eletrônicas, 2 elétrons (tendo spins opostos) por estado. A estrutura de energia para um átomo de sódio é representada esquematicamente na Figura 2.5. Quando todos os elétrons ocupam as energias mais baixas possíveis de acordo com as precedentes restrições, diz-se que um átomo está no estado do chão. Entretanto, transições de elétrons para estados de energia superiores são possíveis, como discutido nos Capítulos 19 e 22. A configuração eletrônica ou estrutura de um átomo representa a maneira na qual estes estados são ocupados. Na notação convencional o número de elétrons em cada subcamada é indicado por um superscrito após a designação camada-subcamada. Por exemplo, a configurações eletrônicas para hidrogênio, hélio e sódio são, respectivamente, 1s1, 1s2, e 1s22s22p63s1. Configurações eletrônicas para alguns dos elementos mais comuns estão listadas na Tabela 2.2; uma tabulação para todos os elementos está contido no Apêndice B. Figura 2.5 - Representação esquemática dos estados de energia preenchidos para um átomo de sódio. Tabela 2.2 - Uma Listagem das Configurações Eletrônicas para Alguns dos Elementos Comuns. Neste ponto, comentários referentes a estas configurações eletrônicas são necessárias. Primeira, os elétrons de valência são aqueles que ocupam a camada preenchida mais externa. Estes elétrons são extremamente importantes; como será visto, eles participam na ligação entre os átomos para formar agregados atômicos e moleculares. Além disto, muitas das propriedades físicas e químicas de sólidos estão baseadas nestes elétronsde valência. Em adição, alguns átomos têm o que é denominado "configurações eletrônicas estáveis"; isto é, os estados dentro da camada eletrônica mais externa ou de valência estão completamente preenchidos. Normalmente isto corresponde à ocupação justamente dos estados s e p para a camada mais externa por um total de 8 elétrons, como num neônio, argônio e criptônio; uma exceção é o hélio, que contém apenas 2 elétrons 1s. Estes elementos (Ne, Ar, Kr, e He) são gases inertes ou nobres, que são virtualmente não reativos quimicamente. Alguns átomos dos elementos que têm camadas de valência não preenchidas assumem configurações eletrônicas estáveis por ganho ou perda de elétrons para formar íons carregados, ou pelo compartilhamento de elétrons com outros átomos. Esta é a base para algumas reações químicas, e também para ligação atômica em sólidos, como explicado na Seção 2.6. 2.4 - A TABELA PERIÓDICA Todos os elementosforam classificados de acordo com a configuração eletrônica na tabela periódica (Figura 2.6). Aqui, os elementos estão situados, com crescente número atômico, em 7 filas horizontais denominadas períodos. O arranjo é tal que todos os elementos que são dispostos Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight numa dada coluna ou grupo têm similares estruturas de elétrons de valência, do mesmo modo que similares propriedades químicas e físicas. Estas propriedades mudam gradualmente e sistematicamente, movendo-se horizontalmente através cada período. Figura 2.6 - A tabela periódica dos elementos. Os números entre parêntesis são pesos atômicos dos isótopos mais estáveis ou comuns. Os elementos posicionados no Grupo 0, o grupo da extrema direita, são gases inertes, que têm camadas eletrônicas preenchidas e configurações eletrônicas estáveis. Os elementos dos Grupos VIIA e VIA têm 1 e 2 elétrons a menos , respectivamente, para terem estruturas estáveis. Os elementos do Grupo VIIA (F, Cl, Br, I e At) são às vezes denominados halogêneos. Os metais alcalinos e alcalino-terrosos (Li, Na, K, Be, Mg, Ca, etc.) são denominados como do Grupo IA e IIA, tendo, respectivamente, 1 e 2 elétrons a mais do que o necessário para estruturas estáveis. Os elementos dos 3 períodos longos, Grupos IIIB até IIB, são denominados metais de transição, que possuem estados eletrônicos partialmente preenchidos e em alguns casos 1 ou 2 elétrons na próxima camada de energia mais alta. Grupos IIIA, IVA e VA (B, Si, Ge, As, etc.) exibem características que são intermediárias entre as dos metais e as dos não-metais em virtude de suas estruturas de elétron de valência. Como pode ser notado a partir da tabela periódica, muitos elementos realmente se incluem na classificação de metal. Estes são algumas vezes denominados elementos eletropositivos, indicando que êles são capazes de ceder seus poucos elétrons de valência para se tornarem íons positivamente carregados. Além disso, os elementos situados à direita da tabela são eletronegativos; isto é, eles prontamente aceitam elétrons para formar íons negativamente carregados, ou às vezes êles compartilham elétrons com outros átomos. A Figura 2.7 exibe os valores de eletronegatividade que foram atribuídos aos vários elementos arranjados na tabela periódica. Como uma regra geral, a eletronegatividade aumenta ao se mover da esquerda para a direita e de base para o topo da tabela periódica. Figura 2.7 - Os valores de eletronegatividade para os elementos. (Re-impresso a partir de Linus Pauling, The Nature of Chemical Bond, 3a. edição. Copyright 1939 e 1940, Copyright da 3a. Edição, 1960, por Cornell University. Usado por permissão do publicante, Cornell University Press). LIGAÇÃO ATÔMICA EM SÓLIDOS 2.5 - FORÇAS DE LIGAÇÃO E ENERGIAS DE LIGAÇÃO Um entendimento de muitas propriedades físicas de materiais é previsto através do conhecimento das forças interatômicas que ligam os átomos entre si. Talvez os princípios de ligação atômica sejam melhor ilustrados pela consideração da interação entre dois átomos isolados à medida que êles são colocados em estreita proximidade um do outro a partir de uma distância infinita de separação entre Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight Agostinho Highlight os mesmos. Em grandes distâncias as interações são desprezíveis, mas à medida que os átomos se aproximam mutuamente, cada átomo exerce força sobre o outro. Estas forças são de 2 tipos, atrativa e repulsiva, e a magnitude de cada é uma função da distância interatômica de separação. A origem de uma força atrativa FA depende do particular tipo de ligação que existe entre os 2 átomos. Sua magnitude varia com a distância, como representada esquematicamente na Figura 2.8(a). Ultimamente, as camadas eletrônicas externas dos 2 átomos começam a se superpor e uma força repulsiva forte FR entra em ação. A força líquida FN entre os 2 átomos é justo a soma das componentes tanto atrativa quanto repulsiva; isto é, FN = FA + FR (2.2) que é também uma função da separação interatômica como também graficada na Figura 2.8(a). Figura 2.8 (a) A dependência das forças repulsiva, atrativa e líquida como uma função de separação interatômica para 2 átomos isolados. (b) A dependência das energias potenciais repulsiva, atrativa e líquida como uma função de separação interatômica para 2 átomos isolados. Quando FA e FR se compensam, ou se tornam iguais, não existe nenhuma força líquida; isto é,FA + FR = 0 (2.3) Então existe um estado de equilíbrio. Os centros dos 2 átomos permanecerão separados por um espaçamento de equilíbrio ro, como indicado na Figura 2.8(a). Para muitos átomos ro é aproximadamente 0,3 nm (3Å). Uma vez nesta posição, os 2 átomos reagirão com ação oposta a qualquer tentativa de separá-los (reação com uma força atrativa) ou de aproximá-los (reação com uma força repulsiva). Às vezes é mais conveniente trabalhar com as energias potenciais entre 2 átomos em vez de forças. Matematicamente, a energia (E) e a força (F) estão relacionadas como E = I F dr (2.4) Ou, para sistemas atômicos, EN = I4r FN dr (2.5) = I4r FA dr + I4rFR dr (2.6) = EA + ER (2.7) onde EN, EA e ER são ,respectivamente, as energias líquida, atrativa e repulsiva para 2 átomos isolados e adjacentes. Figurta 2.8(b) grafica as energias potenciais atrativa, repulsiva e líquida como uma função da separação interatômica para 2 átomos. A curva líquida, que é de novo a soma das duas outras, tem uma calha (ou poço) de energia potencial ao redor do seu mínimo. Aqui, o mesmo espaçamento de equilíbrio, ro , corresponde à distância de separação no ponto de mínimo da curva de energia Agostinho Highlight Agostinho Highlight potencial. A energia de ligação para estes 2 átomos, Eo , corresponde à energia neste ponto de mínimo (também mostrado na Figura 2.8(b)); ela representa a energia que seria requerida para separar estes 2 átomos até uma distância infinita de separação. Embora o tratamento precedente tenha tratado com uma situação ideal envolvendo apenas 2 átomos, existe uma condição similar ainda mais complexa para materiais sólidos porque interações de força e de energia entre muitos átomos devem ser consideradas. Não obstante, uma energia de ligação, análoga a Eo acima, pode ser associada a cada átomo. A magnitude desta energia de ligação e a forma da curva de energia versus separação interaômica varia de material a material, ambas as variáveis dependendo do tipo de ligação atômica. Substâncias sólidas são formadas para grandes energias de ligação, enquanto que para pequenas energias o estado gasos o é favorecido; líquidos prevalecem quando as energias são de magnitude intermediária. Em geral, para materiais sólidos, temperatura de fusão bem como propriedades coesivas refletem a magnitude da energia de ligação. Três diferentes tipos de ligação primária ou química são encontrados em sólidos - iônica, covalente e metálica. Para cada tipo, a ligação necessariamente envolve os elétrons de valência; além disso, a natureza da ligação depende das estruturas de separação dos átomos constituintes. Em geral, cada um destes tipos de ligação surge a partir da tendência dos átomos de assumir estruturas eletrônicas estáveis, tais como aquelas dos gases inertes, pelo preenchimento completo da camada eletrônica mais externa. Energias e forças físicas ou secundárias são também encontradas em muitos materiais sólidos; elas são mais fracas do que as primárias, mas não obstante influencia as propriedades físicas de alguns materiais. As seções que seguem explicam os vários tipos de ligações interatômicas primárias e secundárias. 2.6 - LIGAÇÕES INTERATÔMICAS PRIMÁRIAS Ligação Iônica Talvez ligação iônica seja a mais fácil para descrever e visualizar. Ela é sempre encontra em compostos que são constituídos de elementos tanto metálicos quanto não-metálicos, elementos que estão situados nas extremidades horizontais da tabela periódica. Átomos de um elemento metálico facilmente cedem seus elétrons de valência aos átomos não metálicos. No processo todos os átomos adquirem configurações estáveis ou de gás inerte e, em adição, uma carga elétrica; isto é, eles se tornam íons. Cloreto de sódio (NaCl) é um material iônico clássico. Um átomo de sódio pode assumir o elétron de neon (e uma carga positiva simples) por uma transferência de um seu elétron de valência 3s a um átomo de cloro. Após uma tal transferência, o íon cloreto tem uma carga negativa líquida e uma configuração eletrônica idêntica daquela do argônio. In cloreto de sódio, todo sódio e cloro existem como íons. Este tipo de ligação é ilustrado esquematicamente na Figura 2.9. Figura 2.9 - Representação esquemática da ligação iônica em cloreto de sódio (NaCl). As forças de ligação atrativa são culômbicas; isto é, íons positivos e negativos, em virtude de suas cargas elétricas, se atraem mutuamente. Para 2 íons isolados, a energia atrativa EA é uma função da distância interatômica de acordo a relação* EA = - A/r (2.8) * A constante A na Equação 2.8 é igual a (1/4πεo)(Z1 e)(Z2 e) onde εo é a permissividade de um vácuo (8,85 x 10-12F/m), Z1 e Z2 são as valências dos 2 típosde íons, e e é a carga eletrônica (1,6 x 10-19C). Uma equação análoga para a energia repulsiva é ER = B/rn (2.9) Nestas expressões, A, B e n são constantes cujos valores dependem do particular sistema iônico. O valor de n é aproximadamente 8. Ligação iônica é denominada não-direcional, isto é, a magnitude da ligação é igual em todas as direções ao redor de um íon. Segue-se que para materiais iônicos serem estáveis, todos os íons positivos devem ter como seus vizinhos mais próximos íons negativamente carregados num esquema tridimensional, e vice-versa. A ligação predominante em materiais cerâmicos é iônica. Alguns dos arranjos iônicos para estes materiais são discutidos no Capítulo 13. Energiasde ligação, que geralmente variam na faixa de 600 a 1500 kJ/mol (3 e 8eV/átomo), são relativamente grandes, como refletidas em altas temperaturas de fusão**. Tabela 2.3 contém energias de ligação e pontos de fusão para vários materiais iônicos. Materiais iônicos são caracteristicamente duros e frágeis e, além disso, isolantes eletricamente e termicamente. Como discutido em capítulos subsequentes, estas propriedades são uma consequência direta das configurações eletrônicas e/ou da natureza da ligação iônica. ** Algumas vezes energias de ligação são expressas por átomo ou por íon. Sob estas circunstâncias o elétron-volt (eV) é uma unidade de energia convenientemente pequena. Ela é, por definição, a energia conferida a um elétron à medida que ele cai através de um potencial elétrico de 1 volt. O equivalente em joule do elétron-volt é o seguinte: 1,602 x 10-19J = 1 eV. Tabela 2.3 - Energias de Ligação e Temperaturas de Fusão de Várias Substâncias. Ligação Covalente Na ligação covalente configurações eletrônicas estáveis são assumidas pelo compartilhamento de elétrons entre átomos adjacentes. Dois átomos que são covalentemente ligados contribuirão com pelo menos 1 elétron para a ligação e elétrons compartilhados podem ser considerados como pertencentes a ambos os átomos. Ligação covalente é esquematicamente ilustrada na Figura 2.10 para uma molécula de metano (CH4). O átomo de carbono tem 4 elétrons de valência, enquanto que cada um dos 4 átomos de hidrogênio possui um único elétron de valência. Cada átomo de hidrogênio pode adquirir uma configuração eletrônbica do hélio (2 elétrons de valência 1s) quando os átomos de carbono compartilham com ele 1 elétron. O carbono agora tem 4 elétrons compartilhados adicionais, 1 de cada átomo de hidrogênio, para um total de 8 elétrons de valência e estrutura eletrônica do neon. A ligação covalente é direcional; isto é, é entre átomos específicos e pode existir apenas na direção entre um átomo e um outro que participa no compartilhamento eletrônico. Figura 2.10 - Representação esquemática da ligação covalente numa molécula de metano (CH4). Muitas moléculas elementares não-metálicas (H2, Cl2, F2, etc..) bem como moléculas contendo átomos dissimilares, tais como CH4, H2O, HNO3 e HF, são covalentemente ligadas. Além disso, este tipo de ligação é encontrado em sólidos elementares tais como diamante (carbono), silício e germânio e outros compostos sólidos constituídos de elementos queestão localizados no lado direito da tabela periódica, tais como arsenieto de gálio (GaAs), antimonieto de índio (InSb), e carbeto de silício (SiC). O número de ligações covalentes que são possíveis para um particular átomo é determinado pelo número de elétrons de valência. Para N' elétrons de valência, um átomo pode se ligar covalentemente com no máximo 8 - N' outros átomos. Por exemplo, N' = 7 para o cloro, e 8 - N' = 1, o que significa que 1 átomo de Cl pode ser ligar apenas com 1 outro átomo, como em Cl2. Similarmente, para o carbono, N' = 4, e cada átomo de carbono tem 8 - 4, ou 4, elétrons para compartilhar. Diamante é simplesmente a estrutura de interconexão tridimensional onde cada átomo de carbono se liga covalentemente com outros 4 átomos de carbono. Este arranjo está representado na figura 13.5. Ligações covalentes pode ser muito fortes, como no diamante, que é muito duro e tem uma muito alta temperatura de fusão, > 3550oC (6400oF), ou elas podem ser muito fracas, como no bismuto, que se funde a 270oC (518oF). Energias de ligação e temperaturas de fusão para uns poucos materiais covalentemente ligados estão apresentados na Tabela 2.3. Materiais poliméricos tipificam esta ligação, a estrutura molecular básica sendo um longa cadeia de átomos de carbono que estão covalentemente ligados entre si com 2 de suas 4 ligações disponíveis por átomo. As 2 remanescentes ligações normalmente são compartilhadas com outros átomos, que estão também covalentemente ligados. Estruturas moleculares poliméricas são discutidas em detalhe no Capítulo 15. Figura 13.5 - Uma célula unitária para a estrutura cristalina cúbica do diamante. É possível ter ligações interatômicas que são parcialmente iônicas e parcialmente covalente, e, de fato, muito poucos compostos exibem ligação iônica pura ou ligação covalente pura. Para um composto, o grau de cada tipo de ligação depende das posições relativas dos átomos constituintes na tabela periódica (Figura 2.6). Quanto maior a separação (tanto horizontalmente - relativo ao Grupo IVA - quanto verticalmente) a partir do canto esquerdo inferior para o canto direito superior, tanto mais iônica é a ligação; ou, quanto mais próximos estiverem os átomos entre si, tanto maior será o grau de covalência. Ligação Metálica Ligação metálica, o tipo final de ligação primária, é encontrada em metais e suas ligas. Existe proposto um modelo relativamente simples que muito de perto se aproxima do esquema de ligação. Materiais metálicos têm 1, 2 ou, no máximo, 3 elétrons de valência. Com este modelo, estes elétrons de valência não se encontram ligados a qualquer particular átomo no sólido e são mais ou menos livres para se moverem ao longo de todo o metal. Eles podem ser pensados como pertencendo ao metal como um todo, ou formando um "mar de elétrons" ou uma "núvem de elétrons". Os remanescentes elétrons não valentes e os núcleos atômicos foram o que é chamado de núcleos iônicos, que possuem uma carga positiva líquida, igual em magnitude à carga total de elétrons de valência por átomo. A Figura 2.11 é uma ilustração esquemática da ligação metálica. Os elétrons livres protegem os núcleos de íons positivamente carregados contra forças eletrostáticas mutuamente repulsivas, que doutra forma poderiam exercer uns aos outros; consequentemente a ligação metálica é não-direcional em caráter. Em adição, estes elétrons livres agem com uma "cola"para manter os núcleos iônicos juntos. Energias de ligaçào e temperaturas de fusão para vários metais estão listadas na Tabela 2.3. A ligação pode ser fraca ou forte; energias de ligação variam desde 68 kJ/mol (0,7 eV/átomo) para o mercúrio até 850 kJ/mol (8,8 eV/átomo) para o tungstênio. As suas respectivas temperaturas de fusão são -39oC e 3410oC (-38oF e 6170oF). Figura 2.11 - Representação esquemática da ligação metálica. Este tipo de ligação é encontrado para os elementos dos Grupos IA e IIA na tabela periódica e, de fato, para todos os metais elementares. Estes materiais são bons condutores tanto de eletricidade quanto de calor, como uma consequência dos elétrons de valência livres. 2.7 - LIGAÇÃO SECUNDÁRIA OU LIGAÇÃO DE VAN DER WAALS Ligações secundárias, de van der Waals ou físicas são fracas em comparação com as ligações primárias ou químicas; energias de ligação estão tipicamente na ordem de apenas 10 kJ/mol (0,1 eV/átomo). Ligação secundária existe entre virtualmente todos os átomos ou moléculas, mas sua presença pode ser obscurecida se qualquer dos 3 tipos de ligação primária estiver presente. Ligação secundária é evidenciada para os gases inertes, que possuem estruturas eletrônicas estáveis, e, em adição, entre moléculas em estruturas moleculares que são covalentemente ligadas. Forças de ligação secundárias surgem dos dipolos atômicos ou moleculares. Em essência, um dipolo elétrico existe sempre que exista alguma separação das porções positiva e negativa de um átomo ou molécula. A ligação resulta da atração culômbica entre o terminal positivo de um diplo e a região negativa de um outro diplo adjacente, como indicado na Figura 2.12. Interações de dipolo ocorrem entre dipolos induzidos, entre diplos induzidos e moléculas polares (que possuem dipolos permanentes), e entre moléculas polares. Verifica-se que ligação de hidrogênio, uma classe especial de ligação secundária, existe entre algumas moléculas que tem hidrogênio como um dos constituintes. Estes mecanismos de ligação agora discutidos brevemente. Figura 2.12 - Ilustração esquemática de ligação de van der Waals entre dois dipolos. Ligações de Dipolo Induzido Flutuante Um dipolo pode ser criado ou induzido num átomo ou molécula que é normalmente simétrica eletricamente; isto é, a distribuição espacial global dos elétrons é simétrica em relação ao núcleo positivamente carregado, como mostrado na Figura 2.13a. Todos os átomos estão experimentando movimento vibracional constante, que pode causar distorções instantâneas ou de curta duração desta simetria elétrica para alguns dos átomos ou moléculas, e a criação de pequenos dipolos elétricos, como representado na Figura 2.13b. Um destes dipolos pode por sua vez produzir um deslocamento da distribuição de elétron de uma molécula ou átomo adjacente, induzindo este último a também se tornar um diplo que é então fracamente atraído ou ligado primeiro; este é um tipo de ligação de van der Waals. Estas forças atrativas podem existir entre grande número de átomos ou moléculas, cujas forças são temporárias e flutua com o tempo. Figura 2.13 - Representações esquemáticas de (a) um átomo eletricamente simétrico e (b) um dipolo atômico induzido. A liquefação e, em alguns casos, a solidificação dos gases inertes e outras moléculas eletricamente neutras e simétricas tais como H2 e Cl2 acontecem por causa deste tipo de ligação. Temperaturas de fusão e de ebulição são extremamente baixas em materiais para os quais predominam dipolos de ligação induzidos; de todas as possíveis ligações intermoleculares, estas são as mais fracas. Energias de ligação e temperaturas de fusão para argônio e cloro estão também tabeladas na Tabela 2.3. Ligações de Dipolo Induzido por Molécula Polar Momentos de dipolo permanentes existem em algumas moléculas em virtude de um arranjo assimétrico de regiões carregadas positivamente ou negativamente; tais moléculas são denominadas moléculares polares. A Figura 2.14 é uma representação esquemática de uma molécula de cloreto de hidrogênio; um momento de dipolo permanente surge a partir de cargas positivas e negativas líquidas que estão respectivamente associadas com as extremidades do hidrogênio e do cloro da molécula de Hcl. Figura 2.14 - Representação esquemática de uma molécula polar de cloreto de hidrogênio (Hcl). Moléculas polares podem também induzir dipolos em moléculas não-polares adjacentes, e uma ligação se formará como um resultado forças atrativas entreas duas moléculas. Além disso, a magnitude desta ligação será maior do que aquela para diplos induzidos flutuantes. Ligações de Dipolo Permanentes Forças de van der Waals existirão entre moléculas polares adjacentes. As energias de ligação associadas são significativamente maiores do que para ligações envolvendo dipolos induzidos. O tipo de ligação secundária mais forte, a ligação de hidrogênio, é um caso especial de ligação por molécula polar. Ele ocorre entre moléculas nas quais hidrogênio é covalentemente ligado ao fluor (como em HF), oxigênio (como em H2O),e nitrogênuio (como em NH3). Para cada ligação H-F, H-O, ou H-N, o elétron único do hidrogênio é compartilhado com o outro átomo. Assim a extremidade de hidrogênio da ligação é essencialmente um próton nu positivamente carregado, que não se encontra envolto por quaisquer elétrons. Esta extremidade altamente carregada positivamente de uma molécula é capaz de uma força atrativa forte com a extremidade negativa de uma molécula adjacente, como demonstrado na Figura 2.15 para HF. Em essência, este próton solitário forma uma ponte entre 2 átomos negativamente carregados. A magnitude da ligação de hidrogênio é geralmente maior do que aquela para outros tipos de ligações secundárias e pode ser tão alta quanto 51 kJ/mol (0,52 eV/molécula) como mostrado na Tabela 2.3. Temperaturas de fusão e de ebulição para fluoreto de hidrogênio e água são anormalmente altos à luz de seus pesos moleculares baixos, como uma consequência da ligação de hidrogênio. Figura 2.15 - Representação esquemática de ligação de hidrogênio em fluoreto de hidrogênio (HF) 2.8 - MOLÉCULAS Na conclusão deste capítulo, tomemos um momento para discutir o conceito de uma molécula em termos de materiais sólidos. Uma molécula pode ser definida como um grupo de átomos que estão ligados entre si por fortes ligações primárias. Dentro deste contexto, todo o conjunto das amostras sólidas ligadas ionicamente ou metalicamente pode ser considerado como uma molécula simples. Entretanto, isto não é o caso pra muitas substâncias nas quais ligações covalentes predominam; estas incluem moléculas elementares (F2, O2, H2, etc..), bem como uma hoste de compostos (H2O, CO2, HNO3, C6H6, CH4, etc.). Nos estados condensados líquido e sólido, ligações entre moléculas são ligações secundárias fracas. Consequentemente, materiais moleculares têm relativamente baixas temperaturas de fusão e de ebulção. Muitos daqueles que têm moléculas pequenas constituídas de uns poucos átomos são gases em temperaturas e pressões ordinárias ou ambientes. Por outro lado, muitos dos modernos polímeros,sendo materiais moleculares compostos por moléculas extremamente grandes, existem como sólidos; algumas de suas propriedades são fortemente dependentes da presença das ligações secund'rias de van der Waals ou de hidrogênio. SUMÁRIO Este capítulo começou com uma visão global dos fundamentos de estrutura atômica, apresentando os modelos de Bohr e da mecânica ondulatória de elétrons em átomos. Enquanto o modelo de Boh supõe que os elétrons são partículas orbitando ao redor do núcleo em trajetórias discretas, na mecânica ondulatória nós os consideramos como de natureza ondulatória e tratamos a posição de elétrons em termos de uma distribuição de probabilidade. Estados de energia de elétrons são especificados em termos de números quânticos que dão origem a camadas e subcamadas eletrônicas. A configuração de elétron de um átomo corresponde à maneira na qual estas camadas e subcamadas são preenchidas com elétrons de acordo com o princípio de exclusão de Pauli. A tabela periódica dos elementos é gerada pelo arranjo dos vários elementos de acordo com a configuração do elétron de valência. Ligação atômica em sólidos podem ser consideradas em termos de forças e energias atrativa e repulsiva. Os 3 tipos de ligações principais (primárias) em sólidos são iônico, covalente e metálico.Para ligações iônicas, íons eletricamente carregados são formados pela transferência de elétrons de valência a partir de um tipo de átomo para um outro; forças são culômbicas. Existe um compartilhamento de elétrons de valência entre átomos adjacentes quando a ligação é covalente. Com ligação metálica, os elétrons de valência formam um "mar de elétrons"que é uniformemente disperso ao redor dos núcleos de íons de metal e age como que formando uma cola para eles. Tanto as ligações de van der Waals quanto as ligações de hidrogênio são denominadas secundárias, sendo fracas em comparação com as ligações primárias. Elas resultam das forças atrativas entre dipolos elétricos, dos quais existem 2 tipos - induzido e permanente. Para a ligação de hidrogênio, moléculas altamente polares se formam quando hidrogênio se liga covalentemente a um elemento não metálico como flúor. MATERIALS SCIENCE AND ENGINEERING An Introduction William D. Callister, Jr. - John Wiley & Sons, Inc., New York, NY, 1991. 3. A ESTRUTURA DE SÓLIDOS CRISTALINOS 3.1 - INTRODUÇÃO O Capítulo 2 dedicou-se principalmente aos vários tipos de ligação atômica, que são determinadas pela estrutura eletrônica dos átomos individuais. A presente discussão é devotada ao seguinte nível da estrutura dos materiais, especificamente, a alguns dos arranjos que podem ser adotados pelos átomos no estado sólido. Dentro deste horizonte, conceitos de cristalinidade e não-cristalinidade são introduzidos. Para sólidos cristalinos a noção de estrutura cristalina é apresentada, especificamente em termos de uma célula unitária. As 3 estruturas cristalinas comuns encontradas em metais são discutidas em detalhe, juntamente com o esquema pelo qual direções e planos cristalográficos são expressos. Monocristais, materiais policristalinos e não-cristalinos são considerados. ESTRUTURAS CRISTALINAS 3.2 - CONCEITOS FUNDAMENTAIS Materiais sólidos podem ser classificados de acordo com a regularidade com que átomos ou íons se arranjam entre si. Um material cristalino é um no qual átomos estão situados numa disposição repetitiva ou periódica ao longo de grandes distâncias atômicas; isto é, existe uma ordenação de grande alcance tal que na solidificação, os átomos se posicionarão entre si num modo tridimensional repetitivo, onde cada átomo está ligado aos seus átomos vizinhos mais próximos. Todos os metais, muitos materiais cerâmicos, e certos polímeros foram estruturas cristalinas sob condições normais de solidificação. Para aqueles que não se cristalizam, não existe esta ordenação atômica de longo alcance; estes materiais não-cristalinos ou amorfos são discutidos brevemente ao final desta capítulo. Algumas das propriedades dos sólidos cristalinos depende da estrutura cristalina do material, a maneira na qual átomos, íons ou moléculas são espacialmente arranjados. Existe um extremamente grande número de estruturas cristalinas diferentes todas elas tendo uma ordenação atômica de longo alcance; estas variam desde estruturas relativamente simples para metais, até estruturas excessivamente complexas, como exibidas por alguns materiais cerâmicos ou poliméricos. A presente discussão trata das várias estruturas cristalinas metálicas comuns. Capítulos 13 e 15 são devotados a estruturas cristalinas para cerâmicas e polímeros, respectivamente. Quando se descreve estruturas cristalinas, pensa-se em átomos (ou íons) como sendo esferas sólidas tendo diâmetros bem definidos. Isto é denominado modelo atômico de esfera rígida no qual as esferas representando os átomos vizinhos mais próximos se tocam entre si. Um exemplo do modelo de esfera rígida para o arranjo atômico encontrado em alguns dos metais elementares comuns é exposto na Figura 3.1c. Neste caso particular todos os átomos são idênticos. Algumas vezes o termo rede é usado no contexto de estruturas cristalinas; neste sentido "rede" significa um arranjo tridimensional de pontos coincidindo com as posições dos átomos (ou centros deesferas). 3.3 - CÉLULAS UNITÁRIAS A ordenação atômica em sólidos cristalinos indica que pequenos grupos de átomos foram um modelo repetitivo. Assim, ao descrever estruturas cristalinas, é muitas vezes conveniente subdividir a estrutura em pequenas entidades de repetição denominadas células unitárias. Células unitárias para a maioria das estruturas cristalinas são paralelepípedos ou prismas tendo 3 conjuntos de faces paralelas; dentro do agregado de esferas (Figura 3.1c) está traçada uma célula unitária, que neste caso consiste de um cubo. Uma célula unitária é escolhida para representar a simetria da estrutura cristalina, dentro do qual todas as posições dos átomos no cristal podem ser geradas por translações das distâncias integrais da célula unitária ao longo de suas arestas. Assim a célula unitária é a unidade estrutural básica ou o tijolo de construção da estrutura cristalina e define a estrutura cristalina em razão da sua geometria e das posições dos átomos dentro dela. A conveniência usualmente dita que os cantos em paralelepípedo coincidam com centros dos átomos de esfera rígida. Além disso, mais do que uma célula unitária individual pode ser escolhida para uma particular estrutura cristalina; entretanto, nós geralmente usamos a célula unitária tendo o mais alto nível de simetria geométrica. Figura 3.1 - Para a estrutura cúbica de face centrada: (a) representação de uma célula unitária de esfera rígida; (b) uma célula unitária de esfera reduzida; e (c) um agregado de muitos átomos (Figura (c) adaptada a partir de W.G.Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol.I, Structure, p.51, Copyright 1964 by John Wiley & Sons, New York. Reimpresso por permissão de John Wiley & Sons, Inc.). 3.4 - ESTRUTURAS CRISTALINAS METÁLICAS A ligação atômica neste grupo de material é metálica e assim não-direcional em natureza. Consequentemente, não existem restrições quanto ao número e posição dos átomos vizinhos mais próximos; isto conduz a números relativamente grandes de vizinhos mais próximos e empilhamento atômico denso para a maioria das estruturas cristalinas. Também para metais, usando o modelo da esfera rígida para a estrutura cristalina, cada esfera representa um núcleo do íon. A Tabela 3.1 apresenta os raios atômicos para um número de metais. Três estruturas cristalinas relativamente simples são encontradas para muitos dos metais comuns: cúbica de face centrada, cúbica de corpo centrado e hexagonal compacta. TABELA 3.1 Raios Atômicos e Estruturas Cristalinas para 16 Metais. A Estrutura Cristalina Cúbica de Face Centrada A estrutura cristalina encontrada para muitos metais têm uma célula untaria de geometria cúbica, com os átomos localizados em cada um dos cantos e nos centros de todas as faces do cubo. Ela é apropriadamente chamada estrutura cúbica de face centrada (CFC). Alguns dos metais familiares tendo esta estrutura cristalina são cobre, alumínio, prata e ouro (vide também a Tabela 3.1). A Figura 3.1a mostra um modelo de esfera rígida para a célula unitária CFC, enquanto que na Figura 3.1b os centros dos átomos estão representados por pequenos círculos a fim de fornecer uma melhor visualização das posições dos átomos. O agregado de átomos na Figura 3.1c representa uma seção do cristal que consiste de muitas células unitárias CFC. Estas esferas ou núcleos de íon se tocam entre si ao longo de uma diagonal de face; o comprimento da aresta de cubo a e o raio atômico R estão relacionados através a = 2R √2 (3.1) Este resultado é obtido como um problema exemplo. Para a estrutura cristalina CFC, cada átomo do canto é compartilhado por 8 células unitárias, enquanto que um átomo de face centrada pertence a apenas duas células unitárias. Portanto, um oitavo de cada um dos oito átomos de canto e metade de cada um dos 6 átomos faciais, ou um total de 4 átomos inteiros, podem ser atribuídos a uma dada célula unitária. Isto é esboçado na Figura 3.1a, onde estão representadas apenas as porções esféricas confinadas no interior do cubo. A célula compreende o volume do cubo, que é gerado a partir dos centros dos átomos dos cantos como mostrado na figura. As posições de vértice e de face são realmente equivalentes: isto é, translação do canto do cubo a partir de um átomo do vértice original para um átomo de centro de face não irá alterar a estrutura da célula. Duas outras importantes características de uma estrutura cristalina são o número de coordenação e o fator de empacotamento atômico (APF, em inglês). Para metais, cada átomo tem o mesmo número de átomos vizinhos mais próximos ou que se tocam, que é o número de coordenação. Para estruturas cristalinas cúbicas de face centrada, o número de coordenação é 12. Isto pode ser confirmado pelo exame da Figura 3.1a; o átomo da face frontal tem 4 átomos de vértice vizinhos mais próximo circundando-o, 4 átomos faciais que se encontram em contato com ele pela parte traseira, e 4 outros átomos faciais equivalentes que residem na próxima célula unitária à frente, que não está mostrada. O APF é a fração do volume de esfera sólida numa célula unitária, supondo o modelo de esfera rígida, ou APF = (volume de átomos numa célula unitária/volume da célula unitária) (3.2) Para a estrutura CFC, o fator de empacotamento atômico é 0,74 , que é o máximo empacotamento possível para esferas tendo todas o mesmo diâmetro. O cálculo deste APF está também incluído como um problema exemplo. Metais tipicamente têm relativamente grandes fatores de empacotamento afim de maximizar o escudo fornecido pela nuvem de elétrons livres. A Estrutura Cristalina Cúbica de Corpo Centrado Uma outra estrutura cristalina metálica comum também tem uma célula unitária cúbica com átomos localizados em todos os 8 vértices e um único átomo no centro do cubo. Esta é a estrutura cristalina Cúbica de Corpo Centrado (CCC). Uma coleção de esferas representando esta estrutura cristalina é mostrada na Figura 3.2c, enquanto que as Figuras 3.2a e 3.2b são diagramas de células unitárias CCC com os átomos representado por modelos de esfera rígida e de esfera reduzida, respectivamente. Átomos do centro e dos cantos se tocam entre si ao longo das diagonais do cubo e comprimento da célula unitária a o raio atômico R estão relacionados através de a = 4R / √3 (3.3) Cromo, ferro, tungstênio, bem como vários outros metais listados na Tabela 3.1 exibem uma estrutura CCC. Figura 3.2 - Para a estrutura cristalina cúbica de corpo centrado, (a) representação de célula unitária de esfera rígida; (b) uma célula unitária de esfera reduzida, e (c) um agregado de muitos átomos. (Figura (c) a partir de W.G.Moffatt, G.W. Pearsall, e J.Wulff, The Structure and Properties of Materials, Vol.I, Structure, p.51, Copyright 1964 por John Wiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons, Inc.). Dois átomos estão associados com cada célula unitária CCC: a equivalência de um átomo a partir dos 8 cantos, cada um dos quais é compartilhado entre 8 células unitárias, e o único átomo do centro, que está integralmente contido dentro da sua célula. Em adição, as posições dos átomos no canto e no centro são equivalentes. O número de coordenação para a estrutura cristalina CCC é 8; cada átomo do centro tem como vizinhos mais próximos seus 8 átomos dos cantos. De vez que o número de coordenação é menor do que para CFC, também o fator de empacotamento, de 0,68 , será menor do que aquele para CFC, que é de 0,74. A Estrutura Cristalina Hexagonal Compacta Nem todos os metais têm células unitárias com simetria cúbica; a estrutura cristalina metálica comum final a ser discutida tem uma célula unitária que é hexagonal. A Figura 3.3a mostra uma célula unitária de esfera reduzida para esta estrutura, que é denominada hexagonal compacta (HC); uma montagem de várias células unitárias HC é apresentada na Figura 3.3b. As faces do topoe da base da célula unitária consiste de 6 átomos que formam hexágonos regulares e circundam um único átomo no centro. Um outro plano que fornece 3 átomos adicionais à célula unitária está situado entre os planos do topo e da base. Os átomos neste plano intermediário têm como átomos vizinhos mais próximos em ambos os 2 planos adjacentes. A equivalência de 6 átomos está contida em cada célula unitária; 1/6 de cada um dos 12 átomos dos cantos das faces do topo e da base, 1/2 de cada um dos 2 átomos da face central, e todos os 3 átomos do plano intermediário interior. Se a e c representarem, respectivamente, as dimensões curta e longa da célula unitária da Figura 3.3a, a razão c/a deveria ser 1,633; entretanto, para alguns metais HC, esta razão se desvia do valor ideal. Figura 3.3 - Para a estrutura cristalina hexagonal compacta, (a) uma célula unitária de esfera reduzida (a e c representam os comprimentos das arestas curta e longa, respectivamente, e (b) um agregado de átomos. (Figura (b) de W.G.Moffatt, G.W.Pearsall, e J.Wulff, The Structure and Properties of Mateials, Vol.I, Structure, p.51, Copyright 1964 por John Wiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons, Inc.). O número de coordenação e o fator de empacotamento atômico para a estrutura cristalina HC são os mesmos daqueles para CFC: 12 e 0,74, respectivamente. Os metais HC incluem cádmio, magnésio, titânio, e zinco, alguns destes estão listado na Tabela 3.1. 3.5 - CÁLCULOS DE DENSIDADES Um conhecimento da estrutura do cristal de um sólido metálico permite cálculo de sua densidade verdadeira ρ através da correlação ρ = (nA)/(VCNA) (3.5) onde n = número de átomos associados com cada célula unitária A = peso atômico VC = volume da célula unitária NA = número de Avogadro (6,023 x 1023 átomos/mol) 3.5 - POLIMORFISMO E ALOTROPIA Alguns metais, bem como não-metais, pode ter mais do que uma estrutura cristalina, um fenômeno conhecido como polimorfismo. Quando encontrado em sólidos elementares, a condição é as vezes denominada alotropia. A estrutura cristalina predominante depende tanto da temperatura quanto da pressão externa. Um exemplo familiar é encontrado em carbono: grafita é a polimorfa estável nas condições ambientes, enquanto que diamante é formado em pressões extremamente altas. Também, ferro puro tem uma estrutura cristalina CCC à temperatura ambiente, com mudanças para ferro CFC a 912oC (1674oF). Muitas vezes uma modificação da densidade e outras propriedades físicas acompanha a transformação polimórfica. 3.7 - SISTEMAS CRISTALINOS De vez que existem muitas estruturas cristalinas possíveis, é às vezes conveniente dividi-las em grupos de acordo com as configurações da célula unitária e/ou arranjos atômicos. Um tal esquema baseia-se na geometria da célula unitária, isto é, a forma da apropriada célula unitária paralelepipetada sem levar em conta as posições atômicas na célula. Dentro deste arcabouço, um sistema coordenado x, y e z é estabelecido com a sua origem num dos cantos da célula unitária; cada um dos eixos x, y e z coincide com uma das 3 paralelepipetadas arestas que se estendem a partir deste canto, como ilustrado na Figura 3.4. A geometria da célula unitária é completamente definida em termos de 6 parâmetros: os 3 comprimentos de arestas a, b e c, e os 3 ângulos α, β e γ. Estes estão indicados na Figura 3.4 e são às vezes denominados parâmetros de rede de uma estrutura cristalina. Figura 3.4 - Uma célula unitária com os eixos coordenados x, y e z, mostrando os comprimentos axiais (a , b e c ) e os ângulos interaxiais (α, β e γ). Nesta base, têm sido encontrados cristais tendo 7 diferentes possíveis combinações de a, b e c e α, β e γ, cada um dos quais representa um distinto sistema cristalino. Estes 7 sistemas cristalinos são cúbico, tetragonal, hexagonal, ortorrômbico, romboédrico, monoclínico e triclínico. As correlações de parâmetro de rede e o esboço da célula unitária para cada sistema cristalino está representado na Tabela 3.2. O sistema cúbico, para o qual a = b = c e α = β = γ = 90o, tem o mais alto grau de simetria. A simetria mínima é exibida pelo sistema triclínico, de vez que a … b … c e α… β … γ. A partir da discussão das estruturas cristalinas metálicas, deveria ficar claro que tanto a estrutura cristalina CFC quanto a estrutura cristalina CCC pertencem ao sistema cristalino cúbico, enquanto que HC cai dentro do hexagonal. A célula unitária hexagonal realmente consiste de 3 paralelepípedos situados como mostrado na Tabela 3.2. DIREÇÕES E PLANOS CRISTALOGRÁFICOS Quando estiver lidando com materiais cristalinos, às vezes se torna necessário especificar algum particular plano cristalográfico de átomos ou uma direção cristalográfica. Foram estabelecidas convenções de nomenclatura onde 3 números inteiros ou índices são usados para designar direções e planos. A base para determinar valores dos índices é a célula unitária, com um sistema de coordenadas consistindo de 3 eixos (x, y e z) situados num dos cantos e coincidindo com as arestas da célula unitária, como mostrado na Figura 3.4. Para alguns sistemas cristalinos - isto é, hexagonal, romboédrico, monoclínico e triclínico - os 3 eixos não são mutuamente perpendiculares, como no familiar esquema de coordenada Cartesiana. 3.8 - DIREÇÕES CRISTALOGRÁFICAS Uma direção cristalográfica é definida como uma linha entre 2 pontos, ou um vetor. As seguintes etapas são utilizadas na determinação dos 3 índices direcionais: (1a.) Um vetor de comprimento conveniente é posicionado tal que ele passe através da origem do sistema coordenado. Qualquer vetor pode ser transladado através da rede cristalina sem alteração, se paralelismo for mantido. (2a.) O comprimento da projeção do vetor sobre cada um dos 3 eixos é determinado; estes comprimentos são medidos em temos das dimensões da célula unitária a, b e c. (3a.) Estes 3 números são multiplicados ou divididos por um fator comum a fim de reduzi-los aos menores valores inteiros. (4a.) Os 3 índices, não separados por vírgula, são contidos entre colchetes, da seguinte maneira: [uvw]. Os números inteiros u, v e w correspondem às projeções reduzidas ao longo dos eixos x, y e z, respectivamente. Para cada um dos 3 eixos, existirão coordenadas tanto positivas quanto negativas. Assim, são também possíveis índices negativos que são representados por uma barra sobre o apropriado índice. Por exemplo, a direção [1_1] poderia ter uma componente na direção y. Também, mudança nos sinais de todos os índices produz uma direção antiparalela; isto é [_1_] é diretamente oposta a [1_1]. Se mais de uma direção ou plano tiver que ser especificado para uma particular estrutura, é imperativo, para a manutenção consistência, que uma convenção positivo-negativo, uma vez estabelecida, não seja mudada. As direções [100],[110] e [111] são direções comuns; elas estão traçadas na célula unitária da Figura 3.5 Figura 3.5 - As direções [100], [110] e [111] dentro de uma célula unitária. Cristais Hexagonais Para cristais tendo simetria hexagonal surge um problema que consiste no fato de que algumas direções cristalograficamente equivalentes não terão os mesmos índices. Isto é contornado pela utilização de um sistema coordenado de 4 eixos, ou de Miller-Bravais, como mostrado na Figura 3.6. Os 3 eixos a1 , a2 e a3 estão todos contidos dentro de um único plano (chamado plano basal) e em ângulos de 120o entre si. O eixo z é perpendicular a este plano basal. Índices direcionais, que são obtidos como descritos acima, serão denotados por 4 índices, na forma [uvtw]; por convenção, os 3 primeiros índices pertencem às projeções ao longo dos respectivos eixos a1 , a2 e a3 no plano basal. Figura 3.6 - Sistema de eixos coordenados para uma célula unitária hexagonal (esquema de Miller- Bravais). A conversão a partir do sistema de 3 índices parao sistema de 4 índices, [u'v'w'] 6 [uvtw] é acompanhada pelas seguintes fórmulas: u = [n(2u' - v')]/3 (3.6a) v = [n(2v'- u')]/3 (3.6b) t = - (u + v) (3.6c) w = nw' (3.6d) onde os índices com primo ( ' ) estão associados ao esquema de 3 índices, enquanto que os índices não-primados estão associados ao novo sistema de Miller-Bravais de 4 índices; n é um fator que pode ser requerido para reduzir u, v, t e w aos mínimos inteiros. Por exemplo, usando esta conversão a direção [010] se torna [_2_0]. Várias direções diferentes estão indicadas na célula unitária hexagonal (Figura 3.7a). Figura 3.7 - Para o sistema cristalino hexagonal, (a) direções [0001], [1_00] e ]02[11 e (b) planos (0001), (10_1) e (_010). 3.9 - PLANOS CRISTALOGRÁFICOS As orientações dos planos para uma estrutura cristalina são representadas numa maneira similar. De novo, a base é a célula unitária, com o sistema coordenado de 3 eixos como representado na Figura 3.4. Em todos os sistemas cristalinos, exceto o hexagonal, os planos cristalográficos são especificados por 3 índices de Miller como (hkl). Quaisquer 2 planos paralelos entre si são equivalentes e têm índices idênticos. O procedimento empregado na determinação dos números dos índices h, k e l é o seguinte: (1o.) Se o plano passar através da selecionada origem, quer um outro plano paralelo deve ser construído dentro da célula unitária por uma apropriada translação, quer uma nova origem deve ser estabelecida no canto de uma outra célula unitária. (2o.) Neste ponto o plano cristalográfico ou intersectará ou ficará paralelo a cada um dos 3 eixos; o comprimento da interseção planar para cada eixo é determinado em termos dos parâmetros da rede a, b e c. (3o.) Os recíprocos destes números são tomados. Um plano que seja paralelo a um eixo pode ser considerado como um intercepto infinito, e, portanto, um índice zero. (4o.) Se necessário, estes 3 números são mudados para resultar o conjunto dos mínimos inteiros por multiplicação ou divisão usando um fator comum. (5o.) Finalmente, os índices inteiros, não separados por vírgulas, são colocados dentro de parêntesis, assim: (hkl). Um intercepto no lado negativo da origem é indicado por uma barra ou sinal de menos posicionado sobre o apropriado índice. Além disso, a reversão dos sentidos de todos índices especifica um outro plano paralelo ao primeiro, do outro lado da origem e eqüidistante da mesma. Vários planos de baixos índices estão representados na Figura 3.8. Uma característica interessante e única dos cristais cúbicos é que planos e direções tendo os mesmos índices são perpendiculares entre si; entretanto, para outros sistemas cristalinos não existes nenhuma correlação geométrica simples entre planos e direções tendo os mesmos índices. Figura 3.8 - Representações de uma série de planos cristalográficos (a) (001), (b) (110) e (c) (111). Arranjos Atômicos O arranjo atômico para um plano cristalográfico, que é às vezes interessante, depende da estrutura cristalina. Os planos atômicos (110) para estruturas cristalinas CFC e CCC estão representados nas Figuras 3.9 e 3.10; células unitárias de esfera reduzida estão também incluídas. Note-se que o empacotamento atômico é diferente para cada caso. Os círculos representam átomos que ficam nos planos cristalográficos como poderiam ser obtidos a partir de uma fatia fina tomada através dos centros das esferas rígidas de tamanho pleno. Figura 3.9 (a) Célula unitária CFC de esfera reduzida com o plano (110). (b) Empacotamento atômico num plano (110) CFC. Correspondentes posições de átomos a partir de (a) são indicadas. Figura 3.10(a) Célula unitária CCC de esfera reduzida com o plano (110). (b) Empacotamento atômico de um plano (110) CCC. Correspondentes posições a partir de (a) são indicadas. Empacotamento atômico pode ser o mesmo para vários planos cristalográficos tendo diferentes índices, que dependerão da simetria da particular estrutura cristalina; tais planos pertencem a uma família de planos equivalentes. Uma família de planos é designada pela colocação entre chaves. Por exemplo, em cristais cúbicos os planos (111), (___), (_11), (1__), (11_), (__1), (_1_) e (1_1) todos eles pertencem à família {111}. Também, apenas no sistema cúbico, planos tendo os mesmos índices, independente da ordem e do sinal, são equivalentes. Por exemplo, tanto o plano )32(1 quanto o plano (3_2) pertencem à família {123}. Cristais Hexagonais Para cristais tendo a simetria hexagonal, é desejável que planos equivalentes tenham os mesmos índices; tal como com direções, isto é realizado pelo sistema Miller-Bravais mostrado na Figura 3.6. Esta convenção conduz ao esquema de 4 índices (hkil), que é favorecido em muitas instâncias, de vez que ele identifica mais claramente a orientação de um plano num cristal hexagonal. Existe alguma redundância no sentido de que i é determinado soma de h e k, através da relação i = - (h + k) (3.7) Caso contrário os 3 índices h, k e l são idênticos para ambos os sistemas de indexação. A Figura 3.7b apresenta vários planos comuns que são encontrados para cristais tendo simetria hexagonal. 3.10 - DENSIDADES ATÔMICAS LINEAR E PLANAR As duas seções prévias discutiram a equivalência de direções e planos não-paralelos, onde a equivalência está relacionada ao grau de espaçamento atômico ou empacotamento atômico. Percebe-se que agora é o momento apropriado para introduzir os conceitos de densidades atômicas linear e plana. Densidade linear corresponde à fração do comprimento de linha numa particular direção cristalográfica que passa através dos centros dos átomos. Similarmente, densidade planar é simplesmente a fração da área total do plano cristalográfico que é ocupada por átomos (representada como círculos); o plano deve passar através do centro de um átomo para que o particular átomo seja incluído. Estes conceitos, os análogos unidimensional e bidimensional do fator de empacotamento, estão ilustrados nos seguintes problemas exemplos. 3.11 - ESTRUTURAS CRISTALINAS ESTREITAMENTE-COMPACTADAS Pode-se lembrar da discussão sobre estruturas cristalinas metálicas que tanto a estrutura cúbica de face centrada (CFC) quanto a estrutura hexagonal compacta têm fatores de empacotamento iguais a 0,74 , que é o mais eficiente empacotamento de esferas ou átomos de igual tamanho. Em adição para representações de células unitárias, estas 2 estruturas cristalinas podem ser descritas em termos de planos de átomos densamente empilhados (isto é, planos tendo a máxima densidade de compactação de átomos ou esferas; uma porção de um tal plano está ilustrado na Figura 3.12a. Ambas as estruturas cristalinas podem ser geradas pelo empilhamento destes planos estreitamente empacotados no topo de um outro; a diferença entre as 2 estruturas reside na seqüência de empilhamento. Figura 3.12 (a) Uma porção do plano de átomos estreitamente compactado; estão indicadas as posições A, B e C. (b) A seqüência de empilhamento AB para planos atômicos estreitamente compactados. (Adaptado a partir de W.G.Moffatt,G.W. Pearsall, e J.Wulff, The Structure and Properties of Materials. Vol.1, Structure, p. 50, Copyright 1964 por JohnWiley & Sons,New York, Reimpresso por permissão de John Wiley & Sons, Inc.). Denomine-se por A os centros de todos os átomos num plano estreitamente empacotado. Associados a este plano estão 2 conjuntos de depressões triangulares equivalentes formadas por 3 átomos adjacentes, dentro das quais o próximo plano de átomos estreitamente empacotados pode se repousar. Aquelas tendo o vértice do triângulo apontando para cima estão arbitrariamente designadas como posições B, ao passo que as depressões remanescentes são aquelas com os vértices voltados para baixo, sendo elas denominadas C na Figura 3.12a. Um segundo plano estreitamente empacotado pode ser posicionado com os centros de seusátomos sobre os sítios de B ou de C; neste ponto, ambos são equivalentes. Suponha-se que as posições B sejam arbitrariamente escolhidas; a seqüência de empilhamento é denominada AB, que está ilustrada na Figura 3.12b. A distinção real entre CFC e HC reside na posição em que o terceiro plano estreitamente empacotado é colocado. Para HC, os centros desta camada estão alinhados diretamente acima das posições A originais. A seqüência de empilhamento, ABABAB... é repetida e repetida. Naturalmente, o arranjo ACACAC... seria equivalente. Estes planos densamente compactados para HC são planos do tipo (0001), e a correspondência entre este e a representação da célula unitária é mostrada na Figura 3.13. Figura 3.13 Seqüência de empilhamento de plano estreitamente compactado para estrutura hexagonal compacta. (Adaptado a partir deW.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol.1, Structure, p.51, Copyright 1964 por John Wiley & Sons,New York, Reimpresso por permissão de John Wiley & Sons, Inc.). Para a estrutura cúbica de face centrada, os centros do terceiro plano estão situados sobre os sítios C do primeiro plano (Figura 3.14a). Isto fornece uma seqüência de empilhamento ABCABCABC...; isto é, o alinhamento atômico se repete em cada terceiro plano. É mais difícil correlacionar o empilhamento de planos estreitamente compactados para a célula unitária CFC. Entretanto, esta correlação é demonstrada na Figura 3.14b; estes planos são do tipo (111). A significância destes planos estreitamente compactados CFC e HC se tornará visível (notória) no Capítulo 7. Figura 3.14 - (a) Seqüência de empilhamento estreitamente compactado para cúbica de face centrada. (b) Um canto foi removido para mostrar a relação entre o empilhamento de plano de átomos estreitamente compactado e a estrutura cristalina CFC; o triângulo pesado delineia um plano (111). (Figura (b) a partir de W.G. Moffatt, G.W. Pearsall, e J.Wulff, The Structure and Properties of Materials, Vol.I,Structure,p.51`, Copyright 1964 por John Wiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons, Inc.). MATERIAIS CRISTALINOS E NÃO-CRISTALINOS 3.12 - MONOCRISTAIS Para um material cristalino, quando o arranjo periódico e repetido de átomos for perfeito ou se estende através de toda a amostra sem interrupção, o resultado é um monocristal. Todas as células unitárias encadeiam-se da mesma maneira e têm a mesma orientação. Monocristais existe na natureza, mas eles podem ser também produzidos artificialmente. Eles são ordinariamente de difícil crescimento, porque o ambiente deve ser cuidadosamente controlado. Se as extremidades de um monocristal forem permitidas crescer sem nenhum constrangimento externo, o cristal assumirá a forma geométrica tendo faces planas, tal como em algumas das pedras gemas; a forma é indicativa da estrutura cristalina. Uma fotografia de vários monocristais está mostrada na Figura 3.15. Dentro de poucos anos passados, monocristais cerâmicos têm se tornado extremamente importantes em muitas das nossas modernas tecnologias, em particular microcircuitos eletrônicos. Figura 3.15 - Fotografia mostrando vários monocristais de fluorita, CaF2. (Smithsonian Institution photograph number 38181P). 3.13 - MATERIAIS POLICRISTALINOS Virtualmente todos os familiares sólidos cristalinos são compostos de muitos pequenos cristais ou grãos; tais materiais são denominados policristalinos. Vários estágios na solidificação de uma amostra policristalina estão representados esquematicamente na Figura 3.16. Inicialmente, pequenos cristais ou núcleos formam em várias posições. Estes têm orientações cristalográficas randômicas, como indicadas pelas malhas quadradas. Os pequenos grãos crescem por sucessiva adição a partir do líquido circunvizinho de átomos para a estrutura de cada grão. As extremidades dos grãos adjacentes impingem uns aos outros à medida em que o processo de solidificação se aproxima do término. Como indicado na Figura 3.16, a orientação cristalográfica varia de grão para grão. Também, existe algum desarranjo (desajuste) atômico dentro da região onde 2 grãos se encontram; esta área, denominada um contorno de grão, é discutida em detalhe na Seção 4.5. Figura 3.16 - Diagramas esquemáticos dos vários estágios na solidificação de um material policristalino; as malhas quadradas esboçam células unitárias. (a) Núcleos cristalinos pequenos. (b) Crescimento dos cristalitos; a obstrução de alguns grãos que estão adjacentes entre si também está mostrada. (c) Ao término da solidificação, grãos tendo formas irregulares haviam se formado.(d) A estrutura do grão, como ela apareceria sob microscópio; linhas escuras estão nos contornos de grão. (Adaptado a partir de W. Rosenhain, An Introduction to the Studyt of Physical Metallurgy, 2a. Edição, Constable & Company Ltd., London, 1915). 3.14 - ANISOTROPIA As propriedades físicas de monocristais de algumas substâncias dependem da direção cristalográfica na qual as medições sejam feitas. Por exemplo, o módulo elástico, a condutividade elétrica, e o índice de refração podem ter valores diferentes nas direções [100] e [111]. Esta direcionalidade das propriedades é denominada anisotropia e está associada com a variância do espaçamento atômico ou iônico com a direção cristalográfica. Substâncias nas quais as propriedades medidas são independentes da direção de medição são isotrópicas. A extensão e magnitude dos efeitos anisotrópicos em materiais cristalinos são funções da simetria da estrutura cristalina; o grau de anisotropia aumenta com o decréscimo da simetria estrutural - estruturas triclínicas normalmente são altamente anisotrópicas. Os valores do módulo de elasticidade nas orientações [100], [110] e [111] para vários materiais estão apresentados na Tabela3.3. Tabela 3.3 - Valores de Módulo de Elasticidade para Vários Metais em Várias Orientações Cristalográficas. Para muitos materiais policristalinos, as orientações critalográficas dos grãos individuais são totalmente randômicas. Nestas circunstâncias, mesmo embora cada grão possa ser anisotrópico, uma amostra composta de agregados de grãos se comportam isotropicamente. Também, a magnitude de uma propriedade medida representa alguma média dos valores direcionais. São disponíveis técnicas para a produção de materiais policristalinos para os quais os grãos têm uma orientação preferencial. Estes são utilizados quando características anisotrópicas são desejáveis. 3.15 - DIFRAÇÃO DE RAIOS-X; DETERMINAÇÃO DE ESTRUTURAS CRISTALINAS O leitor pode perguntar como estruturas cristalinas são estudadas, de vez que os átomos são de tamanhos que virtualmente impede a sua observação direta. Muito do nosso entendimento referente aos arranjos atômico e molecular em sólidos resultou das investigações feitas através da difração de raios-X. Uma breve visão superficial do fenômeno da difração de raios-X e como, usando raios-X, distâncias atômicas interplanares e estruturas cristalinas são deduzidas será agora dada. O Fenômeno da Difração Difração ocorre quando uma onda encontra uma série de obstáculos regularmente espaçados, que (1) são capazes de espalhara onda, e (2) têm espaçamentos que são comparáveis em magnitude ao comprimento de onda. Além disso, difração é uma conseqüência de correlações fásicas específicas que são estabelecidas entre 2 ou mais ondas que foram espalhadas pelos obstáculos. Considere ondas 1 e 2 na Figura 3.17a, que têm o mesmo comprimento de onda (λ) e estão em fase no ponto O-O'. Suponhamos agora que ambas as ondas são espalhadas numa tal maneira que elas trafeguem diferentes caminhos. A correlação de fase entre as ondas espalhadas, que dependerão da diferença no comprimento do passo, é importante. Uma possibilidade resulta quando esta diferença de comprimento de passo é um número inteiro de comprimentos de onda. Como notado na Figura3.17a, estas ondas espalhadas (agora denominadas "1" e "2") ainda estão em fase. Diz-se que elas reforçam-se mutuamente (ou construtivamente interferirem-se mutuamente); e quando amplitudes são somadas resulta a onda mostrada no lado direito da figura. Esta é uma manifestação de difração e nós referimos a um feixe difratado como um composto de um grande número de ondas espalhadas que mutuamente se reforçam. Figura 3.17 (a) Demonstração de como 2 ondas (denominadas 1 e 2) que têm o mesmo comprimento de onda λ e que remanescem em fase após o espalhamento (ondas 1' e 2') se intereferem de modo mutuamente construtivo. As amplitudes das ondas espalhadas se somam na onda resultante. (b) Demonstração de como 2 ondas (denominadas 3 e 4) que tem o mesmo comprimento de onda e que se tornam fora de fase após o evento de espalhamento (ondas 3' e 4') interferem-se mutuamente de modo destrutivo. As amplitudes das 2 ondas espalhadas se cancelam mutuamente. São possíveis outras correlações de fase entre ondas espalhadas que não conduzirão a este reforço mútuo. O outro extremo é aquele demonstrado na Figura 3.17b, onde a diferença de comprimento de passo após o espalhamento é algum número inteiro de meio comprimentos de onda. As ondas espalhadas estão fora de fase - isto é, amplitudes correspondentes se cancelam ou se anulam entre si, ou se interferem destrutivamente (isto é, a onda resultante tem amplitude zero), como indicado no lado extremamente direito da figura..Naturalmente, existem correlações de fase intermediárias entre estas 2 correlações extremas, resultando em reforço parcial apenas. Figura 3.18 - Difração de raios-X por planos de átomos (A-A' e B-B'). Difração de Raio-X e Lei de Bragg Raios-X são uma forma de radiação eletromagnética que possui altas energias e pequenos comprimentos de onda - comprimentos de onda da ordem de grandeza do espaçamento atômicos para sólidos. Quando um feixe de raios-X impingem num material sólido, uma porção deste feixe será espalhado em todas as direções pelos elétrons associados com cada átomo ou íon que fica no caminho do feixe. Examinemos agora as condições necessárias para a difração de raios-X por um arranjo periódico de átomos. Considere-se os 2 planos paralelos de átomos A-A' e B-B' na Figura 3.18, que possuem os mesmo índices de Miller e estão separados pelo espaçamento interplanar dhkl. Suponha-se agora que um feixe de raios-X de comprimento de onda λ paralelo, monocromático e coerente (em fase) incida sobre estes 2 planos segundo um ângulo θ. Dois raios neste feixe, denominados 1 e 2, são espalhados por átomos P e Q. Interferência construtiva dos raios espalhados 1' e 2' ocorre também num ângulo θ aos 2 planos, se a diferença do comprimento do passo entre 1-P-1' e 2-Q-2' (isto é, QT + SQ ) é igual a um número inteiro n, de comprimento de onda. Isto é, a condição para difração é QT + SQ = nλ (3.8) ou θθθλ send2 = send + send = n hklhklhkl (3.9) A Equação (3.9) é conhecida como lei de Bragg; também, n é a ordem de reflexão, que pode ser qualquer inteiro (1,2,3,....) consistente com senθ não excedendo a unidade. Assim temos uma expressão simples relacionando o comprimento de onda de raios-X e o espaçamento interatômico para o ângulo do feixe difratado. Se a lei de Bragg não for satisfeita, então a interferência será não construtiva em natureza fornecendo um feixe difratado de muito baixa intensidade. A magnitude da distância entre os dois planos adjacentes e paralelos de átomos (isto é, o espaçamento interplanar dhkl ) é uma função dos índices de Miller (h, k e l) bem como os parâmetros da rede. Por exemplo, as estruturas cristalinas tendo simetria cúbica, dhkl = [ a ] / (h2 + k2 + l2) 1/2 (3.10) na qual a é o parâmetro da rede (comprimento da aresta da célula unitária). Correlações similares à Equação (3.10), mas que são mais complexas, existem para os outros 6 sistemas cristalinos notados na Tabela 3.2. A lei de Bragg, Equação 3.9, é uma condição necessária mas não suficiente para a difração por cristais reais. Ela especifica quando a difração ocorrerá para células unitárias tendo átomos posicionados somente no cantos das células. Entretanto, átomos situados em outros sítios (por exemplo, posições da face e do interior da célula unitária tal como em estruturas CFC e CCC) age como centros de espalhamento extras, que pode produzir espalhamento fora de fase em certos ângulos de Bragg. O resultado líquido é a ausência de alguns feixes difratados que, de acordo com a Equação (3.9), deveriam estar presentes. Por exemplo, para a estrutura cristalina CCC, h + k + l deve ser par para que a difração ocorra, ao passo que para CFC, h,k, e l deve ser ímpar ou par. Técnicas de Difração Uma técnica comum de difração emprega uma amostra em pó ou policristalina consistindo de muitas partículas finas e randomicamente orientadas que são expostas à radiação-X monocromática. Cada partícula do pó é um cristal, e a existência de um grande número deles com orientações randômicas assegura que algumas partículas estão apropriadamente orientadas de tal maneira que todo conjunto de planos cristalográficos possíveis estarão disponíveis para difração. O difratômetro é um aparelho usado para determinar os ângulos nos quais a difração ocorre para amostras em pó; suas características estão representadas esquematicamente na Figura 3.19. A amostra S na forma de uma placa plana é suportada de maneira que rotações ao redor do eixo denominado O seja possível. Este eixo é perpendicular ao plano da página. O feixe de raios-X monocromático é gerado no ponto T e as intensidades dos feixes difratados são detectadas com um contador denominado C na Figura. A amostra, a fonte do raios-X, e o contador são todos co- planares. Figura 3.19 - Diagrama esquemático de um difratômetro de raios-X, T = fonte de raio-X, S = amostra, C = detetor, e O = o eixo ao redor do qual a amostra e o detetor fazem a rotação. O contador é montado num carro móvel que pode também ser girado ao redor do eixo O. Sua posição angular em termos de 2θ é marcada numa escala graduada. O carro e a amostra estão mecanicamente casados de tal maneira que uma rotação da amostra através θ é acompanhada por uma rotação 2θ do contador; isto assegura que os ângulos de incidência e de reflexão sejam mantidos iguais entre si (Figura 3.19). Colimadores estão incorporados dentro do caminho do feixe a fim de produzir um feixe bem definido e focado. Utilização de um filtro fornece um feixe praticamente monocromático. À medida em que o contador se move numa velocidade angular constante, um registrador automaticamente desenha a intensidade do feixe difratado (monitorado pelo contador) como uma função de 2θ, onde 2θ é denominado ângulo de difração que é medido experimentalmente. A Figura 3.20 mostra um perfil de difração para uma amostra em pó de chumbo. Os picos de alta intensidade ocorrem quando a condição de difração de Bragg é satisfeita por algum conjunto dos planos cristalográficos. Estes picos estão indexados na Figura com os índices dos planos. Têm sido desenvolvidas outras técnicas de pó onde a intensidade e a posição do feixe difratado são registrados num filme fotográfico em vez de serem medidos pelo contador. Um dos principais usos da difratometria de raios-X é para a determinação da estrutura cristalina. O tamanho e a geometria da célula unitária podem ser resolvidos a partir das posições angulares dos picos de difração, enquanto que arranjo de átomos dentro da célula unitária está associado com as intensidades relativas destes picos. Raios-X, bem como feixes de elétrons e neutrons, são também usados em outros tipos de investigações de materiais. Por exemplo, orientações cristalográficas de monocristais são possíveis usando fotografias de Difração de raios-X (ou Laue). Na página 30 uma tal fotografia é mostrada para um cristal de magnésio. Cada mancha brilhante ( com a exceçãoda mancha brilhante do centro) resultados do feixe de raios-X que foi difratado por um específico conjunto de planos cristalográficos. Outros usos de raios-X incluem identificações químicas qualitativas e quantitativas, e a determinação da tensão residuais e tamanho cristalino. MATERIALS SCIENCE AND ENGINEERING An Introduction William D. Callister, Jr. - John Wiley & Sons, Inc., New York, NY, 1991 4. IMPERFEIÇÕES EM SÓLIDOS 4.1 - INTRODUÇÃO Até aqui foi tacitamente suposto que existe uma ordem perfeita através de todos os materiais cristalinos numa escala atômica. Entretanto, um tal idealizado sólido não existe: todos êles contém um grande número de vários defeitos ou imperfeições. Em verdade, muitas das propriedades de materiais são profundamente sensíveis a desvios a partir da perfeição cristalina; a influência não é sempre adversa e às vezes características específicas são deliberadamente conferidas pela introdução de controladas quantidades ou números de defeitos particulares, como detalhado nos capítulos que se seguem. Por "defeito cristalino" é entendida uma irregularidade de rede tendo uma ou mais de suas dimensões da ordem de um diâmetro atômico. Classificação de imperfeições cristalinas é frequentemente feita de acordo com a geometria ou dimensionalidade do defeito. Várias diferentes imperfeições como discutidas nesta capítulo, incluindo defeitos de ponto (aqueles associados com uma ou 2 posições atômicas), defeitos lineares (ou uni-dimensionais), bem como defeitos interfaciais, ou de contornos, que são bi-dimensionais. Impurezas em sólidos são também discutidas, de vez que átomos de impureza podem existir como defeitos de ponto. Finalmente, técnicas para o exame microscópico dos defeitos e da estrutura de materiais são brevemente descritas. DEFEITOS DE PONTO 4.2 - VACÂNCIAS E AUTO-INTERSTICIAIS O mais simples dos defeitos de pontos é uma vacância ou sítio vazio da rede, isto é, está faltando um átomo (Figura 4.1) no sítio normalmente ocupado. Vacâncias são formadas durante a solidificação e também como um resultado de vibrações atômicas, que causam o deslocamento de átomos a partir de seus sítios normais na rede. Figura 4.1 - Representações bidimensionais de uma vacância e de um átomo auto-intersticial (Adaptado a partir de W.G.Moffatt, G.W. Pearsall, e J.Wulff, The Structure and Properties of Materials, Vol. I, Structure, p.77, Copyright 1964 por John Wiley & Sons,New York, Reimpresso por permissão de John Wiley & Sons, Inc.) O número de equilíbrio de vazios Nv para uma dada quantidade de material depende da temperatura e cresce com ela de acordo com a equação Nv = N exp( - Qv / kT ) (4.1) Nesta expressão, N é o número total de sítios de átomos, Qv é a energia de ativação (energia de vibração requerida para a formação de uma vacância), T é a temperatura absoluta1, en kelvin, e k é a constante universal do gás ideal por molécula ou constante de Boltzmann. O valor de k é 1,38 x 10-23 J/atom-K, ou 8,62 x 10-5 eV/atom-K, dependendo das unidades de Qv . ___________________________________________________________________________ _ 1Temperatura absoluta em kelvin (K) é igual a oC + 273. 2Constante de Boltzman por mol de átomos se torna a constante R; num tal caso R = 8,31 J.mol-1K- 1 ou 1,987 cal.mol-1K-1. ___________________________________________________________________________ _ Assim, o número de vacâncias cresce exponencialmente com a temperatura; isto é, à medida em que T na equação 4.1 aumenta, também aumenta a expressão exp - (Qv / kT). Para muitos metais, a fração de vacâncias Nv / N justo abaixo da temperatura de fusão é da ordem de 10-4; isto é, um sítio da rede em cada 10000 estará vazio. Como indicam as discussões que se seguem, um número de outros parâmetros de materiais têm dependência exponencial em relação à temperatura similar àquela da Equação 4.1. Um auto-intersticial é um átomo do cristal que é comprimido (empurrado) para dentro de um sítio intersticial, um pequeno espaço vazio que sob condições ordinárias não é ocupado. Este tipo de defeito está também representado na Figura 4.1. Em metais, um auto-intersticial introduz distorções relativamente grandes na rede circundangte porque o átomo é substancialmente maior do que a posição intersticial em que está situado. Consequentemente, a formação deste defeito não é altamente provável, e êle existe em concentrações muito pequenas, que são significativamente menores do que aquelas para vacâncias. PROBLEMA EXEMPLO 4.1 (Vide no texto original). 4.3 - IMPUREZAS EM SÓLIDOS Um metal puro consistindo de apenas um único tipo de átomo não é justamente possível; átomos impurezas ou estranhos estarão sempre presentes e alguns existirão como defeitos de ponto cristalinos. De fato, mesmo com técnicas relativamente sofisticadas, é difícil refinar metais até uma pureza que exceda 99,9999%. Neste nível, da ordem de 1022 a 1023 átomos impurezas estarão presentes num metro cúbico de material. Muitos metais familiares não são altamente puros; ao contrário, eles são ligas, nas quais átomos impurezas foram adicionados intencionalmente para conferir características específicas aos materiais. Ordinariamente se usada adicionar elementos de liga em metais para melhorar resistência mecânica e resisência à corrosão. Por exemplo, prata de lei é uma liga constituída de 92,5% de Prata e 7,5% de cobre. Em ambientes normais, prata pura é altamente resistente à corrosão, mas é também muito macia. A constituição de liga com cobre melhora significativamente a resistência mecânica, sem depreciar a resistência à corrosão apreciavelmente. A adição de átomos impurezas a um metal resultará na formação de uma solução sólida e/ou uma nova segunda fase, dependendo dos tipos de impurezas, suas concentrações, e a temperatura da liga. A presente discussão é concernente à noção de uma solução sólida; tratamento da formação de uma nova fase é deferida ao Capítulo 9. Vários termos relacionados a impurezas e soluções sólidas merece menção. No que se refere a ligas, soluto e solvente são termos que são comumente empregados. "Solvente" representa o elemento ou composto que está presente na máxima quantidade; ocasionalmente, átomos solventes são denominados átomos hospedeiros. "Soluto"é usado para denotar um elemento ou composto presente numa menor concentração. Soluções Sólidas Uma solução sólida se forma quando, como átomos solutos são adicionados ao material hospedeiro, a estrutura cristalina é mantida, e nenhuma estrutura nova é formada. Talvez seja útil traçar uma analogia com uma solução líquida. Se dois líquidos, solúveis entre si (tal como água e álcool) são combinados, uma solução líquida é produzida à medida em que as moléculas se intermisturam, e sua composição é homogênea em toda a sua extensão. Uma solução sólida é também composicionalmente homogênea; os átomos impurezas são randomicamente e uniformemente dispersos dentrodo sólido. Defeitos de ponto de impurezas são encontrados em soluções sólidas, que são de 2 tipos: substitucionais e intersticiais.. Para soluções sólidas substitucionais, os átomos de soluto ou de impureza substituem os átomos hospedeiros (Figura 4.2). Existem várias características dos átomos do soluto e do solvente que determinam o grau até onde o primeiro se dissolve no segundo. Uma é o fator de tamanho atômico; apreciáveis quantidades de um soluto podem ser acomodadas neste tipo de solução sólida apenas quando a diferença em raios atômicos entre os 2 tipos de átomos é menor do que cerca de "15%. Do contrário, átomos do soluto criarão substanciais distorções de rede nova fase se formará. Uma outra característica é denominada fator eletroquímico; quanto mais eletropositivo um elemento e quanto mais eletronegativo o outro elemento, tanto maior é a probabilidade de que eles irão formar um composto intermediário em vez de uma solução sólida substitucional.Em adição, as valências relativas dos 2 tipos de átomos irá também uma influência. Outros fatores sendo iguais, um metal terá maior tendência a se dissolver num outro metal de maior valência do que num metal de menor valência. Um requisito final para solubilidade sólida completa é que as estruturas cristalinas para metais de ambos os tipos de átomos sejam as mesmas. Figura 4.2 - Representações esquemáticas bidimensionais de átomos substitucionais e de átomos de impureza intersticiais. (Adaptado a partir de W.G. Moffatt, G.W. Pearsall, e J.Wulff, The Structure and Properties of Materiails, vol. I, Structure, p.77, Copyright 1964 por John Wiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons, Inc.). Um exemplo de uma solução sólida substitucional é encontrada para cobre e níquel. Estes 2 elementos são completamente solúveis entre si em todas as proporções. Em relação às referidas regras que governam o grau de solubilidade, os raios atômicos do cobre e do níquel são 0,128 e 0,125 nm (1,28 e 1,25D), respectivamente; suas eletronegatividades são 1,9 e 1,8 (Figura 2.7); e as valências mais comuns são +1 para o cobre (embora ele às vezes possa ser +2) e +2 para o níquel. Finalmente, ambos têm estrutura cristalina CFC. Para soluções sólidas intersticiais, átomos de impurezas preencherão os vazios ou interstícios entre os átomos hospedeiros (vide Figura 4.2). Para materiais metálicos que têm fator de empacotamento atômico relativamente grandes, estas posições intersticiais são relativamente pequenas. Consequentemente, o diâmetro atômico de uma impureza intersticial deve ser substancialmente menor do que aquele de átomos hospedeiros. Normalmente, a concentração máxima permissível de átomos de impureza intersticiais é baixa (menos do que 10%). Mesmo átomos impurezas muito pequenos são ordinariamente maiores doque os sítios intersticiais e como uma consequência eles introduzem algumas deformações de rede nos átomos adjacentes. Carbono forma uma solução sólida intersticial quando adicionado ao ferro; a concentração máxima de carbono é de cercade 2%. O raio atômico do átomo de carbono é muito menor do que aquele do ferro: 0,071 nm (0,71D) contra 0,124 nm (1,24D). Soluções sólidas são também possíveis para materiais cerâmicos, como discutido na Seção 13.4. Especificação de Composição É às vezes necessário exprimir a composição global de uma liga em termos de concentrações dos seus elementos constituintes. Os meios mais comuns de especificar concentração são porcentagem em peso (ou massa) e porcentagem atômica. A base para porcentagem em peso é o peso de um particular elemento em relação ao peso total da liga. Para uma liga que contenha apenas hipotéticos átomos A e B, a concentração de A em porcentagem em peso, CA, é definida como CA = [ mA/ (mA + mB)] x 100 (4.3) onde mA e mB representam o peso (ou massa) de elementos A e B, respectivamente. A concentração de B seria calculada de maneira análoga. A base para cálculos de porcentagem atômica é o número de moles de um elemento em relação ao número total de moles de todos os elementos na liga. O número de moles numa especificada massa de um elemento hipotético D, Nm(D), pode ser calculado do seguinte modo: .............................................................Nm (D) = m'D / AD (4.4) Aqui, m'D e AD denotam a massa (em gramas) e o peso atômico, respectivamente, para o elemento D. Concentrações em termos de porcentagem atômica de elemento D numa liga contendo átomos D e E, é definida por: C'D = { Nm(D)/[Nm(D) + Nm(E)]}x 100 (4.5) De maneira análoga, a porcentagem atômica do elemento E pode ser determinada. Cálculos de porcentagem atômica podem ser realizados com base no número de átomos em vez de moles, de vez que cada mol de todas as substâncias contém o mesmo número de átomos. IMPERFEIÇÕES MISCELÂNEAS 4.4 - DISCORDÂNCIAS - DEFEITOS LINEARES Uma discordância é um defeito linear ou unidimensional ao redor de alguns átomos desalinhados. Um tipo de discordância é apresentado na Figura 4.3; uma porção extra de um plano de átomos, ou meio plano, cuja aresta termina dentro do cristal. Esta é denominada uma discordância de aresta; ela é um defeito linear que se centra ao redor da linha que é definida ao longo da extremidade do meio-plano extra de átomos. Esta é às vezes denominada linha de discordância, que, para a discordância de aresta na Figura 4.3, é perpendicular ao plano da página. Dentro da região ao redor da discordância de linha está alguma distorção localizada da rede. Os átomos acima da linha de discordância na Figura 4.3 estão espremidos juntos e aqueles abaixo da discordância se encontra puxados para um longe do outro; isto está refletido na ligeira curvatura para os planos verticais de átomos quando eles se fletem ao redor deste meio-plano extra. A magnitude desta distorção decresce com a distância a partir da linha de discordância; em posições bem distantes, a rede cristalina é virtualmente perfeita. Algumas vezes a discordância de linha na Figura 4.3 é representada pelo símbolo - , que também indica a posição da linha de discordância. Uma discordância de linha pode também ser formada por um meio-plano extra de átomos que é incluída na parte da base do cristal; sua designação é um - . Figura 4.3 - As posições dos átomos ao redor de uma discordância de aresta; meio-plano extra de átomos mostrado em perspectiva. (Adaptado a partir de A.G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, New York, 1976,p.153). Existe um outro tipo de discordância, denominada uma discordância em parafuso, que pode ser pensada como sendo formada por uma tensão cizalhante que é aplicada para produzir a distorção mostrada na Figura 4.4a: a região da frente superior do cristal é deslocada de uma distância atômica para a direita em relação à porção da base. A distorção atômica associada a uma discordância em parafuso é também linear e ao longo de uma linha de discordância, linha AB na Figura 4.4b. A discordância em parafuso derivou seu nome a partir de um passo ou rampa em espiral ou helicoidal que é traçado ao redor da linha de discordância pelos planos atômicos. Às vezes o símbolo @ é usado para designar uma discordância em parafuso. Figura 4.4 (a) Uma discordância em parafuso dentro de um cristal. (b) A discordância em parafuso de (a) como visto de cima. A linha de discordância se estende ao longo da linha AB. Posições dos átomos acima do plano de escorregamento são designadas por círculos vazios, aquelas abaixo do plano de escorregamento por círculos cheios. (Figura (b) a partirde W.T.Read,Jr., Disllocations in Crystals,McGraw-Hill Book Company, New York, 1953). Muitas discordâncias encontradas em materiais cristalinos provavelmente não são nem discordâncias de aresta pura nem discordâncias em espiral puras, mas sim compostas de ambos os tipos discordâncias; estas são denominadas discordâncias mistas. Todos os 3 tiposde discordâncias estão representados esquematicamente na Figura 4.5; a distorção da rede que é produzida para fora das duas faces é mista, tendo variáveis graus de caráter de espiral e de aresta. Figura 4.5 (a) Representação esquemática de uma discordância que tem caráter de aresta, parafuso e misto. (b) Vista de topo, onde círculos abertos (vazios) denotam posições de átomos acima do plano de escorregamento. Círculos cheios, posições de átomo abaixo. No ponto A, a discordância é puramente em parafuso, enquanto que no ponto B, é em aresta puramente. Para regiões no meio onde existe curva na lina de discordância, o caráter é misto de aresta e de espiral. (Figura (b) a partir de W.T. Read,Jr., Dislocations in Crystals, McGraw-Hill Book Company, New York, 1953). A magnitude e direção da distorção da rede associada com a discordância é expressa em termos de vetor de Burgers , denotado por um b. Vetores de burgers estão indicados nas Figuras4.3 e 4.4 para discordâncias de aresta e de parafuso, respectivamente. Além disso, a natureza de uma discordância (isto é, aresta, parafuso ou mista) é definida pelas orientações relativas da linha de discordância e do vetor de Burgers. Para uma discordância de aresta, eles são perpendiculares entre si (Figura 4.3), enquanto que para uma discordância em parafuso, ambos são paralelos (Figura 4.4); eles não são nem perpendiculares nem paralelos para uma discordância mista. Também, mesmo embora uma discordância mude direção e natureza dentro de um cristal (por exemplo, a partir de aresta para mista para parafuso), o vetor de Burgers será o mesmo em todos os pontos ao longo de sua linha. Por exemplo, todas posições da discordância curva na Figura 4.5 terão mostrado o vetor de Burgers. Para materiais metálicos, o vetor de Burgers para uma discordância apontará numa direção cristalográfica densamente empilhada e será de magnitude igual ao espaçamento interatômico. Discordâncias podem ser observadas em materiais cristalinos usando técnicas de microscopia eletrônica. Na Figura 4.6, uma micrografia eletrônica de transmissão de alta amplificação, linhas escuras são as discordâncias. Virtualmente todos os materiais cristalinos contém algumas discordâncias que são introduzidas durante a solidificação, durante a deformação plástica, e como uma consequência de tensões térmicas que resultam do rápido resfriamento. Discordâncias são envolvidas em deformações plásticas de materiais cristalinos, a discussão das quais é deferida ao Capítulo 7. Figura 4.6 - Uma micrografia eletrônica de transmissão de uma liga de titânio na qual as linhas escuras são discordâncias, 51450 x. (Cortesia de M.R. Plichta,Michigan Technological University). 4.5 - DEFEITOS INTERFACIAIS Defeitos interfaciais são contornos que têm 2 dimensões e normalmente separam regiões dos materiais que têm diferentes estruturas cristalinas e/ou orientações cristalográficas. Estas imperfeições incluem superfícies externas, contornos de grão, contornos de maclas, falhas de empilhamento e contornos de fases. Superfícies Externas Um dos contornos mais óbvios é a superfície externa, que é considerada como uma imperfeição visto que ela representa o contorno ao longo do qual a estrutura do cristal termina. Átomos da superfície não estão ligados ao número máximo de vizinhos mais próximos e estão, portanto, num estado de maior energia do que os átomos nas posições do interior. As ligações destes átomos da superfície que não estão satisfeitas dão origem a uma energia de superfície, expressa em unidades de energia por unidade de área (J/m2 ou erg/cm2). Para reduzir esta energia, materiais tendem a minimizar, se for de qualquer modo possível, a área de superfície total. Por exemplo, líquidos assumem uma forma tendo uma área mínima - as gotículas se tornam esféricas. Naturalmente, isto não é possível com sólidos, que são mecânicamente rígidos. Contornos de grão Um outro defeito interfacial, o contorno de grão, foi introduzido na Seção 3.13 como o contorno separando 2 pequenas grãos ou cristais tendo diferentes orientações cristalográficas em materiais policristalinos. Um contorno de grão é representado esquematicamente a partir de uma perspectiva atômica na Figura 4.7. Dentro da região de contorno, que é provavelmente justo várias distâncias atômicas de largura, existe uma certo desajuste atômico ao longo do qual existe uma transição a partir da orientação cristalina de um grão para aquela de um grão adjacente. Figura 4.7 - Diagrama esquemático mostrando contornos de grão de baixo e de alto-ângulo e as posições dos átomos adjacentes. Vários graus de desalinhamento cristalográfico entre grãos adjacentes são possíveis (Figura 4.7). Quando este desajuste de orientação é leve, da ordem de de uns poucos graus, então o termo contorno de grão de pequeno ângulo é usado. Estes contornos podem ser descritos em termos de disposição de discordâncias. Um contorno de grão simples de pequeno ângulo é formado quando discordâncias de aresta são alinhadas na maneira indicada na Figura 4.8. Este tipo é chamado um contorno de inclinação ( tilt boundary ); o ângulo de desorientação, θ, é também indicado na figura.Contornos de grão de torção (twist) de baixo ângulo resulta a partir de uma disposição de discordâncias em parafuso. Frequentemente, regiões de material separadas por contornos de grão de pequeno ângulo são denominadas subgrãos. Figura 4.8 - Demonstração de como um contorno de grão de inclinação (tilt) tendo uma desorientação de ângulo θ resulta do alinhamento de discordâncias de aresta. Nem todos os átomos estão ligados a outros átomos ao longo de um contorno de grão e, consequentemente, existe uma energia de contorno interfacial ou de grão similar àquela da energia superficial descrita acima. A magnitude desta energia é uma função do grau de desorientação, sendo maior para contornos de alto ângulo. Contornos de grão são quimicamente mais reativos do que os grãos em si como uma consequência desta energia de contorno. Além disto, átomos de impureza às vezes se segregam preferencialmente ao longo destes contornos por causa do seu estado de maior energia. A energia interfacial total é menor em materiais grãos grandes ou grosseiros do que em materiais de granulação fina, de vez que existe uma menor área de contorno total no primeiro. Grãos crescem a elevadas temperaturas a fim de reduzir a energia, um fenômeno explicado na Seção 7.13. A despeito deste desordenado arranjo de átomos e falta de ligação completa ao longodos contornos de grão, um material policristalino é ainda muito forte; forças coesivas dentro e através do contorno estão presentes. Além disso, a densidade de uma amostra policristalina é virtualmente idêntica daquelade um monocristal do mesmo material. Contornos de Macla Um contorno de macla ( twin boundary) é um tipo especial de contorno de grão através do qual existe uma específica simetria de rede especular; isto é, átomos de um lado do contorno estão localizados em posições de imagem de espelho dos átomos que estão do outro lado (Figura 4.9). A região de material entre estes contornos é apropriadamente denominada uma macla (twin). Maclas resultam de deslocamentos atômicos que são produzidos a partir de forças de cizalhamento mecânico aplicadas (maclas mecânicas) e também durante os tratamentos térmicos de recozimento em seguida à deformação (maclas de recozimento). Maclação ocorre num definido plano cristalográfico e numa direção específica, sendo que ambos dependem da estrutura cristalina. Maclas de recozimento são tipicamente encontradas em metais que têm estrutura cúbica de face centrada (CFC), enquanto que as maclas mecânicas são observadas em metais CCC e HC. O papel das maclas mecânicas no processo de deformação é discutido na Seção 7.7. Maclas de recozimento podem ser observadas em fotomicrografia de amostras policristalinas de latão mostradas na Figura 4.11c. As maclas correspondem àquelas regiões tendo lados relativamente retos e paralelos e um contraste visual diferente daquele de regiões de grãos sem maclas dentro das quais eles residem. Uma explicação para a variedade de contrastes texturais nesta fotomicrografia é fornecida na Seção 4.9. Figura 4.9 - Diagrama esquemático mostrando um contorno ou plano de macla e as posições dos átomos adjacentes (círculos escuros). Defeitos Interfaciais Miscelâneos Outros defeitos interfaciais são possíveis para incluir falhas de empilhamento, contornos de fases e paredes de domínio ferromagnético. Falhas de empilhamento são encontradas em metais CFC quando existe uma interrupção na sequência de empilhamento ABCABCABC... de planos estreitamente compactados (Seção 3.11). Contornos de Fase existem em materiais multifásicos (Seção 9.3) através do qual existe uma mudança repentina em características físicas e químicas. Para materiais ferromagnéticose ferrimagnéticos, o contorno que separa regiões tendo diferentes direções de magnetização é denominado uma parede de domínio, que é discutido na seção 21.7. Associada a cada um dos defeitos discutidos nesta seção está uma energia interfacial, cuja magnitude depende do tipo de contorno e também varia de material para material. Normalmente, a energia interfacial será a máxima para as superfícies externas e a mínima para as paredes de domínio. 4.6 - DEFEITOS DE MASSA OU DE VOLUME Existem outros defeitos em todos os materiais sólidos que são muito maiores do que aqueles discutidos até aqui. Estes incluem poros, trincas, inclusões estranhas e outras fases. Elas são normalmente introduzidas durante as etapas de processamento e de fabricaçào. Alguns destes defeitos e seus efeitos sobre as propriedades dos materiais são discutidos em subsequentes capítulos. 4.7 - VIBRAÇÕES ATÔMICAS Cada átomo num material sólido está vibrando muito rapidamente ao redor de sua posição na rede dentro do cristal. Num certo sentido, estas vibrações pode ser pensadas como imperfeições ou defeitos. Em qualquer instante de tempo nem todos os átomos vibram com a mesma frequência e amplitude, nem com a mesma energia. Numa dada temperatura existirá uma distribuição de energias para os átomos constituintes ao redor de uma energia média. Ao longo do tempo, a energia vibracional de qualquer específico átomo variará também de uma maneira randômica. Com a elevação da temperatura, esta energia média aumenta e, de fato, a temperatura de um sólido é realmente justo uma medida da atividade vibracional média de átomos e moléculas. À temperatura ambiente, uma frequência vibracional característica é da ordem de 1013 vibrações por segundo, enquanto que a amplitude é alguns milhares de um nanômetro. Muitas propriedades e processos em sólidos são manifestações deste movimento atômico vibracional. Por exemplo, fusão ocorre quando as vibrações são suficientemente vigorosas para romper grande número de ligações atômicas. Uma discussão mais detalhadas de vibrações atômicas e as suas influências sobre as propriedades dos materiais é apresentada no Capítulo 20 . EXAME MICROSCÓPICO 4.8 - GERAL Ocasionalmente é necessário ou desejável examinar os elementos estruturais e defeitos que influenciam as propriedades dos materiais. A capacidade para executar tais exames é importante: primeiro, para assegurar que associações entre as propriedades e estrutura (e defeitos) estão bem entendidas e, segundo , para prever as propriedades de materiais uma vez estas correlações tenham sido estabelecidas. Várias das técnicas que são comumente usadas em tais investigações são a seguir discutidas. Alguns elementos estruturais são de dimensões macroscópicas, isto é, são grandes suficientes para serem observadas a olho nu. Por exemplo, aforma e o tamanho ou diâmetro médio dos grãos para uma amostra policristalina são elementos estruturais importantes. Grãos macroscópicos são às vezes evidentes em postes de iluminação de rua e também em latas de lixo. Grãos relativamente grandes tendo diferentes texturas são claramente visíveis na superfície da seção de um lingote de chumbo mostrada na Figura 4.10. Entretanto, em muitos materiais os grãos constituintes são de dimensões microscópicas, tendo diâmetros que podem ser da ordem de micrômetros3 e seus detalhes devem ser investigados usando algum tipo de microscópio. Tamanhos e formas de grão são apenas 2 características que são denominadas microestrutura; estas e outras características microestruturais são discutidas em capítulos subsequentes. ___________________________________________________________________________ _ 3 Um micrômetro (µm), frequentemente chamado micron, é 10-6m. ___________________________________________________________________________ _ Figura 4.10 - Lingote de chumbo de alta pureza no qual os grãos individuais podem ser discernidos (distinguidos). 0,7x. (Reproduzido com permissão a partir de Metals Handbook, Vol.9, 9a. Edição, Metallography and Microstructures, American Society for Metals, Metals Park, OH, 1985. 4.9 - MICROSCOPIA Os microscópios tanto ótico quanto eletrônico são comumente usados em microscopia. Estes instrumentos ajudam em investigações das características estruturais de todos os 3 tipos de materiais (metais, cerâmicas e polímeros). Muitas outras técnicas empregam equipamento fotográfico em conjunção com o microscópio; a fotografia na qual a imagem é registrada é chamada fotomicrografia. Microscopia Ótica Com microscopia ótica, o microscópio de luz é usado para estudar a microestrutura; sistemas ótico e de iluminação são seus elementos básicos. Para materiais que são opacos à luz visível (todos os metais de muitas cerâmicas e polímeros), apenas a superfície é submetida à observação e o microscópio de luz deve ser usado num modo refletivo. Contrastes na imagem produzem resultados decorrentes de diferenças na refletividade das várias regiões da microestrutura. Investigações deste tipo são muitas vezes denominadas metalográficas, de vez que metais foram os primeiros materiais examinados usando esta técnica. Normalmente, cuidadosas e meticulosas preprações de superfície são necessárias para revelar os importantes detalhes da microestrutura. A superfície da amostra deve ser primeiro lixada e polida até um acabamento liso e especular. Isto é realizado pelo uso de sucessivamente mais finas lixas de papel e de pós abrasivos (de alumina ou diamante). A microestrutura é revelada por um tratamento de superfície usando um apropriados reagente químico num procedimento chamado ataque. A reatividade química dos grãos de alguns materiais monofásicos depende da orientação cristalográfica. Consequentemente, numa amostra policristalina, características de ataque variam de grão a grão. Figura 4.11b mostra como normalmente luz incidente é refletida pelos 3 grãos atacados da superfície, cada um tendo uma diferente orientação cristalográfica. A Figura 4.11b esboça a estrutura da superfície tal como ela apareceria quando vista com o microscópio; o brilho ou a textura de cada grão depende das suas propriedades de reflectância. Uma microfotografia de uma amostra policristalina exibindo estas características é mostrada na Figura 4.11c. Figura 4.11 - (a) Grãos polidos e atacados tal como eles poderiam aparecer quando vistos com um microscópio ótico. (b) Seção tomada através destes grãos mostrando como as características de ataque e resultante textura da superfície varia de grão a grão por causa das diferenças em orientação cristalográfica. (c) Fotomicrografia de uma amostra de latão policristalino. 60x. (Fotomicrografia cortesia de J.E.Burke,General Electric Co.). Também, pequenos sulcos se formam nos contornos de grão como uma consequência do ataque. De vez que átomos que estão ao longo de regiões de contorno de grão são quimicamente mais ativos, eles se dissolvem numa taxa maior doque aqueles que estão no interior dos grãos. Estes sulcos se tornam distinguíveis quando vistos através de um microscópio porque eles refletem luz num ângulo diferente daquele dos grãos em si; este efeito é exibido na figura 4.12a. A Figura 4.12b é um fotomicrografia de uma amostra policristalina na qual os sulcos de contorno de grão são claramente visíveis como linhas escuras. Quando a microestrutura de uma liga bifásica deve ser examinada, é escolhido um reagente de ataque capaz de produzir uma textura diferente para cada fase de maneira que fases diferentes possam ser distinguidas umas das outras. Figura 4.12 - (a) Seção de um contorno de grão e do sulco da sua superfície produzido por ataque; as características de reflexão da luz na vizinhança do sulfo são mostradas. (b) Fotomicrografia de uma superfície polida e atacada de uma amostra policristalina de uma liga de ferro-cromo na qual os contornos de grão aparecem escuros. 100x. (Fotomicrografia cortesia de L.C. Smith eC. Brady, National Bureau of Standards, Washington,DC.). Microscopia Eletrônica O limite superior de ampliação possível com um microscópio ótico é aproximadamente de 2000 diâmetros. Consequentemente, alguns elementos estruturais são demasiado finos ou pequenos para permitir observação usando microscopia ótica. Sob tais circunstâncias o microscópio eletrônico, que é capaz de ampliações muito maiores, pode ser empregado. Uma imagem da estrutura sob investigação é formada usando feixes de elétrons em vez de uma radiação de luz. De acordo com a mecânica quântica, um elétron com velocidade da luz se tornará ondulatório, tendo um comprimento de onda que é inversamente proporcional à sua velocidade. Quando acelerado através de grandes voltagens, elétrons tornam-se capazes de terem comprimentos de onda da ordem de 0,003 nm (3 pm). Altas ampliações e poderes de resolução destes microscópios são consequências de pequenos comprimentos de onda dos feixes de elétrons; de fato, características atômicas podem ser resolvidas. O feixe de elétron é focado e a imagem é formada com lentes magnéticas; por outro lado a geometria dos componentes do microscópio é essencialmente a mesma dos sistemas óticos. Modos de operação tanto de transmissão quanto de reflexão são possíveis para microscópios eletrônicos. Microscopia Eletrônica de Tranmissão. A imagem vista com um microscópio eletrônico de transmissão (MET ou TEM, em inglês) é formada por um feixe de elétrons que passa através da amostra. Detalhes das características microestruturais internas são acessíveis para observação; contrastes na imagem são produzidos por diferenças no espalhamento ou difração do feixe produzido entre os vários elementos da microestrutura ou do defeito. De vez que materiais sólidos são altamente absorvedos para os feixes eletrônicos, uma amostra para ser examinada deve ser preparada na forma de uma lâmina muito fina; isto assegura transmissão através da amostra de uma fração do feixe incidente. O feixe transmitido é projetado sobre uma tela fluorescente ou um filme fotográfico de maneira que a imagem possa ser vista. Ampliações de aproximadamente 1000000x são possíveis com microscopia eletrônica de transmissão,que é frequentemente utilizada no estudo de discordâncias. Microscopia Eletrônica de Transmissão. Uma inovação mais recente, tendo provado ser uma extremamente útil ferramenta de investigação (pesquisa), é o microscópio eletrônico de varredura (MEV ou SEM, em inglês). A superfície de uma amostra a ser examinada é varrida com um feixe de elétron e o feixe de elétron refletido (ou retro-espalhado) é coletado e depois exibido na mesma taxa de varredura sobre um tubo de raio catódico (similar a uma tela de TV). A imagem que aparece na tela, e que pode ser fotografada, representa as características superficiais da amostra. A superfície pode ou não pode ser polida e atacada, mas deve ser eletricamente condutiva; um muito fino revestimento metálico deve ser aplicado a materiais não condutivos. Ampliações variando de 10 a mais do que 50000 diâmetros são possíveis, do mesmo modo que são possíveis grandes profundidades de campo. Equipamento acessório permite análise qualitativa e semiquantitativa da composição elementar de muito localizadas áreas de superfície. Exame microscópico é uma ferramenta extremamente útil no estudo e caracterizaçãode materiais. Isto se tornará evidente nos subsequentes capítulos que correlacionam a microestrutura com as várias características e propriedades. Exame de microestrutura é também útil para determinar o modo da fratura mecânica, para prever as propriedades mecânicas de ligas, para mostrar se uma liga foi corretamente tratada termicamente e também para projetar ligas com novas combinações de propriedades. 4.10 - DETERMINAÇÃO DE TAMANHO DE GRÃO O tamanho de grào é às vezes determinado quando as propriedades de um material policristalino estiver sendo considerado. Neste sentido, existe um número de técnicas pelas quais tamanho é especificado em termos de volume médio de grão, diâmetro médio de grão ou área média de grão. Tamanho de grão pode ser estimado pelo uso de um método do intercepto, descrito a seguir. Linhas retas todas de mesmo comprimento são traçadas através de várias fotomicrografias que mostram a estrutura do grão. Os grãos intersectados por cada segmento de linha são contados; o comprimento de linha é então dividido pelo número médio de grãos intersectados, tomados sobre todos os sementos de linha. O diâmetro médio de grão é encontrado pela divisào deste resultado pela ampliação linear das fotomicrografias. Provavelmente o método mais comum utilizado é, entretanto, aquele descoberto pela American Society for Testing and Materials (ASTM).A ASTM preparou 10 cartas (gráficos) padrões de comparação, todas tendo diferentes tamanhos de grão médios. Para cada carta (gráfico) é atribuída um número compreendido entre 1 e 10, que é denominado número de tamanho de grão; quanto maior este número tanto menores os grãos. Uma amostra deve ser apropriadamente preparada para revelar a estrutura de grão, que é fotografada numa ampliação de 100x. Tamanho de grão é expresso em termos do número de tamanho de grão da carta que mais de perto se ajusta (se identifica) aos grãos na micrografia. Assim uma determinação visual relativamente simples e conveniente de número de tamnho de grão é possível. Número de tamanho de grào é usado extensivamente na especificação de aços. A justificativa racional por detrás da alocação (atribuição) do número de tamanho de grão a estas várias cartas é a seguinte. Seja n representando o número de tamanho de grão, e N o número médio de grãos por polegada quadrada numa ampliação de 100x. Estes 2 parâmetros estão relacionados um ao outro através da expressão N = 2n-1 (4.6) MATERIALS SCIENCE AND ENGINEERING - An Introduction William D. Callister,Jr., John Wiley & Sons, 1991, New York,N.Y.. 5. DIFUSÃO 5.1 - INTRODUÇÃO Muitas reações e processos que são importantes no tratamento de materiais baseiam-se na transferência de massa quer dentro de um sólido específico (ordinariamente num nível microscópico) quer a partir de um líquido, um gás ou uma outra fase sólida. Isto é necessariamente realizado por difusão, o fenômeno do transporte de material por movimento atômico. Este capítulo discute os mecanismos atômicos pelos quais ocorre a difusão, a matemática da difusão e a influênciada temperatura e das espécies difusoras sobre a taxa de difusão. O fenômeno da difusão pode ser demonstrado com o uso de um par de difusão, que é formado pela união de 2 barras de 2 metais diferentes juntas de maneira que exista contato íntimo entre as 2 faces, como ilustrado para cobre e níquel na Figura 5.1, que inclui representações esquemáticas de posições de átomos e composição através da interface. Este par é aquecido durante um período de tempo extenso numa temperatura elevada (mas abaixo da temperatura de fusão de ambos os metais) e resfriada até a temperatura ambiente. Análise química revelará uma condição similar àquela representada na Figura 5.2, isto é, cobre puro e níquel puro nas 2 extremidades do par, separados por uma região ligada. As concentrações de ambos os metais variam com a posição como mostrado na Figura 5.2c. Este resultado indica que átomos de cobre se migraram ou se difundiram para dentro do níquel e que o níquel se difundiu para dentro do cobre. Este processo, pelo qual átomos de um metal se difundem para dentro de um outro, é denominado interdifusão ou difusão de impureza. Figura 5.1 - (a) Par de difusão cobre-níquel antes de um tratamento térmico de alta temperatura (b)Representações esquemáticas de localizações de átomos de Cu (círculos coloridos) e de Ni (círculos pretos) dentro do par de difusão. (c) Concentrações de cobre e de níquel como uma função da posição através do par. Figura 5.2 - (a) O par de difusão cobre-níquelapós tratamento térmico a alta temperatura, mostrando a zona de difusão ligada. (b) Representações esquemáticas de localizações de átomos de Cu (círculos coloridos) e de Ni (círculo pretos) dentro do par. (c) Concentrações de cobre e de níquel como uma função de posição através do par. Interdifusão pode ser discernida (distinguida) a partir de uma perspectiva macroscópica por mudanças em concentração que ocorre ao longo do tempo, como no exemplo do par de difusão Cu-Ni. Existe um arraste ou transporte líquido de átomos a partir de regiões de alta concentração para regiões de baixa concentração. Difusão ocorre também para metais puros, mas todos os átomos que trocam posições são do mesmo tipo; isto é denominado auto-difusão. Naturalmente, auto-difusão normalmente não está sujeita à observação através da verificação de mudanças composicionais. 5.2 - MECANISMOS DE DIFUSÃO De uma perspectiva atômica, difusão é justo a migração em etapas de átomos de um sítio de rede para outro sítio da rede. De fato, os átomos em materiais sólidos se encontram em movimento constante, rapidamente mudando de posições. Para que um átomo se mova, duas condições devem ser satisfeitas: (1) deve existir um sítio adjacente vazio, e (2) o átomo deve ter suficiente energia para quebrar as ligações com seus átomos vizinhos e assim causar uma distorção da rede durante o deslocamento. Esta energia é vibracional em natureza (Seção 4.7). Numa temperatura específica alguma pequena fração do número total de átomos são capazes de realizar o movimento difusivo, em virtude das magnitudes das energias de vibração. Esta fração aumenta com o aumento da temperatura. Vários modelos diferentes para o movimento atômico têm sido propostos; destas possibilidades, existem duas dominantes para a difusão metálica. Difusão Através Vacâncias Um mecanismo envolve a intertroca de um átomo a partir de uma posição normal da rede para um adjacente sítio de rede vazio ou vacância, como esquematicamente representado na Figura 5.3a. Este mecanismo é apropriadamente denominado difusão através vacância. Naturalmente, este processo necessita a presença de vacâncias e a extensão na qual a difusão através de vacância pode ocorrer é uma função do número destes defeitos presentes; concentrações significativas de vacâncias podem existir em metais a elevadas temperaturas (Seção 4.2). De vez que átomos em difusão e vacâncias trocam posições entre si, a difusão de átomos num sentido corresponde ao movimento de vacâncias no sentido oposto. Tanto a auto-difusão quanto a interdifusão ocorre por este mecanismo; para a última, os átomos impurezas devem substituir os átomos hospedeiros. Figura 5.3 Representações esquemáticas de (a) difusão através de vacâncias e (b) difusão intersticial. Difusão Intersticial O segundo tipo de difusão envolve átomos que se migram de uma posição intersticial para uma outra vizinha que esteja vazia. Este mecanismo é encontrado para interdifusão de impurezas tais como hidrogênio, carbono, nitrogênio e oxigênio, que têm átomos que são pequenos suficientes para se ajustar às posições intersticiais. O átomos hospedeiros ou de impureza substitucional raramente formam intersticiais e normalmente não se difundem através deste mecanismo. Este fenômeno é apropriadamente denominado difusão intersticial (Figura 5.3b). Em muitas ligas metálicas, difusão intersticial ocorre muito mais rapidamente do que difusão através de vacâncias, de vez que átomos intersticiais são menores do que os átomos da rede e, assim, mais móveis. Além disto, exitem mais posições intersticiais vazias do que vacâncias; portanto, a probabilidade de movimento atômico intersticial é maior do que a difusão através vacância. 5.3 - DIFUSÃO EM ESTADO PERMANENTE Difusão é um processo que depende do tempo, isto é, num sentido microscópico, a quantidade de um elemento que é transportado dentro de um outro é uma função do tempo. Às vezes é necessário conhecer o quanto rapidamente a difusão ocorre, ou a taxa de transferênciade massa. Esta taxa é frequentemente expressa como um fluxo de difusão (J), definido como a massa (ou, equivalentemente, o número de átomos) M que se difundem perpendicularmente por unidade de área através de uma seção reta do sólido por unidade de tempo. Em forma matemática, isto pode ser expresso como J = ( M / At) (5.1a) onde A denota a área através da qual a difusão está ocorrendo e t é o tempo no qual a difusão ocorre. Em forma diferencial, esta expressão se torna J = dM / A dt (5.1b) As unidades de J são quilogramas ou átomos metro quadrado por segundo (kg/ m2s ou átomos/m2s). Se o fluxo de difusão não varia com o tempo, então existe uma condição de estado estacionário. Um exemplo comum de difusão em estado estacionário é a difusão de átomos de um gás através de uma placa de metal para a qual as concentrações (ou pressões) das espécies que se difundem em ambas as superfícies da placa são mantidas constantes. Isto está representado esquematicamente na Figura 5.4a. Figura 5.4 (a) Difusão em estado estacionário através de uma fina placa. (b) Um perfil linear de concentração para a situação de difusão em (a). Quando a concentração C é graficada contra a posição x (ou distância ) dentro do sólido, a curva resultante é denominada perfil de concentação; a inclinação num ponto particular nesta curva é o gradiente de concentração: gradiente de concentração = dC/dx (5.2a) No presente tratamento, o perfil de concentração é suposto linear, como esboçado na Figura 5.4b e gradiente de concentração = ∆C / ∆x = (CA - CB) / (xA - xB) (5.2b) Para problemas de difusão, é usualmente muito conveniente exprimir concentração em termos de massa de espécies difusoras por unidade de volume do sólido (kg/m3 ou g/cm3). A matemática da difusão em estado estacionário numa única direção (x) é relativamente simples, visto que o fluxo é proporcional ao gradiente de concentração através da expressão J = - D (dC/dx) (5.3) A constante de proporcionalidade D é denominada coeficiente de difusão, que é expresso em metros quadrados por segundo. O sinal negativo nesta expressão indica que o sentido de difusão é gradiente de concentração abaixo, a partir de uma alta concentração para uma baixa concentração. A Equação 5.3 é às vezes denominada primeira lei de Fick. Algumas vezes o termo força motriz é usado no contexto do que compele (obriga) uma reação a ocorrer. Para reação de difusão, várias de tais forças são possíveis; mas quando a difusão se fizer de acordo com a Equação 5.3, o gradiente de concentração é a força motriz. Um exemplo prático de difusão em estado estacionário é encontrado na purificação do gás hidrogênio. Um lado de uma folha de metal paládio é exposto ao gás impuro composto de hidrogênio e outras espécies gasosas tais como nitrogênio, oxigênio, e vapor dágua. O hidrogênio se difunde seletivamente através da chapa de paládio para o outro lado, que é mantido a uma pressão de hidrogênio constante e inferior à do primeiro lado. PROBLEMA EXEMPLO 5.1 5.4 - DIFUSÃO EM ESTADO NÃO-ESTACIONÁRIO Figura 5.5 - Perfis de concentração para difusão em regime não estacionário tomado em 3 diferentes tempos, t1, t2 e t3. Muitas situações práticas de difusão são de difusão em estado não-estacionário. Isto é, o fluxo de difusão e o gradiente de concentração nalgum ponto particular num sólido varia com o tempo, resultando um acúmulo líquido ou uma uma decréscimo líquido (esgotamento) das espécies difusoras. Isto é ilustrado na Figura 5.5, que mostra perfis de concentração em 3 diferentes tempos de difusão. Sob condições de estado não estacionário, o uso da Equação 5.3 não é mais conveniente; equação diferencial parcial para estado não estacionário MC / Mt = M{D(MC/Mx)} / Mx (5.4a) conhecida como a segunda lei de Fick, é usada. Se o coeficiente de difusão for independente da composição (que deveriaser verificada para cada particular situação de difusão), Equação 5.4.a se simplifica para ..........................................................MC Mt = D (M2C / Mx2) (5.4b) Soluções para esta expressão ( concentração em termos tanto de posição quanto de tempo) são possíveis quando condições de contorno fisicamente significativas forem especificadas. Coleções compreensivas destas são fornecidas por Crank e por Carslaw & Jaegar (vide Referências). Uma solução praticamente importante é aquela para um sólido semi-infinito1 no qual a concentração superficial é mantida constante. Frequentemente, a fonte da espécie difusora é uma fase gasosa, cuja pressão parcial é mantida num valor constante. Além disto, as seguintes suposições são feitas: (1a) Antes da difusão, quaisquer átomos do soluto difusor no sólido são uniformemente distribuídos com concentração de Co. (2a.) O valor de x na superfície é zero e aumenta com a distância para dentro do sólido. (3a.) O tempo é tomado como igual a zero no instante antes que o processo de difusão comece. ___________________________________________________________________________ _ 1 Uma barra de sólido é considerada como uma barra infinita quando nenhum dos átomos em difusão atinge a extremidade da barra durante o tempo no qual a difusão ocorre.Uma barra de comprimento l é considerada como sendo semi-infinita quando l > 10 Dt. ___________________________________________________________________________ Estas condições de contorno são simplesmente estabelecidas do seguinte modo: Para t = 0, C = Co em 0# x # 4 Para t>0, C = Cs ( a concentração superficial constante) em x = 0. C = Co em x = 4 Aplicação destas condições de contorno à Equação 5.4b fornece a solução (Cx - Co)/(Cs - Co) = 1 - erf {x / [2 (Dt)1/2]} (5.5) onde Cs representa a concentração numa profundidade x após o tempo t. A expressão erf {x / [2 (Dt)1/2]} é a função erro de Gauss2, cujos valores são fornecidos em tabelas matemáticas para vários valores de {x/[2(Dt)1/2]}; uma listagem parcial é fornecida na Tabela 5.1. Os parâmetros de concentração que aparecem na Equação 5.5 são vistos na Figura 5.6, um perfil de concentração tomado num tempo específico. Equação 5.5 assim demonstra a correlação entre concentração, posição e tempo, isto é, que Cx, sendo uma função do parâmetro adimensional {x/(Dt)1/2}, pode ser determinado em qualquer tempo e posição se os parâmetros C0, Cs e D forem conhecidos Tabela 5.1 - Tabulação de Valores da Função Erro Figura 5.6 - Perfil de concentração para difusão em estado não-estacionário; parâmetro de concentração relacionam-se à Equação 5.5. ___________________________________________________________________________ _ 2 Esta função erro de Gauss é definida por erf(z) = [2/(π)1/2]I0z exp(-y2)dy onde {x/ [2(Dt)1/2]} foi substituído pela variável z. ___________________________________________________________________________ _ Suponha que seja desejado encontrar alguma concentração específicade de soluto, C1 , numa liga; o lado esquerdo da Equação 5.5 agora torna-se (C1 - C0) /(Cs - C0) = constante Se este for o caso, o lado direito desta mesma expressão ( na Eq.5.5) é também constante e, subsequentemente, {x/[2(Dt)1/2]} = constante (5.6a) ou [x2 / Dt] = constante (5.6b) Alguns cálculos de difusão são assim facilitados com base nesta correlação, como demonstrado no Problema Exemplo 5.3. PROBLEMA EXEMPLO 5.2 PROBLEMA EXEMPLO 5.3 5.5 - FATORES QUE INFLUENCIAM A DIFUSÃO Espécies Difusoras A magnitude do coeficiente de difusão D é indicativo da taxa na qual átomos de hidrogênio se difundem. A Tabela 5.2 lista coeficiente de difusão, tanto de auto-difusão quanto de interdifusão, para vários sistemas metálicos. A espécie difusora bem como o material hospedeiro influenciam o coeficiente de difusão. Por exemplo, existe uma significativa diferença na magnitude entre autodifusão do ferro e difusão de carbono no ferro α a 500oC, o valor D sendo maior para a autodifusão do carbono ( 1,1 x 10-20 versus 2,3 x 10-12 m2/s). Esta comparação também fornece um contraste entre taxas de difusão via vacância e difusão intersticial como discutido acima. Autodifusão ocorre por um mecanismo de vacância, enquanto que a difusão de carbono no ferro é intersticial. Temperatura Temperatura tem uma mais profunda influência sobre os coeficientes de difusão e sobre as taxas de difusão. Por exemplo, para a autodifusão de Fe em Ferro-α, o coeficiente de difusão cresce aproximadamente 5 ordens de grandeza (de 1,1 x 10-20 para 3,9 x 10-15 m2/s) ao se elevar a temperatura de 500 para 900oC (Tabela 5.2). A dependeência dos coeficientes de difusão em relação à temperatura está relacionada à temperatura de acordo com a equação D = Do exp [-Qd / RT] (5.8) onde Do = um pré-exponencial independente da temperatura (m2/s) Qd = energia de ativação para difusão (J/mol, cal/mol, ou eV/átomo) R = constante do gás, 8,31 J.mol-1K-1, 1,987 cal.mol-1K-1, ou 8,62 x 10-5 eV/átomo T = temperatura absoluta (K) A energia de ativação pode ser pensada como a energia requerida para produzir o movimento difusivo de 1 mol de átomos. Uma grande energia de ativação resulta num relativamente pequeno coeficiente de difusão. A Tabela 5.2 pode também conter uma lista de valores de Do e Qd para vários sistemas de difusão. Tomando-se o logarítmo natural da Equação 5.8 resulta ln D = ln Do - [Qd / R] (1/T) (5.9) De vez que Do , Qd e R são todas constantes, esta expressão toma a forma de uma equação de uma linha reta: y = b + mx onde y e x são análogas, respectivamente, às variáveis ln D e 1/T. Assim, se ln D for graficado contra o recíproco da temperatura absoluta, deveria resultar uma linha reta, tendo como inclinação e intercepto de -Qd/R e ln Do , respectivamente. Esta é, de fato, a maneira na qual os valores de Qd e Do são determinados experimentalmente. A partir de um tal gráfico para vários sistemas de ligas (Figura 5.7), pode-se notar que existe correlação linear em todos os casos mostrados. Tabela 5.2 - Uma Tabulação de Dados de Difusão Figura 5.7 - Gráfico do logarítmo do coeficiente de difusão versus o recíproco da temperatura absoluta para vários metais. [Dados tomados a partir de C.J. Smithells e E.A. Brandes (Editores), Metals Reference Book, 5a. Edição, Butterworths, Londres, 1976]. PROBLEMA EXEMPLO 5.4 5.6 - OUTROS PASSOS DE DIFUSÃO Migração atômica pode também ocorrer ao longo de discordâncias, contornos de grão e superfícies externas. Estes são às vezes chamados passos de difusão de "curto-circuitos " na medida em que as taxas são muito maiores do que aquelas para difusão pelo interior da rede cristalina. Entretanto, em muitas situações as contribuições de curto-circuito para o fluxo global de difusão são insignificantes porque as áreas de seção reta destes caminhos são extremamente pequenos. 5.7 - PROCESSAMENTO DE MATERIAIS E DIFUSÃO Algumas propriedades de materiais estão sujeitas a alteração e melhoria como um resultado de processos e transformações que envolvem difusão atômica. Para que estas transformações ocorram dentro de razoáveis períodos de tempo (usualmente da ordem de horas), elas são ordinariamente realizadas em altas temperaturas nas quais as taxas de difusão são comparativamente rápidas. Estes procedimentos de alta temperatura, muitas vezes denominados tratamentos térmicos, são utilizados pelo menos 1 vez durante a produção de quase todos materiais comuns metálicos, cerâmicos e poliméricos. Por exemplo, a resistência de alguns aços repousa-se em apropriados tratamentos térmicos (Capítulo 11), o mesmo acontecendo com a integridade mecânicade muitas cerâmicas (Seção 14.9). MATERIALS SCIENCE AND ENGINEERING An Introduction William D. Callister, Jr. , John Wiley & Sons, 1991. 6. PROPRIEDADES MECÂNICAS DOS METAIS 6.1 - INTRODUÇÃOMuitos materiais, quando em serviço, são submetidos a forças ou cargas; exemplos incluem a liga de alumínio a partir da qual uma asa de avião é construída e o aço do eixo da roda de um automóvel. Em tais situações é necessário conhecer as características do material e projetar o elemento estrutural a partir do qual ele é feito de tal maneira que qualquer resultante deformação não será excessiva e fratura não ocorrerá. O comportamento mecânico do material reflete a correlação entre sua resposta ou deformação a uma carga ou força aplicada. Importantes propriedades mecânicas são resistência mecânica, dureza, dutilidade e rigidez. As propriedades mecânicas de materiais são apuradas (deteminadas) pela execução de cuidadosamente projetados experimentos de laboratório que replicam tanto quanto possível as condições de trabalho. Fatores a serem considerados incluem a natureza da carga aplicada e a sua duração, bem como as condições ambientais. É possível para a carga que ela seja de tração, compressão, ou cizalhamento, e sua magnitude pode ser constante com o tempo, ou ela pode flutuar continuamente. O tempo de aplicação pode ser apenas uma fração de segundo ou ele pode estender-se por um período de muitos anos. A temperatura de serviço pode ser um importante fator. O papel dos engenheiros estruturais é determinar tensões e distribuições de tensões entre componentes estruturais que são submetidos a bem definidas cargas. Isto pode ser executado por técnicas de testes experimentais e/ou por análises de tensões teóricas e matemáticas. Estes tópicos são tratados em textos tradicionais de análise de tensão e de resistência de materiais. Engenheiros de materiais e metalúrgicos, por outro lado, estão concernes à produção e fabricação de materiais para satisfazer requisitos de serviço como previstos por estas análises de tensões. Isto necessariamente envolve um entendimento das correlações entre a microestrutura (isto é, características internas) de materiais e suas propriedades mecânicas. Materiais são frequentemente escolhidos para aplicações estruturais porque eles possuem combinações desejáveis de características mecânicas. A presente discussão está confinada principalmente ao comportamento mecânico de metais; polímeros e cerâmicas estão tratados separadamente porque eles são, num grande grau, mecanicamente dissimilares aos metais. Este capítulo discute o comportamento tensão-deformação de metais e as principais propriedades mecânicas relacionadas a ele e examina outras características mecânicas que são importantes. Tratamentos relacionados aos aspectos microscópicos do mecanismo de deformação e métodos para fortalecer e regular o comportamento mecânico de metais são deferidos para capítulos posteriores. 6.2 - CONCEITOS DE TENSÃO E DEFORMAÇÃO Se uma carga é estática ou varia de maneira relativamente lenta com o tempo e está aplicada uniformemente sobre uma seção reta ou superfície de um elemento estrutural, o comportamento mecânico pode ser determinado por um teste simples de tensão-deformação; este teste é muito comumente conduzido para metais à temperatura ambiente. Existem 3 principais meios nos quais uma carga pode ser aplicada, isto é: tensão, compressão e cizalhamento (Figura 6.1a, b e c). Na prática de engenharia muitas cargas são de torsão em vez de cizalhamento puro; este tipo de carregamento é ilustrado na Figura 6.1d. Figura 6.1 (a) Ilustração esquemática de como uma carga de tensão produz uma elongação e deformação linear positiva. Linhas pontilhadas representam a forma antes da deformação; linhas cheias, após a deformação. (b) Ilustração esquemática de como uma carga de compressão produz contração e uma deformação linear negativa. (c) Reprsentação esquemática da deformação cizalhante γ, onde γ = tg θ. (d) Representação esquemática da deformação de torsão (isto é, ângulo de torsão φ) produzido por um torque aplicado T. Testes de Tração Um dos testes mecânicos mais comuns de tensão-deformação é realização em tração. Como será visto, o teste de tração pode ser usado para determinar várias propriedades mecânicas de materiais que são importante em projeto. Uma amostra é deformada, usualmente até à fratura,com carga de tração que é aplicada uniaxialmente ao longo do eixo de uma amostra. Uma amostra padrão de tração é mostrada na Figura 6.2. Normalmente, a seção reta é circular, mas amostras retangulares são também usadas. Durante o teste, a deformação é confinada a uma estreita região central, que tem uma seção reta uniforme ao longo do seu comprimento. O diâmetro padrão é aproximadamente 0,5 polegadas (12,8 mm), enquanto que o comprimento da seçãoa reduzida deveria ser pelo menos 4 vezes este diâmetro; 2,25 polegadas (60 mm) é comum. A Base deMedida ou o comprimento de calibre ("gauge length") é usado em cálculos de dutilidade, como discutido na Seção 6.6; o valor padrão é 2,0 polegadas (50mm). A amostra é montada por suas extremidades que são colocadas dentro das garras do aparelho de teste (Figura 6.3). A máquina de teste de tração é projetada para elongar a amostra numa taxa constante e para medir continuamente e simultaneamente a carga aplicada instantânea (com uma célula de carga) e as resultantes elongações (usando um extensômetro). Um teste de tensão-deformação tipicamente toma vários minutos para executar e é destrutivo; isto é, a amostra de teste é permanentemente deformada e usualmente fraturada. Figura 6.2 - Uma amostra padrão de tração com seção reta circular. Figura 6.3 - Representação esquemática do aparelho usado para conduzir testes de tensão- deformação. A amostra é elongada pelo travessão ("crosshead") em movimento; célula de carga e extensômetro medem, respectivamente, a magnitude da carga aplicada e a elongação. (Adaptado a partir de H.W. Hayden, W.G. Moffatt e J.Wulff, The Structure and Properties of Materials , Vol. III, Mechanical Behavior, p.2, Copyright 1965 por John Wiley & Sons, New York. Reimpresso por permissão de John Wiley & Sons, Inc.). O resultado de uma tal teste de tração é recordado numa carta de formulário contínuo como carga ou força versus elongação. Estas características carga-deformação são dependentes do tamanho da amostra. Por exemplo, requerir-se-á 2 vezes a carga para produzir a mesma elongação se a área da seção reta da amostra for dobrada. Para minimizar estes fatores geométricos, carga e elongação são normalizadas para os respectivos parâmetros de tensão de engenharia e deformação de engenharia. Tensão de engenharia σ é definida pela correlação σ = F / Ao (6.1) onde F é a carga instantânea aplicada perpendicularmente à seção reta da amostra, em unidade de libra-força (lbf) ou newtons (N) e Ao é área da seção reta original antes que qualquer carga seja aplicada ( in2 ou m2). As unidades de tensão de engenharia (referidas subsequentemente justo como tensão) são libra-força por polegada quadrada, psi (Costumeiro nos Estados Unidos da América) ou megapascals, MPa (SI); 1 MPa = 106N/m2. 1 Deformação de engenharia ε é definida de acordo com a relação ε = [(li - lo) / lo] = ∆l / lo (6.2) na qual lo é o comprimento original antes que qualquer carga seja aplicada e li é o comprimento instantâneo. Às vezes a quantidade li - lo é denotada como ∆l e é a elongação de deformação ou mudança em comprimento em algum instante, como referenciado ao comprimento original. Deformação de engenharia (subsequentemente chamada, tão somente, deformação) é adimensional, mas polegada por polegada ou metros por metro são às vezes usadas; o valor de deformação é obviamente independente do sistema de unidades. Às vezes deformação é também expressa como uma porcentagem, na qual o valor de deformação é multiplicado por 100. ___________________________________________________________________________ 1 Conversão a partir de um sistema de tensão para o outro é feito pela correlação 145 psi = 1 MPa ___________________________________________________________________________Testes de Compressão Testes de tensão de compressão-deformação podem ser conduzidos se as forças em serviço forem deste tipo. Um teste de compressão é conduzido numa maneira similar àquela de um teste de tração, exceto que a força é compressiva e a amostra se contrai ao longo da direção da tensão. Equações 6.1 e 6.2 são usadas para calcular tensão e deformação, respectivamente. Por convenção, uma força compressiva é tomada como negativa, o que fornece uma tensão negativa. Além disso, de vez que lo é maior do que li, deformações compressivas calculadas a partir da Equação 6.2 são necessariamente também negativas. Testes de tração são comuns porque eles são mais fáceis de executar; também, para muitos materiais usados em aplicações estruturais, muito pouca informação adicional é obtida a partir de testes de compressão de vez que um material se comporta da mesma maneira em cada teste. Testes compressivos são usados quando um comportamento de material sob grandes e permanentes deformações (por exemplo, plástico) é desejado, como em aplicações de fabricação. Testes de Cizalhamento e Torsão Para testes realizados usando uma força cizalhante pura como mostrado na Figura 6.1c, a tensão cizalhante τ é calculada de acordo com a relação τ = F / Ao (6.3) onde F é a carga ou força imposta paralelamente às faces superior e inferior, cada uma das quais tem uma área de Ao. A deformação cizalhante γ é definida como a tangente do ângulo de deformação θ, como indicado na figura. As unidades para tensão de cizalhamento e deformação de cizalhamento são as mesmas daquelas das suas contrapartes de tração. Torção é uma variação do cizalhamento puro, onde um componente estrutural é torcido numa maneira igual àquela da figura 6.1d; forças de torção produz um movimento rotacional ao redor do eixo longitudinal de uma extremidade do elemento estrutural em relação à outra extremidade. Exemplos de torção são encontrados para eixos de rodas de máquinas e árvores de direção e também para brocas helicoidais. Testes de torção são normalmente realizados sobre árvores cilíndricas sólidas (maciças) ou sobre tubos cilíndricos. Uma tensão cizalhante τ é uma função do torque aplicado T, enquanto que a deformação cizalhante γ está relacionada ao ângulo de torção, φ na Figura 6.1d. DEFORMAÇÃO ELÁSTICA 6.3 - COMPORTAMENTO TENSÃO-DEFORMAÇÃO O grau até onde uma estrutura se deforma ou se escoa depende da magnitude de uma tensão imposta. Para muitos metais que são tensionados em tração e em relativamente baixos níveis, tensão e deformação são proporcionais entre si através da correlação σ = E ε (6.4) Esta é conhecida como a lei de Hooke e a constante de aproporcionalidade E (psi ou MPa) é o módulo de elasticidade ou módulo de Young. Para muitos metais típicos a magnitude deste módulo varia entre 6,5 x 106 psi (4,5 x 104 MPa), para o magnésio, e 59 x 106 psi (40,7 x 104 MPa), para o tungstênio. Valores de módulo de elasticidade para vários metais à temperatura ambiente são apresentados na Tabela 6.1. Tabela 6.1 - Módulos Elásticos e de Cizalhamento à Temperatura Ambiente e Razão de Poisson para Várias Ligas Metálicas. Deformação na qual tensão e deformação são proporcionais é chamada deformação elástica; um gráfico de tensão (ordenada) versus deformação (abcissa) resulta numa correlação linear, como mostrado na Figura 6.4. A inclinação deste segmento linear corresponde ao módulo de elasticidade E. Este módulo pode ser pensado como a rigidez ou uma resistência do material à deformação elástica. Quanto maior o módulo, tanto mais rígido é o material, ou menor é a deformação elástica que resulta da aplicação de uma dada tensão. O módulo é um importante parâmetro de projeto usado para calcular flexões elásticas. Deformação elástica é não-permanente, o que significa que quando a carga aplicada for aliviada, a peça se retorna à sua forma original. Como mostrado no gráfico de tensão-deformação (Figura 6.4), aplicação da carga corresponde a mover-se a partir da origem para cima e ao longo da linha reta. Ao se aliviar a carga, a linha é atravessada no sentido oposto, de volta à origem. Figura 6.4 - Diagrama Esquemático tensão-deformação mostrando deformação elástica linear para ciclos de carregamento e descarregamento. Existem alguns materiais (por exemplo, ferro fundido cinzento e concreto) para os quais esta porção inicial elástica da curva de tensão-deformação não é linear (Figura 6.5); portanto, não é possível determinar um módulo de elasticidade como descrito acima. Para este comportamento não- linear, tanto o módulo tangente quanto o módulo secante é normalmente usado. Módulo tangente é tomado como a inclinação da curva de tensão-deformação nalgum especificado nível de tensão, enquanto que o módulo secante representa a inclinação de uma secante traçada a partir da origem até algum dado ponto da curva σ-ε. A determinação destes módulos é ilustrada na Figura 6.5. Figura 6.5 - Diagrama esquemático tensão-deformação mostrando comportamento elástico não- linear e como módulos secante e tangente são determinados. Numa escala atômica, deformação elástica macroscópica é manifestada como pequenas mudanças no espaçamento interatômico e o esticamento de ligações interatômicas. Como uma consequência, a magnitude do módulo de elasticidade é uma medida da resistência para a separação de átomos adjacentes, isto é, forças de ligação interatômica. Além disto, este módulo é proporcional à inclinação da curva força interatômica-separação (Figura 2.8a) no espaçamento de equilíbrio: E α (dF / dr)ro (6.5) A Figura 6.6 mostra curvas da força-separação para mateiais tendo ligações interatômicas tanto fortes quanto quanto fracas; a inclinação em ro é indicada para cada. Figurta 6.6 - Força versus separação interatômica para átomos fracamente ligados e fortemente ligados. A magnitude do módulo de elasticidade é proporcional à inclinação de cada curva na separação interatômica de equilíbrio ro. Valores do módulo de elasticidade para materiais cerâmicos são caracteristicamente maiores do que aqueles para metais; para polímeros, eles são menores. Estas diferenças são uma consequência direta dos diferentes tipos de ligação atômica nos 3 tipos de materiais. Além disso, com o aumento da temperatura, o módulo de elasticidade decresce, tal como é mostrado na Figura 6.7 para vários metais. Figura 6.7 - Gráfico de módulo de elasticidade versus temperatura para tungstênio, aço e alumínio. (Adaptado a partir de K.M.Ralls, T.H. Courtney e J.Wulff, Introduction to Materials Science and Engineering, Copyright 1976 por John Wiley & Sons, New York. Reimpresso por permissão de John Wiley & Sons, Inc.) Como poderia ser esperado, a imposição de tensões compressiva, cizalhante ou de torção também evocam comportamento elástico. As características de tensão-deformação em baixos níveis de tensão são virtualmente as mesmas para as situações tanto de tração quanto de compressão, para incluir o módulo de elasticidade. Tensão cizalhante e deformação cizalhante são porporcionais entre si através da expressão τ = Gγ (6.6) onde G é o módulo cizalhante, a inclinação da região elástica linear da curva de tensão cizalhante- deformação. Tabela 6.1 dá os módulos cizalhantes para um número de metais comuns. 6.4 - ANELASTICIDADE Até este ponto, foi suposto que deformação elástica é dependente do tempo, isto é, que uma tensào aplicada produz uma deformação elástica instantânea que remanesce constante ao longo do período de tempo em que a tensão é mantida. Foi também suposto que ao se aliviar a carga a deformação é totalmente recuperada, isto é, que a deformação imediatamente retorna a zero. Em muitos materiais de engenharia, existirá também uma componente de deformação elástica dependente do tempo. Isto é, a deformação elástica continuará após a aplicação da tensão e após o alívio algum tempo é requeridopara recuperação completa. Este comportamento elástico dependente da temperatura é conhecido como anelasticidade e é devida a processos microscópicos e atomísticos dependentes do tempo que estão acompanhando a deformação. Para metais a componente anelástica é normalmente pequena e às vezes desprezada. Entretanto, para alguns materiais poliméricos sua magnitude é significativa; neste caso ela é denominada comportamento viscoelástico, que é tópico de discussão da Seção 16.6. PROBLEMA EXEMPLO 6.1 6.5 - PROPRIEDADES ELÁSTICAS DOS MATERIAIS Quando uma tensão de tração é imposta sobre uma amostra metálica, uma elongação elástica e uma acompanhante deformação εz resulta na direção da tensão aplicada (arbitrariamente tomada como sendo a direção z), como indicado na Figura 6.8. Como um resultado desta elongação, haverão constricções (apertos) nas direções laterais (x e y) perpendiculares à tensão aplicada; a partir destas contrações, a deformação compressiva εx e εy podem ser determinadas. Se a tensão aplicada for uniaxial (apenas na direção z), então εx = εy . Um parâmetro denominado razão de Poisson ν é definido como a razão entre as deformações lateral e axial, ou ν = - εx / εz = - εy / εz (6.7) Figura 6.8 - Elongação axial (z) (deformação positiva) e lateral (x e y) contrações (deformações negativas) em resposta a uma imposta tensão de tração. As linhas cheias representam dimensões após a aplicação da tensão; linhas tracejadas, antes. O sinal negativo é incluído na expressão de maneira que ν será sempre positivo, de vez que εx e εz serão sempre de sinal positivo. Teoricamente, a razão de Poisson para materiais isotrópicos deveríam ser 0,25; além disso, o valor máximo para ν (ou aquele valor para o qual não existe nenhuma mudança líquida de volume) é 0,50. Para muitos metais e outras ligas, valores de razão de Poisson variam entre 0,25 e 0,35. Tabela 6.1 mostra valores de ν para vários materiais metálicos comuns. Módulos cizalhante e elástico estão relacionados entre si e à razão de Poisson de acordo com a equação E = 2G ( 1 + ν ) (6.8) Em muitos metais G é cerca de 0,4E; assim, se o valor de um módulo for conhecido, o outro pode ser aproximado. Muitos materiais são elasticamente anisotrópicos; isto é, o comportamento elástico (por exemplo, a magnitude de E) varia com a direção cristalográfica (vide Tabela 3.3). Para estes materiais as propriedades elásticas são completamente caracterizadas apenas pela especificação de várias constantes elásticas, seu número dependendo das características da estrutura cristalina. Mesmo para materiais isotrópicos, para caracterização completa das propriedades elásticas, pelo menos 2 constantes devem ser fornecidas. De vez que a orientação de grão é aleatória em muitos materiais policristalinos, estes devem ser considerados isotrópicos; vidros cerâmicos inorgânicos são também isotrópicos. A remanescente discussão do comportamento mecânico assume isotropia e policristalinidade porque tal é o caráter de muitos materiais de engenharia. PROBLEMA EXEMPLO 6.2 Para muitos materiais metálicos, deformação elástica persiste apenas para deformações de cerca de 0,005. À medida em que o material é deformado além deste ponto, a tensão não é mais proporcional à deformação (lei de Hooke, Equação 6.4, deixa de ser válida) e ocorre deformação permanente, não-recuperável, ou deformação plástica. A Figura 6.9a grafica esquematicamente o comportamento tensão de tração-deformação para dentro da região plástica para um metal típico. A transição a partir de elástico para plástico é uma transição gradual para muitos metais; alguma curvatura resultano ponto de início de deformação plástica, que cresce mais rapidamente com a elevação da tensão. Figura 6.9 (a) Comportamento típico tensão-deformação para um metal mostrando deformações elástica e plástica, o limite proporcional P e o limite de elasticidade convencional σy , como determinado usando o método de desvio com deformação 0,002. (b) Comportamento representativo tensão-deformação encontrado para alguns aços demonstrando o fenômeno do limite superior do escoamento. De um ponto de vista atômico, deformação plástica corresponde ao rompimento das ligações com os vizinhos originais do átomo e a seguir reformar as ligaçòes com novos vizinhos uma vez que grande número de átomos ou moléculas movem-se uma em relação a uma outra; após a remoção da tensão eles não se retornam mais às suas posições originais. O mecanismo desta deformação é diferente para materiais cristalinos e materiais amorfos. Para sólidos cristalinos, deformação é realizada por meio de um processo chamado escorregamento ("slip") que envolve o movimento de discordâcias como discutido na Seção 7.2. Deformação plástica em sólidos não-cristalinos (bem como líquidos) ocorre por um mecanismo de escoamento viscoso, que é delineado na Seção 13.8. 6.6 PROPRIEDADES DE TRAÇÃO Escoamento e Limite Convencional de Escoamento Muitas estruturas são projetadas para assegurar que apenas deformação elástica resultará quando uma tensão for aplicada. É, portanto, desejável conhecer o nível de tensão no qual deformação plástica começa, ou onde ocorre o fenômeno do escoamento ("yielding"). Para metais que experimentam esta gradual transição, o ponto de escoamento pode ser determinado como o desvio inicial a partir da linearidade da curva tensão-deformação; isto é às vezes denominado limite proporcional, como indicado pelo ponto P na Figura 6.9a. Em tais casos a posição deste ponto pode não ser determinado precisamente. Como uma consequência, uma convencãofoi estabelecida onde uma linha reta é constrúida paralelamente à porção elástica dacurvade tensão-deformaçào num especificado desvio de deformação, usualmente 0,002. A tensão correspondente à interseção desta linha e a curva tensão-deformação quando ela se curva na região plástica é definida como o limite convencional de escoamento σy.2 Isto é demonstrado na Figura 6.9a. Para aqueles materiais tendo uma região elástica não linear (Figura 6.5), o uso do método do desvio de deformação não é possível e a prática usual é definir o limite de escoamento como a tensão requerida para produzir alguma quantidade de deformação (por exemplo, ε = 0,005). ________________________________________________________________________ 2 Resistência é usada em lugar de tensão porque resistência é uma propriedade do metal, enquanto que tensão está relacionada à magnitude da carga aplicada. ________________________________________________________________________ Alguns aços e outros materiais exibem o comportamento de tensão de tração-deformação como mostrado na Figura 6.9b. A transição elástica-plástica é muito bem definida e ocorre abruptamente no que é denominado um fenômeno de ponto de escoamento. No ponto superior de escoamento, deformação plástica é iniciada com um real decréscimo na tensão. Deformação continuada flutua levemente ao redor de um valor constante de tensão, denominado o ponto inferior de escoamento; tensão subsequentemente sobe com crescente deformação. Para metais que exibem este efeito, o limite convencional de escoamento é tomado como a tensão média que está associada com o ponto inferior de escoamento, de vez que êle é bem definido e relativamente insensívelao procedimento de teste.3 Assim não é necessário empregar o método do desvio de deformação para estes materiais. A magnitude do limite convencional de escoamento para um metal é justo uma medida de sua resistência à deformação plástica. Limites de escoamento podem variar desde 5000 psi (35 MPa) para uma liga de alumínio de baixa resistência até mais de 200000 psi (1400 MPa) para aços de alta resistência. ________________________________________________________________________ 3 Dever-se-ía assinalar que para observar o fenômeno do ponto de escoamento, um "rigido" aparelho de teste por tração deve ser usado; por rígido é significadoque existe uma muito pequena deformação elástica da máquina durante o carregamento. ________________________________________________________________________ Limite de Resistência à Tração Após o escoamento, a tensão necessária para continuar a deformação plástica cresce até um máximo, ponto M na Figura 6.10 e a seguir decresce até a fratura eventual, ponto F. O limite de resistência à tração TS (psi ou MPa) é a tensão no máximo na curva de tensão-deformação de engenharia (Figura 6.10). Isto corresponde à tensão máxima que pode ser suportada por uma estrutura em tração; se esta tensão é aplicada e mantida, a fratura acontecerá. Toda deformação até este ponto é uniforme através de toda a região mais estreita da amostra de tração. Entretanto, nesta tensão máxima, uma pequena constricção ou pescoço começa a se formar em algum ponto e toda subsequente deformação é confinada neste pescoço, como indicado pelas amostras esquemáticas inseridas na Figura 6.10. Este fenômeno é denominado estricção ("necking") e a fratura finalmente ocorre no pescoço. A resistência à fratura ou resistência à ruptura correspondeà tensão na fratura. Os limites de resistência à tração podem variar em qualquer lugar desde 7000 psi (50 MPa) para um alumínio até um valor tão alto quanto 450000 psi (3000 MPa) para aços de alta resistência mecânica. Ordinariamente, quando a resistência mecânica de um metal é citada para propósitos de projeto, o limite convencional de elasticidade ("yield strength") é usado. Isto é devido ao fato de que no tempo em que uma tensão correspondente ao limite de resistência à tração tenha sido aplicada, às vezes a estrutura terá experimentado tão grande deformação plástica que ela é inútil. Além disto, resistências à fratura não são normalmente especificadas para propósitos de projeto de engenharia. PROBLEMA EXEMPLO 6.3 Dutilidade Dutilidade é uma outra importante propriedade mecânica. Ela é uma medida do grau de deformação plástica que foi sustentada na fratura. Um material que experimenta muito pouca ou nenhuma deformação plástica antes da fratura é denominado frágil ("brittle"). Os comportamentos de tensão de tração-deformação para materiais tanto dúteis quanto frágeis são esquematicamente ilustrados na figura 6.12. Figura 6.12 - Representações esquemáticas de comportamento tensão de tração-deformação para materiais frágil e dútil carregados até à fratura. A dutilidade pode ser expressa quantitativamente tanto como porcentagem de elongação quanto como porcentagem de redução de área. A porcentagem de elongação, %EL, é a porcentagem de deformação plástica na fratura, ou %EL = [(lf - lo) / lo] x 100 (6.10) onde lf é o comprimento de fratura4 e lo é o comprimento original de cálibre (ou base de medida) como acima discriminado. Porquanto uma porção significativa da deformação plástica na fratura está confinada à região do pescoço, a magnitude de %EL dependerá da Base de Medida. Quanto menor lo tanto maior a fração da elongação total a partir do pescoço e , consequentemente, tanto maior o valor de %EL. Portanto, lo deveria ser especificado quando os valores de porcentagem de elongação forem citados; a Base de Medida é comumente igual a 2 polegadas (50mm). Porcentagem de Redução de Área %RA é definida como %RA = [(Ao - Af)/Ao] x 100 (6.11) onde Ao é a área da seção reta original e Af é a área da seçãoreta no ponto de fratura4. Valores de porcentagem de redução de área são independentes tanto de lo quanto de Ao. Além disto, para um dado material as magnitudes de %EL e %RA serão, em geral, diferentes. Muitos metais possuem pelo menos um moderado grau de dutilidade à temperatura ambiente; entretanto, alguns se tornam frágeis à medida em que a temperatura é abaixada (Seção 8.6). __________________________________________________________________________ 4Tanto lf quanto Af são medidos depois da fratura e após as duas extremidades quebradas terem sido reposicionadas de novo juntas. _________________________________________________________________________ Um conhecimento da dutilidade dos materiais é importante por pelo menos 2 razões. Primeiro, ela indica a um projetista o grau até onde uma estrutura se deformará plásticamente antes da fratura. Segundo, ela especifica o grau de deformação permissível durante operações de fabricação. Nós algumas vezes nos referimos a materiais relativamente dúteis como sendo "generosos"("forgiving") no sentido de que eles podem experimentar deformação local sem fratura caso exista um erro em magnitude no cálculo de tensão do projeto. Materiais frágeis são aproximadamente considerados como aqueles que possuem uma deformação de fratura de menos de cerca de 5%. Assim várias importantes propriedades mecânicas de metais podem ser determinadas a partir de testes de tensão de tração-deformação. A Tabela 6.2 apresenta alguns valores típicos à temperatura ambiente de limite convencional de elasticidade, limite de resistência à tração e dutilidade para vários metais comuns, que foram tratados termicamente a fim de conferir-lhes resistência mecânica relativamente baixa. Estas propriedades são sensíveis a qualquer deformação prévia, à presença de impurezas e/ou a qualquer tratamento térmico ao qual o metal tenha sido submetido. O módulo de elasticidade é um parâmetro mecânico que é insensível a estes tratamentos.Do mesmo modo que para o módulo de elasticidade, as magnitudes tanto do limite convencional de elasticidade quanto do limite de resistência à tração declinam-se com a elevação da temperatura; justamente o oposto se aplica para a dutilidade - ela cresce com a elevação da temperatura. A Figura 6.13 mostra como o comportamento tensão-deformação do ferro varia com a temperatura. Tabela 6.2 - Propriedades Mecânicas Típicass de Vários Metais num Estado Recozido e em Estado Comercialmente Puro. Figura 6.13 - Comportamento tensão de engenharia-deformação para ferro em 3 temperaturas. Resiliência Resiliência é a capacidade de um material absorver energia quando ele é deformado elasticamente e então, no descarregamento, ter recuperada esta energia. A propriedade associada é o módulo de resiliência, Ur , que é a energia de deformação por unidade de volume requerida para tensionar o material a partir do estado não-carregado até o ponto de escoamento. Computacionalmente, o módulo de resiliência para uma amostra submetida a um teste de tração uniaxial é justamente a área sob a curva de tensão de engenharia-deformação tomada até o escoamento (Figura 6.14), ou Ur = Ioεy σdε (6.12a) Figura 6.14 - Representação esquemática mostrando como o módulo de resiliência (correspondendo à área sombreada) é determinado a partir do comportamento de tensão de tração-deformação do material. Supondo uma região elástica linear, Ur = (1/2)σyεy (6.12b) na qual εy é a deformação no escoamento. As unidades de resiliência são o produto das unidades de cada um dos 2 eixos do gráfico de tensão-deformação. Para unidades costumeiras nos Estados Unidos da América este produto é polegada-libraforça por polegada cúbica (in.lbf.in-3, equivalente a psi), ao passo que com as unidades do SI êle é joule por metro cúbico (J.m-3, equivalente a Pa). Tanto polegada-libraforça e joule são unidades de energia e assim esta área sob a curva de tensão-deformação representa absorção de energia por unidade de volume (em in3 ou m3) de material. A incorporação da Equação 6.4 à Equação 6.12b fornece Ur = (1/2)σyεy = (1/2)σy (σy / E) = σy2 / 2E (6.13) Assim, materiais resilientes são aqueles tendo aos limites convencionais de elasticidade e baixos módulos de elasticidade; tais ligas seríam usadas em aplicações de molas. Tenacidade Tenacidade é um termo mecânico que é usado em vários contextos; falando de uma maneira liberal, é uma medida da capacidade de um material para absorver energia até a fratura. Geometria de amostra bem como a maneirade aplicação da carga são importantes nas determinações de tenacidade. Para condições de carregamento dinâmico (alta taxa de deformação) e quando um entalhe (ou ponto de concentração de tensão) estiver presente, tenacidade de entalhe é assessada pelo uso de um teste de impacto, como discutido na Seção 8.6. Além disso, tenacidade à fratura é uma propriedade indicativa da resistência do material à fratura quando uma trinca estiver presente (Seção 8.5). Para a situação estática (baixa taxa de deformação), tenacidade pode ser determinada a partir dos resultados de um teste de tensão de tração-deformação. É a área sob a curva σ-ε até o ponto de fratura. As unidades para tenacidade são as mesmas daquelas para resiliência (isto é, energia por unidade de volume de material). Para um materia ser tenaz, ele deve exibir tanto resistência mecânica quanto dutilidade; e às vezes, materiais dúteis são mais tenazes do que outros materiais frágeis. Isto está demonstrado na Figura 6.12, na qual as curvas tensão-deformação são graficadas para ambos os tipos de material. Portanto, mesmo embora o material frágil tenha maior limite convencional de escoamento e maior limite de resistência à tração, em virtude de falta de dutilidade, ele tem uma menor tenacidade do que um material dútil; isto é deduzido por comparação das áreas ABC e AB'C' na Figura 6.12. 6.7 - TENSÃO VERDADEIRA E DEFORMAÇÃO VERDADEIRA A partir da Figura 6.10, o declínio na tensão necessário para continuar a deformação após passar pelo máximo, ponto M, parece indicar que o material está se tornando mais fraco. Isto não é inteiramente o caso; na verdade, a resistência do material está aumentando. Entretanto, a área da seção reta está decrescendo rapidamente dentro da região de pescoço, onde deformação está ocorrendo. Isto resulta numa redução na capacidade da amostra em suportar carga. A tensão,como calculada a partir da Equação 6.1, baseia-se na área da seção reta original antes que qualquer deformação ocorra e não leva em conta este diminuição em área no pescoço. Às vezes é mais significativo usar um esquema de tensão verdadeira-deformação verdadeira. Tensão verdadeira σT é definida como a carga F dividida pela área da seção reta instantânea Ai na qual a deformação está ocorrendo (isto é, o pescoço, passado o ponto de tração), ou σT = F / Ai (6.14) Além disso, é ocasionalmente mais conveniente representar deformação como deformação verdadeira εT definida por εT = ln (li / lo) (6.15) Se não ocorrer nenhuma mudança de volume durante a deformação, isto é, se Aili = Aolo (6.16) tensão verdadeira, tensão de engenharia, deformação verdadeira e deformação de engenharia estão relacionadas de acordo com as relações σT = σ ( 1 + ε ) (6.17a) εT = ln ( 1 + ε ) (6.17b) Equações 6.17a e 6.17b são válidas apenas até o estabelecimento do pescoço; além deste ponto a tensão verdadeira e deformação verdadeira deveríam ser calculados a partir da carga real, área de seção reta real e comprimento real da Base de Medida. Uma comparação esquemática dos comportamentos tensão-deformação de engenharia e verdadeira é feita na Figura 6.15. Vale a pena notar que a tensão verdadeira necessária para sustentar a crescente deformação continua a subir além do ponto de tração M'. Figura 6.15 - Uma comparação dos comportamentos típicos tensão de tração de engenharia versus deformação e tensão de tração verdadeira versus deformação. A formação de pescoço começa no ponto M na curva de engenharia, o qual corresponde a M' na curva verdadeira. Esta curva "corrigida" de tensão verdadeira-deformação verdadeira leva em conta o complexo estado de tensão no interior da região de pescoço. Coincidente com a formação de um pescoço é a introdução de um complexo estado de tensão dentro da região do pescoço (isto é, a existência de outros componentes em adição à tensão axial). Como uma consequência, a tensão correta (axial) dentro do pescoço é ligeiramente inferior do que aquela calculada a partir da carga aplicada e da área da seção reta do pescoço. Isto conduz à curva corrigida na Figura 6.15. Para alguns metais e ligas a região da curva de tensão-deformação verdadeira a partrir do estabelecimento da deformação plástica até o ponto no qual a formação de pescoço começa pode ser aproximadamente obtida por σT = K εnT (6.18) Nesta expressão K e n são constantes, cujos valores variarão de liga para liga e também dependerá da condição do material (isto é, se êle foi plasticamente deformado, tratado termicamente, etc..). O parâmetro n é às vezes denominado expoente de endurecimento por deformação e tem um valor menor do que a unidade. Valores de n e de K para várias ligas estão contidos na Tabela 6.3. Tabela 6.3 - Tabulação de Valores de n e de K (Equação 6.18) para Várias Ligas. PROBLEMA EXEMPLO 6.4. PROBLEMA EXEMPLO 6.5 6.8 - RECUPERAÇÃO ELÁSTICA DURANTE DEFORMAÇÃO PLÁSTICA Ao se aliviar a carga durante o ucrso de um teste de tensão-deformação, alguma fração da deformação total é recuperada como deformação elástica. Este comportamento é demonstrado na Figura 6.16, que é um gráfico esquemático de tensão-deformação de engenharia. Durante o ciclo de descarregamento, a curva traça uma linha praticamente reta a partir do ponto de descarregamento (ponto D) e a sua inclinação é virtualmente idêntica ao módulo de elasticidade, ou paralelo à porção inicial elástica da curva. A magnitude desta deformação elástica, que é revertida durante o descarregamento, corresponde à recuperação da deformação, como mostrado na Figura 6.16. Se a carga for reaplicada, a curva andará essencialmente na mesma porção linear no sentido oposto ao do descarregamento; escoamento ocorrerá novamente no nível de tensão do descarregamento onde o descarregamento começou. Haverá também uma recuperação da deformação elástica associada com fratura. 6.9 - DEFORMAÇÃO COMPRESSIVA, DEFORMAÇÃO CIZALHANTE E DEFORMAÇÃO DE TORÇÃO Naturalmente, metais podem experimentar deformação plástica sob a influência de aplicadas cargas compressivas, cizalhantes e de torção. O resultante comportamento tensão-deformação para dentro da região plástica será semelhante à da contraparte da tração (Figura 6.9a: escoamento e curvatura associada). Entretanto, para compressão, não haverá nenhum máximo, de vez que não ocorrerá formação pescoço; o modo de fratura será diferente daquele para a tração. 6.10 - DUREZA Uma outra propriedade mecânica importante que pode ser importante considerar é a dureza, que é uma medida da resistênia de um material à deformação plástica local (por exemplo, um pequeno endentamento ou um risco). Os primeiros testes de dureza eram baseados em minerais naturais com uma escala construída somente com base na capacidade de um material riscar um outro que é mais macio. Um qualitativo e algo arbitrário esquema de indexação de dureza foi visualizado, denominado escala de Mohs, que variou desde 1 na extremidade macia para o talco até 10 para o diamante. Ao longo dos anos foram desenvolvidas Técnicas de Dureza Quantitatias nas quais um pequeno indentador é forçado para dentro da superfície de um material a ser testado, sob controladas condições de carga e de taxa de aplicaçào. É medida a profundidade ou o tamanho da resultante indentação que por sua vez é relacionada(o) ao número de dureza; quanto mais macio o material, tanto maior e mais profunda a indentação e tanto menor o número índice de dureza. Durezas medidas são apenas relativas (em vez de absolutas) e cuidado deveria ser exercido ao se comparar valores determinados por diferentes técnicas. Testes de Dureza Rockwell Os testes Rockwell constituem o método mais comum usado para medir dureza porque eles são simples para realizar e não requerem nenhum habilidade especial. Várias diferentes escalas podem ser utilizadas a partir de possíveis combinações de vários indentadores e diferentescargas, que permitem o teste de virtualmente todos os metais e ligas, desde o mais duro até o mais macio. Indentadores incluem bolas de aço esféricas e endurecidas de diâmetros de 1/16, 1/8, 1/4 e 0,5 polegadas (1,588 mm, 3,175 mm, 6,350 mm e 12,70 mm) e um indentador cônico de diamante, que é usado para os mais duros materiais. Com este sistema o número de dureza é determinado pela diferença na profundidade de penetração resultante da aplicação de uma carga inicial menor seguida por uma carga maior; utilização de uma carga menor melhora a precisão do teste. Com base na magnitude das cargas tanto maior quanto menor, existem 2 tipos de testes: Rockwell e Rockwell superficial. Para Rockwell, a carga menor é 10 kg, enquanto que as cargas maiores são 60, 100 e 150 kg. Cada escala é representada por uma letra do alfabeto; várias estão listadas com o correspondente indentor e carga nas Tabelas 6.4 e 6.5a. Para testes superficiais , 3 kg é a carga menor; 15, 30 e 45kg são os possíveis valores da carga maior. Estas escalas são identificadas por 15, 30 ou 45 (de acordo com a carga), seguidos por N, T,W, X ou Y, dependendo do indentor. Testes superficiais são frequentemente realizados sobre amostras finas. Tabela 6.5b apresenta várias escalas superficiais. Quando se estiver especificando durezas Rockwell e superficial, devem ser indicados tanto o número de dureza quanto o símbolo da escala. A escala é designada pelo simbolo HR seguido pela apropriada identificação da escala.5 Por exemplo, 80 HRB representa uma dureza Rockwell de 80 na escala B, e 60 HR30W indica uma dureza superficial de 60 na escala 30W. ___________________________________________________________________________ 5 Escalas Rockwell são frequentemente designadas por um R com a letra da escala apropriada como um subscrito, por exemplo, RC denota a escala Rockwell C. ___________________________________________________________________________ Tabela 6.4 - Técnicas de Teste de Dureza Tabela 6.5a - Escalas de Dureza Rockwell Tabela 6.5b - Dureza Rockwell Superficial. Para cada caso, durezas podem variar até 130; entretanto, à medida em que os valores de dureza sobem acima de 100 ou caem abaixo de 20 em qualquer escala, elas se tornam imprecisas e, porque as escalas têm alguma superposição, numa tal situação é melhor utilizar a próxima escala mais dura ou mais mole. Podem também resultar imprecisões se a amostra de teste for demasiado fina, se uma indentação for feita excessivamente próxima de uma aresta da amostra ou se 2 indentações forem feitas muito próximas entre si. Espessura de amostra deveria ser pelo menos 10 vezes a profundidade da indentação, enquanto que se deveria deixar pelo menos 3 diâmetros de indentação entre uma indentação e a aresta da amostra, ou o centro de uma segunda indentação. Além disso, amostras de teste empilhadas uma sobre o topo de uma outra não é recomendado. Também, a precisão é dependente da indentação ser feita numa superfície plana e lisa ou não. O aprelho moderno para realizar as medições de dureza Rockwell é automatizado e muito simples para usar; a dureza é lida diretamente e cada medição requer apenas uns poucos segundos. O aprelho moderno de teste também permite uma variação do tempo de aplicação da carga. Esta variável deve ser também considerada na interpretação dos dados de dureza. Testes de Dureza Brinell Em testes Brinell, tal como nas medições Rockwell, um indentador esférico duro é forçado para dentro da superfície do metal a ser testado. O diâmetro indentador de aço endurecido (ou de carbeto de tungstênio) é de 10,00 mm (0,394 polegadas). Cargas padrões variam entre 500 e 3000 kg em incrementos de 500kg; durante um teste, a carga é mantida constante por um especificado tempo (entre 10 e 30 s). Materiais mais duros requerem maiores cargas aplicadas. O número de dureza Brinell, HB, é uma função tanto da magnitude da carga quanto do diâmetro da indentação resultante (vide Tabela 6.4)6. Este diâmetro é medido com um microscópio especial de baixa potência, utilizando uma escala que está atacada na ocular. O diâmetro medido é entào convertido ao apropriado número HB usando um gráfico; apenas uma escala é empregada com esta técnica. Requisitos de máxima espessura de amostra bem como a posição de indentação (relativamente às arestas da amostra) e de mínimo espaçamento entre indentações são os mesmos daqueles dos testes Tockwell. Em adição, é requerida uma muito bem definida indentação; isto necessita uma supefície plana lisa na qual a indentação é feita. _________________________________________________________________________ 6 O número de dureza Brinell é também representado BHN _________________________________________________________________________ Testes de Microdureza Knoop e Vickers Duas outras técnicas de testes de dureza são Knoop (pronuncia-se n_p) e Vickers (às vezes também denominado pirâmide de diamante). Para cada teste um indentador de diamante muito pequeno tendo geometria piramidal é forçado para dentro da superfície da amostra. Cargas aplicadas são muito menores do que para os testes Rockwell e Brinell, variando entre 1 e 1000 g. A resultante impressão é observada sob um microscópio e medida; esta medição é então convertida a um número de dureza (Tabela 6.4). Cuidadosa preparação superficial da amostra (lixamento e polimento) pode ser necessária para assegurar uma bem definida indentação que possa ser precisamente medida. Os números de dureza Knoop e Vickers são designados por HK e HV, respectivamente7 e escalas de dureza para ambas as técnicas são aproximadamente equivalentes. Knoop e Vickers são referidos como métodos de testes de microdureza com base na carga e no tamanho do indentador. Ambos são bem adequados para medição de dureza de selecionadas regiões pequenas e selecionadas; além disso, Knoop é usado para testar materiais frágeis tais como cerâmicas. __________________________________________________________________________ 7 Às vezes KHN e VHN são usadas para denotar números de dureza Knoop e Vickers, respectivamente. __________________________________________________________________________ Conversão de Dureza A facilidade de converter a dureza medida numa escala para aquela de uma outra escala é muito desejável. Entretanto, de vez que dureza não é uma bem definida propriedade de material e por causa das dissimilares experimentais entre as várias técnicas, um compreensivo esquema de conversão não poude ser determinado. Dados de conversão de dureza têm sido determinados experimentalmente e encontrou-se que dependem do tipo e características do material. Os mais confiáveis dados de conversão existem para os aços e tais dados são apresentados na Figura 6.17 para as escalas Knoop e Brinell e 2 escalas Rockwell: a escala de Mohs está também incluída. À luz da discussão acima, cuidado deve ser exercido na extrapolação destes dados a outros sistemas de ligas. Figura 6.17 - Comparação de várias escalas de dureza. (Adaptado a partir de G.F.Kinney, Engineering Properties and Applications of Plastics, p. 202, Copyright 1957 por John Wiley & Sons, New York, Reimpresso por permissào de John Wiley & Sons, Inc.). Correlação Entre Dureza e Limite de Resistência à Tração Tanto o limite de resistência à tração quanto a dureza são indicadores de resistência dos metais à deformação plástica. Consequentemente, êles são grosseiramente proporcionais, como mostrado na Figura 6.18, para o limite de resistência à tração como uma função da HB para ferro fundido, aço e latão. A mesma correlação de proporcionalidade não se mantém para todos os metais, como indica a Figura 6.18. Como uma norma empírica para muito aços, a dureza HB e o limite de resistência à tração estão relacionados do seguinte modo TS (psi) = 500 x HB (6.19a) TS (MPa) = 3,45 x HB (6.19b) Testes de dureza são realizados mais frequentemente do qualquer outro teste mecânicopor várias razões: (1a.) Êles são mais simples e mais baratos - ordinariamente nenhuma amostra especial terá que ser preparada. (2a.) O teste é não destrutivo - a amostra nem é fratura nem é excessivamente deformada; uma pequena indentação é a única deformação. (3a.) Outras propriedades mecânicas às vezes podem ser estimadas a partir dos dados de dureza, tais como limite de resistência à tração (Figura 6.18). Figura 6.18 - Correlações entre dureza e limite de resistência à tração de aço, latão e ferro fundido. (Dados tomados a partir de Metals Handbook: Propriedades e Seleção, Irons and Steels, Vol. 1, 9a. Edicão, B. Bardes, Editor, American Society for Metals, 1978,p.36 e 461; e Metals Handbook: Properties and Selection: Nonferrous Alloys and Pure Metals, Vol.2, 9a. edição, H. Baker, Managing Editor, American Society for Metals, 1979, p.327). 6.11 - VARIABILIDADE DE PROPRIEDADES DE MATERIAIS Neste ponto vale a pena discutir uma questão que às vezes provoca problemas a muitos estudantes de engenharia, isto é, que as propriedades de materiais não são quantidades exatas. Isto é, mesmo se nós tivéssemos um aparelho de medição muito precisa e um altamente controlado procedimento de teste, haverá sempre uma dispersão ou variabilidade nos dados que são coletados a partir de amostras do mesmo material. Por exemplo, considere-se um número de idênticas amostras de tração que são preparadas a partir de uma única barra de alguma liga metálica, cujas amostras são subsequentemente testadas quanto a tensão-deformação no mesmo aparelho. Nós iríamos muito provavelmente observar que cada resultante gráfico de tensão-deformação é ligeiramente diferente dos outros. Isto poderia conduzir a uma variedade de valores de módulos de elasticidade, limite convencional de elasticidade e limite de resistência à tração. Um número de fatores conduz a incertezas nos dados medidos. Estes incluem o método de teste, variações nos procedimentos de fabricação da amostra, desvios do perador e calibração do aparelho. Além disso, dentro de um mesmo lote de material podem existir inhomogeneidades e/ou ligeiras diferenças de composição ou ligeiras outras diferenças de lote para lote. Naturalmente, apropriadas medidas deveríam ser tomadas para minimizar a possibilidade de êrros de medição e também para atenuar aqueles fatores que conduzem à variabilidade dos dados. Dever-se-ía também mencionar que este dispersão existe para outras propriedades de materiais tais como densidade, condutividade elétrica e coeficiente de expansão térmica. É importante para o engenheiro projetista conscientizar-se de que esta dispersão e variabilidade das propriedades dos materiais são inevitáveis e deve ser tratada com propriedade. Ocasionalmente, dados devem ser submetidos a tratamentos estatísticos e probabilidades determinadas. Por exemplo, em vez de fazer uma pergunta, "Qual é a resistência à fratura desta liga?" o engenheiro deveria acostumar-se a perguntar, "Qual é a probabilidade de falha desta liga sob estas circunstâncias dadas?". A despeito da variação de alguma propriedade medida, especificação de um valor "típico" é ainda desejável. Mais comumente, o valor típico é descrito tomando-se uma média dos dados. Isto é obtido dividindo-se a soma de todos os valores medidos pelo número de medições tomadas. Em termos matemáticos, a média _ de algum parâmetro x é _ = [ 3i = 1i = n xi] / n (6.20) onde n é o número de observações ou medições e xi é o valor de uma medida discreta. Às vezes é desejável quantificar o grau de dispersão, ou espalhamento, dos dados medidos. A medida mais comum desta variabilidade é o desvio padrão s, que é determinado usando a seguinte expressão: s = [{3i = 1i = n (xi - _)2} / (n - 1)]1/2 (6.21) onde xi , _ e n são definidos acima. Um grande valor do desvio padrão corresponde a um alto grau de dispersão. PROBLEMA EXEMPLO 6.6 Figura 6.19 - (a) Dados de limite de resistência à tração associados com o Problema 6.6. (b) A maneira na qual estes dados poderíam ser graficados. O ponto dos dados corresponde ao valor médio do limite de resistência à tração ( __); barras de erro que indica o grau de dispersão correspondem ao valor médio mais e menos o desvio padrão ( __ + s). 6.12 - FATORES DE SEGURANÇA Na seção anterior foi notado que virtualmente todos os materiais de engenharia exibem uma variabilidade em suas propriedades mecânicas. Além disso, incertezas também existirão na magnitude das cargas aplicadas para aplicações em serviço; ordinariamente, cálculos de tensão são apenas aproximados. Portanto, tolerâncias de projeto devem ser feitas para proteger-se contra uma falha não antecipada.Isto é realizado estabelecendo-se, para o particular material usado, uma tensão de segurança ou tensão de trabalho, usualmente denotada como σw. Para situações estáticas e metais dúteis, σw é tomada como o limite convencional de elasticidade dividido por um fator de segurança, N, ou σw = σw / N (6.22) Com materiais cerâmicos frágeis, existe quase sempre um alto grau de dispersão nos valores de resistência; portanto, análises estatísticas mais sofisticadas são requeridas. Naturalmente, a escolha de um apropriado valor de N é necessário. Se N é demasiado grande, então resultará um superdimensionamento do componente, isto é, ou demasiada quantidade de material ou uma liga tendo uma resistência maior do que a necessária será usada. Valores normalmente usado variam entre 1,2 e 4,0; um bom valor médio é 2,0. Seleção de N dependerá de um número de fatores, incluindo a economia, experiência anterior, precisão com a qual forças mecânicas e propriedades de materiais podem ser determinadas, e, o que é mais importante, as consequências de falha em termos de perda de vida e/ou dano à propriedade. MATERIALS SCIENCE AND ENGINEERING An Introduction William D. Callister, Jr. , John Wiley & Sons, 1991. 7. DISCORDÂNCIAS E MECANISMOS DE FORTALECIMENTO 7.1 - INTRODUÇÃO Capítulo 6 explicou que materiais pode experimentar 2 tipos de deformação: elástica e plástica. Deformação plástica é permanente e resistência mecânica e dureza são medidas da resistência de um material à esta deformação. Numa escala microscópica, deformação plástica corresponde ao movimento líquido de grandes números de átomos em resposta a uma tensão aplicada. Durante este processo, ligações atômicas devem ser rompidas e depois reformadas. Em sólidos cristalinos, deformação plástica muitas vezes envolve o movimento de discordâncias, defeitos cristalinos lineares que foram introduzidos na Seção 4.4. Este capítulo discute as características de discordâncias e seu movimento em deformação plástica. Em adição, e provavelmente mais importantemente, são apresentadas várias técnicas para fortalecer metais monofásicos, sendo descritos os mecanismos delas em termos de discordâncias. Finalmente, as últimas seções deste capítulo são concernentes com os processos de recuperação e recristalização que ocorrem em metais plasticamente deformados, normalmente em elevadas temperaturas - e, em adição, crescimento de grão. DISCORDÂNCIAS E DEFORMAÇÃO PLÁSTICA Primeiros estudos de materiais conduziram ao cálculo de resistências teóricas de cristais perfeitos, que eram muitas vezes maiores do que aqueles realmente medidos. Durante a década de 1930 foi teorizado que esta discrepância em resistências mecânicas poderiam ser explicadas por um tipo de defeito cristalino linear que tinha se tornado conhecido a partir desta época como uma discordância. Entretanto, o estabelecimento da existência de tal defeito de discordância por observação direta com o microscópio eletrônico não havia acontecido até a década de 1950. Depois disto, evoluiu-se uma teoria de discordâncias que explica muitos dos fenômenos físicos e mecânicos em materiais cristalinos, principalmente metais e cerâmicas. 7.2 - CONCEITOS BÁSICOS Discordâncias de aresta e de parafusosão os 2 tipos fundamentais de discordâncias. Numa discordância de aresta, existe localizada distorção da rede ao longo da extremidade de um meio- plano extra de átomos, que também define a linha de discordância (Figura 4.3). Pode-se pensar que uma discordância em parafuso resulte a partir de uma distorção cizalhante; sua linha de discordância passa através do centro de uma espiral, rampa de plano atômico (Figure 4.4). Muitas discordâncias em materiais cristalinos têm componentes tanto de aresta quanto de parafuso; estas são discordâncias mistas (Figura 4.5). Deformação plástica corresponde ao movimento de um grande número de discordâncias. Um discordância de aresta se move em resposta a uma tensão cizalhante aplicada numa direção perpendicular à sua linha; a mecânica do movimento de discordância está representada na Figura 7.1. Seja o plano A o meio plano inicial extra de átomos. Quando uma tensão cizalhante é aplicada como indicada (Figura 7.1a), plano A é forçado para a direita; este por sua vez empurra as metades do topo dos planos B, C, D e assim por diante, na mesma direção. Se a tensão cizalhante aplicada for de suficiente magnitude; as ligações interatômicas de plano B são separadas ao longo do plano de cizalhamento e a metade superior do plano B se torna o meio-plano extra à medida em que o plano A se liga com a metade da base do plano B (Figura 7.1b). Este processo é subsequentemente repetido para outros planos, de tal maneira que o meio-plano extra, por etapas discretas, se mova da esquerda para a direita por sucessivas e repetidas quebras de ligações e deslocamentos por distâncias interatômicas de meios-planos superiores. Antes e após o movimento de uma discordância através de alguma particular região do cristal, o arranjo atômico é ordenado e perfeito; é apenas durante a passagem do meio-plano extra que a estrutura da rede é interrompida. Finalmente, este meio-plano extra pode emergir a partir da superfície certa do cristal, formando uma aresta tem uma distância atômica de largura; isto é mostrado na Figura 7.1c. O processo pelo qual deformação é produzida por movimento de discordância é denominado escorregamento ("slip"); o plano ao longo do qual a linha de discordância percorre é o plano de escorregamento, como indicadona Figura 7.1. Deformação plástica macroscópica simplesmente corresponde à deformação permanente que resulta a partir do movimento de discordâncias, ou escorregamento, em resposta a uma aplicada tensão cizalhante, como representada na Figura 7.2a. Figura 7.2 - A formação de um degrau na superfície de um cristal pelo movimento de (a) uma discordância de aresta e (b) uma discordância em parafuso. Note-se que para uma discordância de aresta, a linha de discordância se move na direção da tensão cizalhante aplicada τ; para uma discordância em parafuso, o movimento da linha de discordância é perpendicular à direção da tensão. (Adaptado a partir de H.W. Hayden, W.G. Muffatt e J. Wulf, The Structure and Properties os Materials,Vol. III, Mechanical Behavior,p. 70. Copyright 1965 por John Wiley & Sons, New York, Reimpresso por permissãode John Wiley & Sons.) O movimento de discordância é análogo ao modo de locomoção empregado por uma lagarta (Figura 7.3). A lagarta forma uma corcova perto da sua extremidade posterior puxando o seu último par de pernas até uma distância igual a uma unidade de perna. A corcova é impulsionada para a frente por repetida elevação e deslocamento de um par de pernas. Quando a corcova atinge a extremidade anterior, toda a larva terá se movido para a frente de um espaço igual à distância de separação das pernas. A corcova da larva e o seu movimento correspondem ao meio-plano extra de átomos no modelo de discordância da deformação plástica. Figura 7.3 - Representação da analogia entre os movimentos da larga e da discordância. O movimento de uma discordância em parafuso em resposta à tensão cizalhante aplicada é mostrada na Figura 7.2b; a direção do movimento é perpendicular à direção da tensão. Para uma discordância de aresta, o movimento é paralelo à tensão cizalhante. Entretanto , a deformação plástica líquida para o movimento de ambos os tipos de discordância é a mesma (vide figura 7.2). A direção do movimento da linha de discordância mista nem é perpendicular nem é paralela à tensão aplicada, mas sim se situa em algum lugar entre as mesmas. Virtualmente todos os materiais cristalinos contém algumas discordâncias que foram introduzidas durante a solidificação, durante deformação plástica e como uma consequência das tensões térmicas que resultam de um resfriamento rápido. O número de discordâncias ou densidade de discordância num material é expresso como o comprimento total da discordância por unidade de volume, ou, equivalentemente, o número de discordâncias que intersectam a unidade de área de uma seção aleatória. As unidades de densidade de discordâncias são milímetros de discordância por milímetro cúbico ou justo por milímetro quadrado. Densidades de discordância tão baixas quanto 103 mm-2 são tipicamente encontradas em cristais metálicos cuidadosamente preparados. Para metais intensamente deformados, a densidade de discordâncias pode chegar a valores tão altos quanto 109 a 1010 mm-2. O tratamento térmico conseguirá reduzir a densidade de discordâncias de uma amostra de metal deformado até o nível de 105 a 106 mm-2. 7.3 - CARACTERÍSTICAS DE DISCORDÂNCIAS Várias características de discordâncias são importantes no que se refere às propriedades mecânicas de metais. Estas incluem campos de deformação que existem ao redor de discordâncias, que são influentes na determinação da mobilidade das discordâncias, bem como sua capacidade de se multiplicar. Quando metais são plasticamente deformados, alguma fração da energia de deformação (aproximadamente 5%) é retida internamente; a parte remanescente é dissipada como calor. A porção maior desta energia armazenada está como energia de deformação associada com discordâncias. Considere-se uma discordância de aresta representada na Figura 7.4. Como já mencionado, existe alguma distorcão da rede atômica ao redor da linha de discordância por causa da presença de um meio-plano extra de átomos. Como uma consequência, existem regiões nas quais deformações da rede compressivas, trativas e cizalhantes são impostas sobre os átomos vizinhos. Por exemplo, átomos imediatamente acima e adjacentes à linha de discordância são apertados entre si. Como um resultado, pode-se pensar que estes átomos estão experimentando uma deformação compressiva relativamente aos átomos posicionados no cristal perfeito e bem removidos a partirda discordância; isto é ilustrado na Figura 7.4. Diretamente abaixo do meio-plano, o efeito é justamente oposto; átomos da rede suportam uma deformação trativa imposta, que é como mostrada. Tensão cizalhante também existena vizinhança da discordância de aresta. Para discordância em parafuso, deformações da rede são apenas de cizalhamento puro. Estas distorções da rede podem ser consideradas como campos de deformação que se irradiam a partirda linha de discordância. As deformações se estendem para dentro dos átomos circunvizinhos e sua magnitude decrescem com a distância radial a partir da discordância. Figura 7.4 - Regiões de compressão (escura) e de tração (clara) localizadas ao redor de uma discordância de aresta. (Adaptada a partir de W.G.Moffatt, G.W.Pearsall e J.Wullf, The Structure and Properties of Materials, Vol.I, Structure, p.85, Copyright 1964 por John Wiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons, Inc.). Os campos de deformação circundando as discordâncias em estreita proximidade entre si podem interagir de tal maneira que forças são impostas em cada discordância pelas interações combinadas de todas as discordâncias vizinhas. Por exemplo, considere-se 2 discordâncias de aresta que têm omesmo sinal e o idêntico plano de escorregamento, como representado na Figura 7.5a. Os campos de deformação compressiva e trativa para ambos se situam no mesmo lado do plano de escorregamento; a interação do campo de deformação é tal que existe entre estas duas discordâncias isoladas uma força mutuamente repulsiva que tende a movê-las uma para longe da outra. Por outro lado, 2 discordâncias de sinais opostos e tendo o mesmo plano de escorregamento serão atraídos entre si, como indicado na Figura 7.5b e ocorrerá aniquilação de discordância quando elas se encontrarem. Isto é, os 2 meio-planos extras de átomos se alinharão e se tornarão um plano inteiro. Interações de discordâncias são possíveis entre discordâncias de aresta, discordâncias em parafuso e/ou discordâncias mistas, para uma variedade de orientações. Estes campos de deformação e associadas forças são importantes nos mecanismos de fortalecimento para metais. Figura 7.5 (a) Duas discordâncias de aresta de mesmo sinal e situando-se no mesmo plano de escorregamento exercem uma força repulsiva entre si; C e T denotam regiões de compressão e tração, respectivamente.(b) Discordâncias de aresta de sinais opostos e situando-se no mesmo plano de escorregamento exercem uma força de atração entre si. Ao se encontrarem, elas se aniquilam mutuamente e deixam uma região de cristal perfeito. (Adaptado a partir de H.W. Hayden, W.G. Moffatt e J.Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, p.75, Copyright 1965 por John Wiley & Sons,New York, Reimpresso por permissão de John Wiley & Sons,Inc.). Durante deformação plástica, o número de discordâncias aumenta dramaticamente. Nós sabemos que a densidade de discordâncias num metal que tenha sido altamente deformado pode ser tão alto quanto 1016 mm-2. Contornos de grão, bem como defeitos internos e irregularidades de superfície tais como arranhões e pequenos entalhes, que agem como concentrações de tensão, podem servir como sítios de formação de discordâncias durante a deformação. Sob algumas circunstâncias, discordâncias existentes pode também se multiplicar. 7.4 - SISTEMAS DE ESCORREGAMENTO Discordâncias não se movem com o mesmo grau de facilidade em todos os planos cristalográficos de átomos e em todas as direções cristalográficas. Ordinariamente existe um plano preferido e naquele plano existem direções específicas ao longo das quais o movimento de discordâncias ocorrem. Este plano é chamado o plano de escorregamento; segue-se que a direção de movimento é chamada a direção de escorregamento. Esta combinação de plano de escorregamento e direção de escorregamento é denominada o sistema de escorregamento. O sistema de escorregamento depende da estrutura cristalinado metal e é tal que a distorção atômica que acompanha o movimento de uma discordância é um mínimo. Para uma particular estrutura cristalina, o plano de escorregamento é aquele plano tendo o mais denso empilhamento atômico, isto é, tem a mais alta densidade planar. A direção de escorregamento corresponde à direção, neste plano, que é a mais estreitamente compactada com átomos, isto é, tem a mais alta densidade linear. Densidades atômicas planar e linear foram discutidas na Seção 3.10. Considere-se, por exemplo, a estrutura cristalina CFC, da qual uma célula unitária é mostrada na Figura 7.6a. Existe um conjunto de planos, a família{111}, todos eles estreitamente compactados. Um plano tipo (111) é indicado na célula unitária; na Figura 7.6b, este plano está posicionado dentro plano da página, no qual átomos estão agora representados como tocando os vizinhos mais próximos. Figura 7.6 (a) Um sistema de escorregamento {111}<110> mostrado dentro de uma célula unitária CFC. (b) O plano {111} de (a) e três direções de escorregamento <110> (como indicado por setas dentro daquele plano compreende possíveis sistemas de escorregamento. Escorregamento ocorreao longo das direções tipo <110> dentro dos planos {111}, como se encontra também indicado na Figura 7.6. Portanto, {111}<110> representam a combinação plano de escorregamento e direção de escorregamento ou o sistema de escorregamento para CFC. Figura 7.6b demonstra que um dado plano de escorregamento pode conter mais do que uma única direção de escorregamento. Assim podem existir vários sistemas de escorregamento para uma particular estrutura cristalina; o número de sistemas de escorregamento independentes representa as diferentes combinações possíveis de planos e direções de escorregamento. Por exemplo, para estrutura cúbica de face centrada, existem 12 sistemas de escorregamento; 4 únicos planos {111} e , dentro de cada plano, 3 independentes direções <110>. Os possíveis sistemas de escorregamento para estruturas cristalinas CCC e HC estão listados na Tabela 7.1. Para cada uma destas estruturas, o escorregamento é possível em mais de uma família de planos (por exemplo, {110}, {211} e {321} para CCC). Para metais tendo estas 2 estruturas cristalinas alguns sistemas de escorregamento são às vezes operáveis somente a elevadas temperaturas. TABELA 7.1 - Sistemas de Escorregamento para Metais Cúbico de Face Centrada, Cúbico de Corpo Centrado e Hexagonal Compacta. Metais com estruturas cristalinas CFC ou CCC têm relativamente grande número de sistemas de escorregamento (pelo menos 12). Estes metais são bastante dúteis porque deformação plástica extensiva é normalmente possível ao longo de vários sistemas. Ao contrário, metais HC tendo uns poucos sistemas de escorregamento ativos são normalmente bastante frágeis. 7.5 - ESCORREGAMENTO EM MONOCRISTAIS Uma explicação adicional de escorregamento é simplificada tratando o processoem monocristais, então fazendo a apropriada extensão a materiais policristalinos. Como mencionado anteriormente, discordâncias de aresta, em parafuso e mistas se movem em resposta a tensões de cizalhamento aplicadas ao longo de um plano de escorregamento e numa direção de escorregamento. Mesmo embora uma tensão aplicada possa ser uma tensão pura de tração (ou compressão), componentes cizalhantes existem em todas as direções exceto naqueles alinhamentos paralelos ou perpendiculares à direção da tensão. Estas são denominadas tensões de cizalhamento resolvidas e suas magnitudes dependem não apenas da tensãoaplicada, mas também da orientação tanto do plano de escorregamento quanto da direção de escorregamento dentro daquele plano. Seja representado por φ o ângulo entre a normal ao plano de escorregamento e a direção da tensão aplicada e λ o ângulo entre as direções de escorregamento e de tensão, como indicado na Figura 7.7; pode ser mostrado que para a tensão cizalhante resolvida τR τR = σ cosφ cosλ (7.1) onde σ é a tensão aplicada. Em geral, φ + λ … 90o, de vez que não há necessidade de que o eixo de tração, a normal ao plano de escorregamento e a direção de escorregamento todas fiquem no mesmo plano. Figura 7.7 - Correlações geométricas entre eixo de tração, plano de escorregamento e direção de escorregamento usadas no cálculode tensão de cizalhamento resolvida para um monocristal. Um monocristal de metal tem um número de diferentes sistemas de escorregamento que são capazes de operar. A tensão de cizalhamento resolvida normalmente se difere para cada um porque a orientação de cada um em relação ao eixo da tensão (ângulos φ e λ) também se diferem. Entretanto, um sistema de escorregamento está geralmente orientado mais favoravelmente, isto é, tem a mais alta tensão cizalhante resolvida, σR (max): σR(max) = σ(cosφ cosλ)max (7.2) Em resposta a uma tensão de tração (ou compressão) aplicada, escorregamento num monocristal começa no sistema de escorregamento mais favoravelmente orientado quando a tensão de cizalhamento resolvida atinge algum valor crítico, denominado tensão de cizalhamento resolvida crítica τcrss ; ela representa a tensão cizalhante mínima requerida para iniciar o escorregamentoe é uma propriedade do material que determina quando ocorre o escoamento.O monocristal praticamente se deforma ou se escoa quando τR (max) = τcrss e a magnitude da tensão aplicada requerida para iniciar o escoamento (isto é, o limite convencional de elasticidade σy) é σy = τcrss / (cosφ cosλ)max (7.3) A tensão mínima necessária para introduzir o escoamento ocorre quando um monocristal é orientado de tal maneira que φ = λ = 45o ; sob estas condições, σy = 2 τcrss (7.4) Para uma amostra de monocristal que está tensionada em tração, deformação será tal como na Figura 7.8, onde o escorregamento ocorre ao longo de um número de equivalentes e mais favoravelmente orientados planos e direções em várias posições ao longo do comprimento da amostra. Esta deformação de escorregamento se forma como pequenos detraus na superfície do monocristal que são paralelos entre si e dão volta ao redor da circunferência da amostra como indicado na Figura 7.8. Cada degrau resulta a partir do movimento de um grande número de discordâncias ao longo do mesmo plano de escorregamento. Na superfície de uma amostra polida de monocristal, estes degrau aparecem como linhas que são denominadas linhas de escorregamento. Um monocristal de zinco que foi plasticamente deformado ao grau em que estas marcas de escorregamento são discerníveis é mostrado na Figura 7.9. Figura 7.8 - Escorregamento macroscópico de um monocristal. Figura 7.9 - Escorregamento num monocristal de zinco. (A partir de C.F. Elam, The Distortion of Metal Crystals, Oxford University Press, London, 1935). Com continuada extensão de um monocristal, tanto o número de linhas de escorregamento quando a largura do degrau de escorregamento aumentarão. Para metais CFC e CCC, escorregamento pode eventualmente começar ao longo de um segundo sistema de escorregamento, que é aquele o seguindo mais favoravelmente orientado com o eixo de tração. Além disso, para cristais HC tendo poucos sistemas de escorregamento, se, para o sistema de escorregamento mais favorável, o eixo da tensão é ou perpendicular à direção de escorregamento (λ = 90o) ou paralelo ao plano de escorregamento (φ = 90o), a tensão de cizalhamento resolvida crítica será zero. Para estas orientações extremas o cristal ordinariamente se fratura em vez dedeformar-se plasticamente. PROBLEMA EXEMPLO Considere-se um monocristal de ferro CCC orientado de tal maneira que uma tensão de tração é aplicada ao longo de uma direção [010]. (a) Calcule a tensão de cizalhamento resolvida ao longo de um plano (110) e uma direção [_11] quando uma tensão de tração 7500 psi (52 MPa) é aplicada. (b) Se escorregamento ocorrer num plano (110) e numa direção [_11] e a tensão cizalhante resolvida crítica é 4350 psi (30 MPa), calcule a magnitude da tensão de tração aplicada necessária para iniciar o escoamento. SOLUÇÃO (a) A célula unitária CCC juntamente com a direção de escorregamento e o plano de escorregamento, bem como a direção da tensão aplicada, está mostrada no diagrama (a) abaixo. Como indicado, φ, o ângulo entre a normal ao plano (110) e a direção [010] é 45o. A partir do triângulo ABC no diagrama (b), λ, o ângulo entre as direções [_11] e [010] é tg-1[a (2/a)1/2] = 54,7o , a sendo o comprimento da célula unitária. Assim, deacordo com a Equação 7.1 , τR = σ cosφ cosλ = (7500 psi)(cos 45o)(cos 54.7o) = 3060 psi (21,1 MPa) (b) O limite convencional de elasticidade σy pode ser calculado a partirda Equação7.3, φ e λ serão as mesmas daquelas da parte (a) e σy = 4350 psi / [(cos 45o)(cos 54,7o)] = 10600 psi (73,1 MPa). 7.6 DEFORMAÇÃO PLÁTICA DE MATERIAIS POLICRISTALINOS Deformação e escorregamento em materiais policristalinos é algo mais complexo. Por causa das orientações cristalográficas randômicas dos numerosos grãos, a direção de escorregamento varia de um grão para outro. Para cada um, o movimento de discordância ocorre ao longo do sistema de escorregamento que tem a orientação mais favorável, como definido acima. Isto é exemplificado por uma fotografia de uma amostra de cobre policristalina que foi deformada plasticamente (Figura 7.10); antes da deformação a superfície foi polida. Linhas de escorregamento são visíveis e parece que para a maioria dos grãos 2 sistemas de escorregamento operaram, como evidenciado pelos 2 conjuntos de linhas paralelas que também se intersectam. Além disso, variação na orientação de grão está indicada pela diferença em alinhamento das linhas de escorregamento para vários grãos. Figura 7.10 - Linhas de escorregamento na superfície de uma amostra policristalina de cobre que foi polida e subsequentemente deformada. 173x. (Fotomicrografia cortesiade C. Brady, National Bureau of Standards). Deformação plástica bruta de uma amostra policristalina corresponde à comparável distorção dos grãos individuais por meio de escorregamento. Durante a deformação, integridade mecânica e coerência são mantidas ao longo dos contornos de grão; isto é, os contornos de grão não se espedaçam ou não se abrem. Como uma consequência, cada grão individual é constrangido, num certo grau, na forma em que ele pode assumir por seus grãos vizinhos. A maneira na qual grãos se distorcem como um resultado de deformação plástica bruta é indicada na Figura 7.11. Antes da deformação os grãos são equiaxiais, ou têm aproximadamente a mesma dimensão em todas as direções. Para esta particular deformação, os grãos se tornaram elongados ao longo da direção na qual a amostra foi estendida. Figura 7.11 - Alteração da estrutura do grão de um metal policristalino como um resultado de deformação plástica.(a) Antes da deformação os gràos eram equiaxiais. (b) A deformação produziu grãos alongados 170x. (A partir de W.G.Moffatt, G.W. Pearsall e J.Wulff, The Structure and Properties of Materials, Vol.I, Structure, p.140, Copyright 1964 por John Wiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons, Inc.). Metais policristalinos são mais fortes do que seus monocristais equivalentes, o que significa que maiores tensões são requeridas para iniciar escorregamento e o acompanhante escoamento. Isto é, até num grande grau, também um resultado de constrangimentos geométricos que são impostos sobre os grãos durante a deformação. Mesmo embora um monogrão pode ser favoravelmente orientado com a tensão aplicada para escorregar, êle não pode se defomar até que grãos adjacentes e menos favoravelmente orientados sejam capazes de se escorregar também; isto requer um maior nível de tensão aplicada. 7.7 - DEFORMAÇÃO POR MACLAÇÃO Em adição ao escorregamento, deformação plástica em alguns materiais metálicos pode ocorrer pela formação de maclas mecânicas ou maclação ("twinning"). O conceito de uma macla foi introduzido na Seção 4.5; isto é, uma força cizalhante pode produzir deslocamentos atômicos tais que de um lado de um plano (o contorno de macla), átomos fiquem localizados em posições de imagem de espelho de átomos do outro lado do referido plano. A maneira na qual isto é realizado é demonstrado na Figura 7.12. Aqui, círculos abertos representam átomos que não se moveram e círculos tracejados e escuros representam posições originais e finais, respectivamente, de átomos dentro da região maclada. Como pode ser notado nesta figura, a magnitude de deslocamento dentro da região de macla (indicada por setas) é proporcional à distância a partir do plano de macla. Além disso, maclação ocorre num definido plano cristalográfico e numa direção específica que depende da estrutura cristalina. Por exemplo, para metais CCC, o plano de macla e a direção de macla são (112) e [111], respectivamente. Figura 7.12 - Diagrama esquemático mostrando como maclação (geminação) resulta a partir de uma tensão cizalhante aplicada τ. Em (b), círculosabertos representam átomos que não mudaram de posição; círculos tracejadose círculos escuros representam as posições original efinal de átomos, respectivamente. (A partir de G.E. Dieter, Mechanical Metallurgy, 3a. Edição, Copyright 1986 por McGraw-Hill Book Company,New York, Reproduzido com permissão de McGraw-Hill Book Company.). As deformações de escorregamento e de maclação são comparadas na Figura7.13 para um monocristal que é submetido a uma tensão cizalhante τ. Bordas(frisos) de escorregamento, cuja formação foi descrita na Seção 7.5, são mostrados na Figura 7.13a. Para maclação, a deformação cizalhante é homogênea (Figura 7.13b). Estes 2 processos se diferem entre si em vários sentidos. Primeiro, para escorregamento, as orientação cristalográfica acima e abaixo do plano de escorregamento é a mema tanto antes quanto depois da deformação; enquanto isso, para maclação existirá uma reorientação através do plano de macla. Em dição, escorregamento ocorre em distintos múltiplos do espaçamento atômico, enquanto que o deslocamento atômico para maclação é menor do que a separação interatômica. Figura 7.13 - Para um monocristal submetido a uma tensão cizalhante τ, (a) deformação por escoregamento; (b) deformação por maclação. Maclação mecânica ocorre em metais que têm estruturas cristalina CCC e HC, a baixas temperaturas, e altas taxas de carregamento (carregamento de choque), condições a que está restrito o processo de escorregamento; isto é, existem uns poucos sistemas de escorregamento operáveis. A quantidade de deformação plástica a partir da maclação é normalmente pequena relativamente àquela resultante a partir do escorregamento. Entretanto, a importância real da maclação reside nas acompanhantes reorientações cristalográficass; maclação pode colocar novos sistemas de escorregamento em orientações que são favoráveis relativas ao eixo da tensão de tal maneira que o processo de escorregamento pode agora ocorrer. MECANISMOS DE FORTALECIMENTO EM METAIS Engenheiros metalúrgico e de materiais são às vezes solicitados a projetar ligas tendo altas resistências juntamente com alguma dutilidade e tenacidade; ordinariamente, dutilidade é sacrificada quando uma liga é fortalecida.Várias técnicas de endurecimento são disponíveis a um engenheiro e, frequentemente, a seleção de liga depende da capacidade do material de ser desenvolvidocom as características mecânicas requeridas para uma particular aplicação. Importante para entender os mecanismos de fortalecimento é a relação entre o movimento de discordância e o comportamento mecânico de metais. Uma vez que deformação plástica macroscópica corresponde ao movimento de grandes números de discordâncias, a capacidade de um material de se deformar plasticamente depende da capacidade das discordâncias se moverem. Uma vez que dureza e resistência mecânica ( tanto o limite convencional de elasticidade quanto o limite de resistência à tração) está relacionada à facilidade com a qual a deformação plástica pode ocorrer, por redução da mobilidade de discordâncias, a resistência mecânica pode ser melhorada; isto é, maiores forças mecânicas serão requeridas para iniciar a deformação plástica. Em contraste, quanto mais descontrangido o movimento das discordâncias, tanto maior a facilidade com a qual um metal pode se deformar e mais macio e mais fraco ele se torna. virtualmente todas as técnicas de fortalecimento repousam sobre este princípio simples: restrição ou endurecimento do movimento de discordância torna a um material mais duro e mais forte. A presente discussão é confinada aos mecanismos de fortalecimento para metais monofásicos, por redução de tamanho de grão, formação de liga por solução sólida e endurecimento por deformação. Deformação e fortalecimento de ligas multifásicas são mais complicadas, envolvendo conceitos a serem discutidos. 7.8 - FOTALECIMENTO POR REDUÇÃO DE TAMANHO DE GRÃO O tamanho dos grãos, ou diâmetro médio de grão, num metal policristalino influencia as propriedades mecânicas. Grãos adjacentes normalmente têm diferentes orientações cristalográficas e, naturalmente, um contorno de grão comum, como indicado na Figura 7.14. Durante a deformação plástica, movimento de escorregamento ou discordância deve ocorrer através deste contorno comum, digamos a partir do grão A para o grão B na Figura 7.14. O contorno de grão age como uma barreira ao movimento da discordância por 2 razões: (1) De vez que 2 grãos são de diferentes orientações, uma discordância passando através do grão B terá que mudar sua direção de movimento; isto se torna mais difícil quando a desorientação cristalográfica aumenta. (2) A desordem atômica dentro de uma região de contorno de grão resulta numa descontinuidade de planos de escorregamento a partir de um grão para o outro. Figura 7.14 - O movimento de uma discordância quando ela encontra um contorno de grão, ilustrando como o contorno age como uma barreira ao escorregamento continuado. Planos de escorregamento são descontínuos e mudam de direção através do contorno. (Adaptado a partir de L.H. Van Vlack, A Textbook of Materials Technology, Copyright 1973 por Addison-Wesley Publishing Co., Reimpresso por permissão de Addison-Wesley Publishing Co., Inc. Reading,MA). Deveria ser mencionado que não é o caso para que discordâncias passem através contornos de grão durante a deformação para contornos de grão de alto ângulo; em vez disto, uma concentração de tensão à frente de um plano de escorregamento num grão pode ativar fontes para novas discordâncias num grão adjacente. Um material finamente granulado (um que tem grãos pequenos) é mais duro e mais forte do que um que seja grosseiramente granulado, de vez que o primeiro tem uma maior área total de contorno de grão para impedir o movimento da discordância. Para muitos materiais, o limite convencional de elasticidade σy varia com o tamanho de grão de acordo com a relação σy = σo + kyd -1/2 (7.5) Nesta expressão, d é o diâmetro médio de grão e σo e ky são constantes para um particular material. A Figura 7.15 demonstra a dependência do limite convencional de elasticidade em relação ao tamanho de grão para uma liga de latão. Tamanho de grão pode ser regulado pela taxa de solidificação a partir da fase líquida e também por deformação plástica seguida por um apropriado tratamento térmico, como discutido na Seção 7.13. Figura 7.15 - A influência do tamanho de grão sobre o limite convencional de elasticidade de uma liga de latão de 70Cu-30Zn. Note-se que o diâmetro do grão aumenta a partir da direita para a esquerda e não é linear. (Adaptado a partir de H.Suzuki, "A Relação entre Estrutura e Propriedades Mecânicas de Metais", Vol. II, National Physical Laboratory Symposium No.15, p.524). Contornos de grão de baixo ângulo (Seção 4.5) não são efetivos em interferir com o processo de escorregamento por causa do ligeiro desalinhamento cristalográfico através do contorno. Por outrolado, contornos de macla (Seção 4.5) efetivamente bloqueará escorregamento e aumentar a resistência do material. Contornos entre 2 diferentes fases são também impedimentos para movimento de discordâncias. Os tamanhos e formas das fases constituintes afetam significativamente as propriedades mecânicas de ligas multifásicas; estes são tópicos de discussão nas Seções 10.7, 10.8 e 17.1. 7.9 - ENDURECIMENTO POR SOLUCÃO SÓLIDA Uma outra técnica para fortalecer e endurecer metais é a formação de liga com átomos impurezas que entram em soluções sólidas quer substitucionais quer intersticiais. Concordantemente, isto é denominado endurecimento por solução sólida. Metais de alta pureza são quase sempre mais macios e fracos do que ligas compostas do mesmo metal base. Aumentando da concentração da impureza resulta num acompanhante aumento no limite de resistência à tração, e dureza, como indicado nas Figuras 7.16a e 7.16b para zinco em cobre; a dependência da dutilidade em relação à concentração de zinco é apresentada na Figura 7.16c. Figura 7.16 - Variação com a concentração dezinco: (a) do limite de resistência à tração, (b) dureza e (c) dutilidade (%EL) para ligas cobre-zinco, mostrando fortalecimento. (Adaptado a partir de Metals Handbook, Propertiesand Selection Nonferrous Alloys and Pure Metals, Vol. 2, 9a.Edição, H.Baker, Managing Editor, American Society for Metals, 1979, p.314). Ligas são mais fortes do que metais puros porque átomos impurezas que vão para a solução sólida ordinariamente impõe deformações na rede dos circundantes átomos hospedeiros. Resultam interações de campos de deformação de rede entre discordâncias e estes átomos impurezas e, consequentemente, o movimento da discordância é restringido. Por exemplo, um átomo de impureza que seja menor do que um átomo hospedeiro a quem êle substitui exerce deformações trativas sobre a circundante rede cristalina, como ilustrado na figura 7.17a. Ao contrário, um átomo substitucional maior impõe deformações compressivas em sua vizinhança (Figura 7.18a). Estes átomos solutos tendema se segregar ao redor de discordâncias numa maneira que permita reduzir a energia global de deformação, isto é, cancer alguma deformação numa rede que circunda uma discordância. Para realizar isto, um átomo de impureza menor é localizado onde sua deformação trativa irá anular parcialmente alguma deformação compressiva de discordância. Para a discordância de aresta na Figura 7.17b, este estaria adjacente à linha da discordâncvia e acima deste plano de escorregamento. Um átomo de impureza maior estaria situado como na figura 7.18b. Figura 7.17 (a) Representação de deformações de rede trativas impostas sobre átomos hospedeiros por um átomo de impureza substitucional menor. (b) Localizações possíveis de um átomo de impureza menor em relação a uma discordância de aresta tal que existe cancelamento parcial de de deformações de rede impureza-discordância. Figura 7.18 (a) Representação de deformações compressivas impostas sobre átomos hospedeiros por um átomo impureza substitucional maior. (b) Localizaçòes possíveis de átomos de impureza maiores em relação a uma discordância de aresta tal que existe cancelamento parcial de deformações de rede impureza-discordância. A resistência ao escorregamento é maior quando átomos impurezas estão presentes porque a deformação global da rede deve aumentar se uma discordância for arrancada a partir dela. Além disto, as mesmas interações de deformação de rede (Figuras 7.17b e 7.18b) existirão entre átomos impurezas e discordâncias que estão em movimento durante deformação plástica. Assim uma maior tensão aplicada é necessária para primeiro iniciar e a seguir continuar a deformação plástica para ligas de solução sólida, como oposto para metais puros; isto é evidenciado pela melhoria da resistência mecânica e da dureza. 7.10 - ENDURECIMENTO POR DEFORMAÇÃO Endurecimento por deformação é um fenômeno pelo qual um metal dútil se torna mais duro e mais forte quando êle é plasticamente deformado. Às vezes êle é também denominado endurecimento por trabalho , ou, porque a temperatura na qual a deformação ocorre é "fria" em relação à temperatura absoluta de fusão do metal, trabalho a frio. Muitos metais se endurecem por deformação à temperatura ambiente. É às vezes conveniente exprimir o grau de deformação plástica como porcentagem de trabalho a frio em lugar de deformação. Porcentagem de trabalho a frio (%CW) é definida como %CW = ([Ao - Ad] / Ao) x 100 (7.6) onde Ao é a área original da seção reta que experimenta a deformação e Ad é a área após a deformação. Figuras 7.19a e 7.19b demonstramcomo aço, latão e cobre aumentam em limite convencional de elasticidade e em limite de resistência à tração com o aumento de trabalho a frio. O preço para estas melhorias de dureza e de resistência mecânica é a dutilidade do metal. Isto é mostrado na Figura 7.19c, na qual a dutilidade, em porcentagem de elongação, experimenta uma redução com o aumento da porcentagem de trabalho a frio para as mesmas 3 ligas. A influência de trabalho frio sobre o comportamento de um aço é claramente retratada na Figura 7.20. Figura 7.19 - Para um aço 1040, latão e cobre, (a) o aumento do limite convencional de elasticidade, (b) o aumento do limite de resistência à traçào, e (c) o decréscimo da dutilidade (%EL) com a porcentagem de trabalho a frio. (Adaptadoa partir de Metals Handbook: Properties and Selection, Irons and Steels, Vol.1, 9a.Edição, B. Bardes, Editor, American Society for Metals, 1978, p.226, e Metals Handbook: Properties and Selection: Nonferrous Alloys and Pure Metals, Vol.2, 9a. Edição, H. Baker, Managing Editor, American Society for Metals, 1979, pp.276 e 327). Figura 7.20 - A influência do trabalho a frio sobre o comportamento tensão-deformação para um aço baixo carbono. (A partir de Metals Handbook: Properties and Selection: Irons and Steels, Vol.1, 9a. Edição, B. Bardes, Editor, American Society for Metals, 1978,p.221). Endurecimento por deformação é demonstrado num diagrama tensão-deformação apresentado anteriormente (Figura 6.16). Inicialmente, o metal com limite convencional de elasticidade σyo é plasticamente deformado até o ponto D. A tensão é aliviada, a seguir reaplicada com um resultante novo limite convencional de elasticidade, σyi. O metal tornou-se assim mais forte durante o processo porque σyi é maior do que σyo. O fenômeno do endurecimento por deformação é explicado com base em interações dos campos de deformação discordância-discordância similares àqueles discutidos na Seção 7.3. A densidade de discordância num metal aumenta com a deformaçào ou trabalho a frio, como já mencionado. Consequentemente, a distância média de separação entre discordâncias decresce - as discordâncias são posicionadas mais próximas entre si. Em média, interações de deformação discordância-discordância são repulsivas. O resultado líquido é que o movimento de uma discordância é impedido pela presença de outras discordâncias. À medida em que a densidade de discordâncias aumenta , esta resistência ao movimento de discordância por outras discordâncias se torna mais pronunciada. Assim a tensão imposta necessária para deformar um metal aumenta com o aumento do trabalho a frio. Endurecimento por deformação é às vezes utilizado comercialmente para melhorar as propriedades mecânicas de metais durante os procedimentos de fabricação. Os efeitos de endurecimento por deformação podem ser removidos por um tratamento térmico de recozimento, como discutido na Seção 11.2. De passagem, para a expressão matemática que relacionada a tensão verdadeira e deformação verdadeira, Equação 6.18, o parâmetro n é denominado expoente de endurecimento por deformação, que é uma medida da capacidade de um metal de se endurecer por deformação; quanto maior a sua magnitude, tanto maior o endurecimento por deformação para uma dada quantidade de deformação plástica. PROBLEMA EXEMPLO 7.2 RECUPERAÇÃO, RECRISTALIZAÇÃO E CRESCIMENTO DE GRÃO Como delineado nos parágrafos anteriores deste capítulo, a deformação plástica de uma amostra de metal policristalino em temperaturas que sejam baixas em relação à sua temperatura absoluta de fusão produz variações microestruturais e de propriedade que incluem: (1) uma mudança na forma de grão (Seção 7.6), (2) endurecimento por deformação (Seção 7.10), e (3) um aumento na densidade de discorância (Seção 7.3). Alguma fração da energia expendida na deformação é armazenada no metal como energia de deformação que está associada com zonas trativa, compressivas e cizalhante ao redor das récem criadas discordâncias (Seção 7.3). Além disto, outras propriedades como conduvidade elétrica (Seção 19.8) e resistência à corrosão podem ser modificadas como uma consequência de deformação plástica. Estas propriedades e estruturas pode revertidas aos estados anteriores ao trabalho a frio mediante apropriado tratamento térmico. Tal restauração resulta a partir de 2 diferentes processos queocorrem em elevadas temperaturas recuperação e recristalização, que pode ser seguida de crescimento de grão. 7.11 - RECUPERAÇÃO Durante a recuperação, uma parte da energia interna de deformação armazenada é aliviada em virtude do movimento discordância (na ausência de uma tensão aplicada externamente), como um resultado da melhorada difusão atômica a elevada temperatura. Existe alguma redução no númerode discordâncias e configurações de discordâncias (similares àquelas mostrada na Figura 4.8) , tendo baixas energias de deformação, são produzidas. Em adição, propriedades físicas tais como condutividades elétrica e térmica e outras parecidas são recuperadas de volta aos seus estados antereriores ao trabalho a frio. 7.12 - RECRISTALIZAÇÃO Mesmo após a recuperação ter-se completado,os grãos ainda se encontarão num estado de energia de deformação relativamente alto. Recristalização é a formação de um novo conjunto de grãos equiaxiais e livres de deformação que têm baixas densidades de discordâncias e são característicos da condição anterior ao trabalho a frio. A força motriz para produzir esta nova estrutura de grão é a diferença na energia interna entre material deformado e não deformado. Os novos grãos formam núcleos muito pequenose crescem até que êles substituam completamente o material matriz, processos que envolvem difusão de curta distância. Vários estágios no processo de recristalização estão representados nas Figuras 7.21a a 7.21d; nestas fotomicrografias, os grãos pequenos são aqueles que se recristalizaram. Assim, recristalização de metais trabalhados a frio pode ser usada para refinar a estrutura de grão. Figura 7.21 - Fotomicrografias mostrando vários estágios da recristalização e crescimento de grão de latão. (a) estrutura de grão trabalhado a frio (33%CW). (b) Estágio inicial de recristalização após aquecimento durante 3 s a 580oC (1075oF); os grãos muito pequenos são aqueles que se recristalizaram. (c) Substituição parcial dos grãos trabalhados a frio por grãos recristalizados (4 s a 580oC. (d) Recristalização completa (8s a 580oC). (e) Crescimento de grão após 15 min a 580oC. (f) Crescimento de grão após 10 minutos a 700oC (1290oF). Todas as fotomicrografias 75x. (Fotomicrografia cortesia de J.E.Burke, General Electric Company.). Também, durante a recristalização, as propriedades mecânicas que foram mudadas como um resultado de trabalho a frio são restauradas de volta aos valores anteriores ao trabalho a frio; isto é, o metal se torna mais macio, mais fraco e também mais dútil. Alguns tratamentos térmicos são projetados para permitir a ocorrência da recristalização com estas modificações nas características mecânicas (Seção 11.2). Recristalização é um processo cuja extensão depende tanto do tempo quanto da temperatura. O grau (ou fração) de recristalização aumenta com o tempo, como pode ser notado nas fotomicrografias mostradas nas Figuras 7.21a-d. A explícita dependência da recristalização em relação ao tempo é deixada para ser tratada em mais detalhes na Seção 10.3. A influência da temperatura é demonstrada na Figura 7.22, que grafica o limite de resistência à tração e a dutilidade (à temperatura ambiente) de uma liga de latão como uma função da temperatura e pra um constante tempo de tratamento térmico de 1h. As estruturas de grão encontradas em vários estágios do processo são apresentadas esquematicamente. Figura 7.22 - A influência da temperatura de recozimento sobre o limite de resistência à tração e dutilidade de uma liga de latão. Tamanho de grão como uma função da temperatura de recozimento é indicada. Estrutura de grão durante os estágios de recuperação, recristalização e crescimento de grão é mostrada esquematicamente. (Adaptada a partir de G. Sachs e K.R. Van Horn, Practical Metallurgy, Applied Metallurgy and the Industrial Processing of Ferrous and Nonferrous Metals and Alloys, American Society for Metals, 1940, p.139.) O comportamento de recristalização de uma liga metálica particular é às vezes especificado em termos de uma temperatura de recristalização, a temperatura na qual a recristalização justo se completa em 1 h. Assim a temperatura de recristalização para liga de latão da Figura 7.22 é de cerca de 450oC (850oF). Tipicamente, ela se situa entre 1/3 e 1/2 da temperatura absoluta de fusão de um metal ou liga e depende de vários fatores, incluindo a quantidade de trabalho a frio prévio e a pureza da liga. O aumento da porcentagem de trabalho a frio aumenta a taxa de recristalização, com isso abaixando a temperatura de recristalização; este efeito é mostrado na Figura 7.23. Existe algum grau crítico de trabalho a frio abaixo do qual a recristalização não terá condições de ocorrer, como mostrado na figura; normalmente, este está entre 2 e 20% de trabalho a frio. Figura 7.23 - A variação da temperatura de recristalização com a porcentagem de deformação a frio para o ferro. Para deformações menores do que a crítica (cerca de 5%CW), recristalização não ocorrerá. Recristalização se processa mais rapidamente em metais puros do que em ligas. Assim a formação de liga eleva a temperatura de recristalização, às vezes bastante substancialmente. Para metais puros, a temperatura de recristalização é normalmente 0,3Tm , onde Tm é a temperatura absoluta de fusão; para algumas ligas comerciais ela pode chegar a um valor tão alto quanto 0,7Tm. As temperaturas de recristalização e de fusão para um número de metais e ligas estãolistas na Tabela 7.2. TABELA 7.2 - Temperaturas de Recristalização e de Fusão para Vários Metais e Ligas PROBLEMA EXEMPLO 7.3 7.13 - CRESCIMENTO DE GRÃO Após a recristalização estar completa, os grãos livres de deformação continuarão a crescer se a amostra de metal é deixada em temperatura elevada - um fenômeno denominado crescimento de grão. Crescimento de grão não precisa ser precedido por recuperação e recristalização; êle pode ocorrer em todos os materiais policristalinos, metais e cerâmicas igualmente. Uma energia associada com contornos de grão, como explicado na Seção 4.5. À medida em que grãos crescem em tamanho, a área total de contorno decresce, fornecendo uma acompanhante redução na energia total; esta é a força motriz para o crescimento de grão. Crescimento de grão ocorre pela migração de contornos de grão. Obviamente, nem todos os grãos pode crescer, mas alguns crescem às expensas de outros que se encolhem. Assim o tamanho médio de grão aumenta com o tempo e num particular instante existirá uma gaixa de tamanhos de grão. Movimento de contorno é justo a difusão de curta distância de átomos a partir de um lado do contorno para o outro. As direções de movimento do contorno e o movimento atômico são opostos entre si, como mostrado na Figura 7.24. Figura 7.24 - Representação esquemática de crescimento de grão via difusão atômica. (Adaptado a partir de L.H. Van Vlack, Elements of Materials Science and Engineering, 6a.Edição, Copyright 1989 por Addiwon-Wesley Publishing Co. Reimpresso por permissão de Addison-Wesley Publishing Co., Inc., Reading, MA). Para muitos mateiais policristalinos, o diâmetro de grão d varia com o tempo t de acordo com a correlação dn - don = Kt (7.7) onde do é o diâmetro de grão inicial em t = 0, e K e n são constantes independentes do tempo; o valor de n é geralmente igual ou maior a 2. A dependência do tamanho de grão em relação ao tempo e à temperatura é demonstrada na Figura 7.25, um gráfico do logarítmo do tamanho de grão como uma função do logarítmo do tempo para uma liga de latão em várias temperaturas. Em temperaturas menores a dependência em relação à temperatura é linear a partir do gráfico. Além disso, crescimento de grão se processa mais rapidamente à medida em que a temperatura aumenta.; isto é, as curvas são deslocadas para cima no sentido de tamanhos de grão maiores. Isto é explicado pela melhoria da taxa de difusão com oaumento da temperatura. Figura 7.25 - O logarítmo do tamanho de grão versus logarítmo do tempo para crescimento de grão em latão em várias temperaturas. (A partir de J.E.Burke, "Some Factors Affecting the Rate of Grain Growth in Metals". Reimpresso com permissão a partir de Metallurgical Transactions, Vol. 180, 1949, uma publicação de The Metallurgical Society of AIME, Warrandale,Pennsylvania). As propriedades mecânicas à temperatura ambiente de um metal de granulação fina são usualmente superiores àquelas de metais de granulação grosseira. Se a estrutura de grão de uma liga monofásica é mais grossa do que a desejada, refinamento pode ser realizado por deformação plástica do material, a seguir submetendo-o a um tratamento térmico de recristalização, como descrito acima. MATERIALS SCIENCE AND ENGINEERING An Introduction William D. Callister, Jr., John Wiley & Sons, 1991. 8. FALHA EM SERVIÇO 8.1 - INTRODUÇÃO A falha de materiais de engenharia é quase sempre um evento indesejável por várias razões; estas incluem vidas humanas que são postas em risco, perdas econômicas e a interferência com a disponibilidade de produtos e serviços. Mesmo embora as causas de falhas e o comportamento de materiais possam ser conhecidos, prevenção de falhas é difícil de garantir. As causas usuais são seleção e processamento impróprios de materiais e inadequado projeto do componente ou seu mau uso. É responsabilidade do engenheiro antecipar-se e planejar-se para possível falha e, na eventualidade da ocorrência da falha, assessar sua causa e a seguir tomar medidas preventivas apropriadas contra incidentes futuros. Tópicos a serem abordados neste capítulo são os seguintes: fratura simples (tanto dútil quanto frágil), fundamentos de mecânica da fratura, testes de fratura por impacto, a transição dútil a frágil, fadiga e cripe. Estas discussões incluem mecanismos de falha, técnicas de teste e métodos pelos quais falha pode ser prevenida ou controlada. FRATURA 8.2 - FUNDAMENTOS DE FRATURA Fratura simples é a separação de um corpo em 2 ou mais peças em resposta a uma tensão imposta que é estática (isto é, constante ou variando lentamente com o tempo) e em temperaturas que são baixas relativamente à temperatura de fusão do material. A tensão aplicada pode ser de tração, compressão, cizalhamento ou torção; a presente discussão será confinada a fraturas que resultam a partir de cargas de tração uniaxial. Para materiais de engenharia, 2 modos de fratura são possíveis: dúteis e frágeis. A classificação baseia-se na capacidade de um material experimentar deformação plástica. Materiais dúteis tipicamente exibem substancial deformação plástica com alta absorção de energia antes da fratura. Por outro lado, existe normalmente pouca ou nenhuma deformação com baixa absorção de energia acompanhando uma fratura frágil. Os comportamentos tensão de tração- deformação de ambos os tipos de fratura pode ser revisto na Figura 6.12. "Dútil" e "frágil" são termos relativos; se uma particular fratura é de um modo ou do outro depende da situação. Dutilidade pode ser quantificada em termos de porcentagem de elongação (Equação 6.10) e porcentagem de redução de área (Equação 6.11). Além disso, dutilidade é uma função da temperatura do material, da taxa de deformação e do estado de tensão. A disposição de materiais normalmente dúteis em falhar de uma maneira frágil é discutida na Seção 8.6. Qualquer processo de fratura envolve 2 etapas - formação da trinca e sua propagação - em resposta a uma tensão imposta. O modo de fratura depende grandemente do mecanismo de propagação. Fratura dútil é altamente dependente do mecanismo de propagação de trinca. Fratura dútil é caracterizada por uma extensa deformação plástica na vizinhanca de uma trinca que avança. Além disso, o processo ocorre de uma maneira relativamente lenta à medida em que o comprimento da trinca é estendido. Às vezes diz-se que uma tal trinca é estável. Isto é, ela resiste a uma adicional extensão a menos que exista um aumento na tensão aplicada. Em adição, haverá ordinariamente evidência de apreciável deformação bruta nas superfçies da fratura (por exemplo, torcimento e rasgamento). Por outro lado, para fratura frágil, trincas podem se espalhar de maneira extremamente rápida, com muito pouca deformação plática acompanhante. Pode-se dizer que tais trincas são instáveis e propagação da trinca, uma vez iniciada, continuará espontâneamente sem um aumento na magnitude da tensão aplicada. Fratura dútil é quase sempre preferida por 2 razões. Primeiro, fratura frágil ocorre repentinamente e catastroficamente sem qualquer aviso; esta é uma consequência da espontânea e rápida propagação da trinca. Por outro lado, para fratura dútil, a presença de deformação plástica dá aviso de que a fratura é iminente, permitindo que medidas preventivas sejam tomadas. Segundo, mais energia de deformação é requerida para induzir fratura dútil porquanto materials dúteis são geralmente mais tenazes. Sob a ação de uma tensão de tração aplicada, muitas ligas metálicas são dúteis, enquanto que cerâmicas são notavelmente frágeis e polímeros podem exibir ambos os tipos de fratura. 8.3 - FRATURA DÚTIL Superfícies de fratura dútil têm suas próprias características distintivas nos níveis tanto macroscópico quanto microscópico. A Figura 8.1 mostra representações esquemáticas para 2 caracteísticos perfis macroscópicos de fratura. A configuração mostrada na Figura 8.1a é encontrada em materiais extremamente macios, tais como ouro puro e chumbo puro à temperatura ambiente e em outros metais, polímeros e vidros inorgânicos em temperaturas elevadas. O pescoço destes materiais altamente dúteis diminui continuamente até chegar a um únco ponto, mostrando virtualmente 100% de redução de área. Figura 8.1 - (a) Uma fratura altamente dútil na qual a amostra tem seu pescoço final reduzido a um ponto. (b) Fratura moderadamente dútil após a formação de algum pescoço. (c) Fratura frágil sem nenhuma deformação plástica. O tipo mais comum de perfil de fratura de tração para metais dúteis é aquele representado na Figura 8.1b, cuja fratura é precedida por somente uma moderada quantidade de empescoçamento. O processo de fratura normalmente ocorre em vários estágios (Figura 8.2). Primeiro, após o início do empescoçamento, pequenas cavidades, ou microvazios, se formam no interior da seção reta, como indicado na Figura 8.2b. Depois, à medida em que a deformação continua, estes microvazios crescem, encostam-se mutuamente e se coalescem para formar uma trinca elítica, que tem seu eixo longo perpendicular à direção da tensão. A trinca continua a crescer numa direção paralela ao eixo maior por este processo de coalescência de microvazios (Figura 8.2c). Finalmente, a fratura resulta pela rápida propagação de uma trinca ao redor do perímetro externo do pescoço (Figura 8.2d), pela deformação cizalhante num ângulo de cerca de 45o com o eixo de tração - este é o ângulo no qual a tensão cizalhante é máxima. Às vezes uma fratura tendo este característico contorno superficial é denominada uma fratura de taça-e-cone ("cup-and-cone fracture") porque uma das superfícies que se acasalam encontra-se na forma de uma taça, a outra se parecendo com um cone. Neste tipo de amostra fraturada(Figura 8.3a), a região central interior da superfície tem uma aparência irregular e fibrosa, que é indicativa de deformação plástica. Figura 8.2 - Estágios na fratura em taça-e-cone (a) Empescoçamento inicial. (b) Formação de pequena cavidade. (c) Coalescência de cavidades para formar uma trinca. (d) Propagação de trinca. (e) Fratura cizalhante final num ângulo de 45o em relação à direção da tensão. (A partir de K.M.Ralls, T.H. Courtney e J.Wulff, Introduction to Materials Science and Engineering. , p.468. Copyright 1976 por John Wiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons, Inc.). Figura8.3 (a) Fratura em taça-e-cone em alumínio. (b) Fratura frágil em aço doce. A partir de H.W.Hayden, W.G. Moffat e J.Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, p.144, Copyright 1965 por John Wiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons, Inc.) Informação muito mais detalhada relacionada ao mesmo de fratura é disponível a partir do exame microscópico, normalmente usando microscopia eletrônica. Estudos deste tipo são denominados fractográficos. O microscópio eletrônico é preferido para exames fractográficos uma vez que êle tem uma resolução muito melhor e profundidade de campo muito maior do que os dos microscópios óticos; estas características são necessárias para revelar as características topográficas de superfícies de fratura. Ordinariamente, o microscópio eletrônico de varredura (MEV ou "SEM" em inglês) é usado e nele a amostra é vista diretamente. Quando a região central fibrosa de uma superfície de fratura em taça-e-cone é examinada com o microscópio eletrônico numa alta ampliação, verificar-se-á que ele consiste de numerosas "covinhas" esféricas (Figura 8.4a); esta estrutura é característica de fratura resultante de falha sob tensão uniaxial. Cada covinha é uma metade de um microvazio que se formou e se separou durante o processo de fratura. Covinhas também se forma sobre a borda de cizalhamento de 45o da fratura em taça-e-cone. Entretanto, estas serão elongadas ou postas em forma de C como vistas na Figura 8.4b. Esta forma parabólica pode ser indicativa de falha por cizalhamento. Além disto, outras características superficiais microscópicas de fratura são também possíveis. Fractografias tais como as mostradas nas Figuras 8.4a e 8.4b fornecem informação valiosa na análise de fratura, tais como o modo de fratura, o estado de tensão, bem como o local de inciação da trinca. Figura 8.4 (a) Fractografia eletrônica de varredura mostrando covinhas esféricas características de fratura dútil resultante de cargas de tração uniaxial. (b) fractografia eletrônica de varredura mostrando covinhas em forma parabólica característica de fratura dútil resultante de carga de cizalhamento. (A partir de R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3a. Edição, Copyright 1989 por John Wiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons, Inc.) 8.4 - FRATURA FRÁGIL Fratura frágil ocorre sem qualquer apreciável deformação e por rápida propagação de trinca. A direção do movimento de trinca é muito proximamente perpendicular à direção da tensão de tração aplicada e fornece uma superfície de fratura relativamente plana, como indicado na Figura 8.1 Superfícies de fratura de materiais que falharam numa maneira frágil terão seus próprios padrões(modelos) distintivos; quaisquer sinais de deformação plástica bruta estarão ausentes. Por exemplo, em algumas peças de aço, uma série de marcas fratura estriadas em forma de V pode se formar perto do centro da seção reta da fratura que apontam para trás no sentido do sítio de inciação da trinca (Figura 8.5a). Outras superfícies de fratura frágil contém linhas ou arestas que se irradiam a partir da origem da trinca numa forma de leque (Figura 8.5b). Às vezes, ambos estes padrões(modelos) de marcas serão suficientemente grossos para serem discernidos com olho nú. Para metais muito duros e finamente granulados, não haverá nenhum discernível padrão(modelo) de fratura. Fratura frágil em materiais amorfos, tais como vidros cerâmicos, fornecem uma superfície relativamente brilhante e lisa. Figura 8.5 (a) Fotografia mostrando marcas estriadas em forma de V características de fratura frágil. (A partir de R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3a. Edição, Copyright 1989 por John Wiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons, Inc. Fotografia cortesia de Roger Slutter, Lehigh University.) (b) Fotografia de uma superfície de fratura frágil mostrando estrias radiais em forma de leque. Setas indicando a origem da trinca. (Reproduzida com permissão de D.J. Wulpi, Understanding How Components Fail, American society for Metals, Materials Park, OH, 1985. Para muitos materiais cristalinos, propagação de trinca corresponde à sucessiva e repetida quebra de ligações atômicas ao longo de planos cristalográficos específicos; um tal processo é denominado clivagem. Diz-se que este tipo de fratura é transgranular (ou transcristalina), porque as trincas de fratura passam através dos grãos. Macroscopicamente, a superfície de fratura pode ter uma textura granular ou facetada (Figura 8.3b), como um resultado de mudanças de orientação dos planos de clivagem de grão a grão. Este característica é mais evidente na micrografia eletrônica de varredura mostrada na Figura 8.6a. Em algumas ligas, propagação de trinca é ao longo de contornos de grão; esta fratura é denominada intergranular. A Figura 8.6b é uma microgrfia eletrônica de varredura mostrando uma fratura intergranular típica na qual a natureza tridimensional dos grãos pode ser vista. Este tipo de fratura normalmente resulta subsequente à ocorrência de processos que enfraquecem ou fragilizam regiões de contorno de grão. Figura 8.6 (a) Fractografia eletrônica de varredura de ferro fundido mostrando uma superfície de fratura transgranular. (A partir de V.J. Colangelo e F.A.Heiser, Analysis of Metallurgical Failures, 2a. Edição, Copyright 1987 por John Wiley & Sons, New York, Reimpresso por permissão de John Wiley & Sons, Inc.) (b) Fractografia eletrônica de varredura mostrando uma superfície de fratura intergranular. (Reproduzida com permissão de D.J.Wulpi, Understanding How Components Fail, American Society for Metals, Materials Park, OH, 1985.) 8.5 - PRINCÍPIOS DE MECÂNICA DE FRATURA Fratura frágil de materiais normalmente dúteis, tais como aquela mostrada na página 189, demonstrou a necessidade de um melhor entendimento dos mecanismos de fratura.Extensos esforços de pesquisa ao longo de várias décadas passadas conduziram à evolução do campo da mecânica de fratura . Conhecimento compilado a partir daí permite quantificação das correlações entre propriedades de materiais, nível de tensão, a presença defeitos produtoras de trinca e mecanismos de propagação de trinca. Os engenheiros projetistas estão agora melhor equipados para se antecipar e, assim ,prevenir falhas estruturais. A presente discussão centra-se sobre alguns princípios fundamentaisda mecânica da fratura. Concentração de Tensão A resistência à fratura de um material sólido é uma função das forças coesivas que existem entre os átomos.Nesta base, estimou-se que a resistência coesiva teóricade um sólido elástico frágil é aproximadamente E / 10, onde E é o módulo de elasticidade. As resistências à fratura experimentais da maioria dos materiais de engenharia normalmente caem entre 10 e 1000 vezes abaixo deste valor teórico. Na década de 1920, A.A.Griffith propuseram que esta discrepância entre a força coesiva teórica e a resistência à fratura observada poderia ser explicada pela presença de defeitos ou trincas muito pequenos e microscópicos quesempre existem sob condições normais na superfície e dentro do interior de um corpo material. Os defeitos são um detrimento para a resistência à fratura porque uma tensão aplicada pode ser amplificada ou concentrada na ponta, a magnitude desta amplificação dependendo da orientação e geometria da trinca. Este fenômenos está demonstrado na Figura 8.7, um perfil de tensão através de uma seção reta contendo uma trinca interna. Como indicado por este perfil, a magnitude desta tensão localizada diminui com a distância para longe da ponta da trinca. Em posições bem longe do referido ponto, a tensão é justoa tensão nominal σo ou a cargadividida pela seção reta da amostra. Devido à sua capacidade de amplificar um tensão aplicada em seus locais,estes defeitos (falhas) às vezes denominadas elevadores tensão. Figura 8.7 - (a) A geometria de trincas superficial e interna. (b) Perfil esquemático de tensão ao longo da linha X-X' em (a), demonstrando amplificação de tensão em posições de ponta de trinca. É suposto que umatrincatem uma forma elítica e está orientada com o seu eixo maior perpendicular à tensão aplicada, a tensão máxima na ponta da trinca, σm , pode ser aproximada por σm = 2 σo (a/ρt)1/2 (8.1) onde σo é a magnitude da tensão de tração aplicada nominal, ρt é o raio de curvatura da ponta da trinca (Figura 8.7a), e a representa o comprimento de uma trinca superficial ou a metade do comprimento de uma trinca interna. Assim para uma microtrinca relativamente longa que tem um pequeno raio de curvatura na ponta, o fator (a / ρt)1/2 pode ser muito grande. Isto vai fornecer um valor de σm que é muitas vezes aquele de σo. Às vezes a razão σm / σo é denotada como o fator de concentração de tensão, Kt : Kt = σm / σo = 2(a / ρt)1/2 (8.2) que é simplesmente uma medida do grau até onde uma tensão externa é amplificada na ponta de uma pequena trinca. Como um comentário, deveria ser dito que amplificação de tensão não está restrita a estes defeitos microscópicos; ela pode ocorrer em descontinuidades internas macroscópicas (por exemplo, buracos), em arestas vivas e entalhes em estruturas grandes. A Figura 8.8 mostra curvas teóricas de fator de concentração de tensão para város componentes simples e comuns. Figura 8.8 - Curvas teóricas de fator de concentração de tensão para 3 formas geométricas simples. (A partirde G.H. Neugebauer, Prod. Eng.(NY), Vol. 14, pp.82-87, 1943). Além disso, o efeito de um elevador de tensão é mais significativo em materiais frágeis do que em materiais dúteis. Para um material dútil, a deformação plástica ocorre quando a tensão máxima excede a resistência ao escoamento (limite convencional de elasticidade). Isto conduz a uma distribuição mais uniforme de tensão na vizinhança do elevador de tensão e ao desenvolvimento de um fator de concentração de tensão máxima menor do que o valor teórico. Tal escoamento e redistribuição de tensão não ocorre em qualquer extensão apreciável ao redor das falhas (defeitos) e descontinuidades em materiais frágeis; portanto, resultará essencialmente a concentração teórica de tensão. Griffith a seguir propôs que todos os materiais frágeis contivessem uma população de pequenas trincas e falhas que têm uma variedade de tamanhos, geometrias e orientações. A fratura resultará quando, sob aplicação de uma tensão de tração, a resistência coesiva teórica do material é excedida na ponta de uma destas falhas. Isto conduz à formação de uma trinca que então se propaga rapidamente. Se nenhuma falha estiver presente, a resistência à fratura seria igual à resistência coesiva do material.Whiskers (filamentos ou agulhas) metálicos ou cerâmicos muito pequenos e virtualmente livres de defeito foram crescidos com resistências à fratura que se aproximam dos seus valores teóricos. A Teoria de Griffith da Fratura Frágil Durante a propagação de uma trinca, existe uma liberação do que é denominado energia de deformação elástica , alguma energia que é estocada no material quando êle é elásticamente deformado. Além disso, durante o processo de extensão da trinca, novas superfícies livres são criadas nas faces de uma trinca, que dá origem a um aumento na energia superficial do sistema. Griffith desenvolveu um critério para a propagação de trinca de uma trinca elítica (Figura 8.7a) realizando um balanço de energia usando estas duas energias.Êle demonstrou que a tensão crítica σc requerida para propagação de trinca num material é descrita por σc = (2 E γs / πa )1/2 (8.3) onde E = módulo de elasticidade γs = energia superficial específica a = metade do comprimento de uma trinca interna Vale a pena notar que esta expressão não envolve o raio da ponta da trinca ρt , como faz a equação de concentração de tensão (Equação 8.1); entretanto, é suposto que o raio é suficientemente pequeno (da ordem do espaçamento atômico, a que corresponde um acutângulo ou "aresta muito viva") de maneira a elevar a tensão local na ponta da trinca acima da resistência coesiva do material. O desenvolvimento prévio se aplica somente a materiais frágeis para os quais não existe nenhuma deformação plástica. A maioriados metais e muitos polímeros experimentam alguma deformação plástica durante a fratura; isto conduz a um embotamento (perda de gume cortante ou cegueira de gume) da ponta da trinca, um decréscimo do raio da ponta da trinca e subsequentemente um aumento na tensão de fratura. Matematicamente, isto pode ser acomodado pela substituição de γs na equação 8.3 por γs + γp , onde γp representa uma energia de deformação plástica associada com a extensão da trinca. Para materiais altamente dúteis, pode ser o caso de se ter γp >> γs . Na década de 1950, G.R. Irwin escolheu incorporar tanto γs quanto γp num único termo U , tal que U = 2 (γs + γp) (8.4) U é conhecido como a taxa de liberação de energia de deformação , e a extensão da trinca ocorre quando ela excede um valor crítico, Uc. Análise de Tensão de Trincas À medida em que continuamos a explorar o desenvolvimento da mecânica da fratura, vale a pena examinar as distribuições de tensão na vizinhança da ponta de uma trinca que avança. Existem 3 meios (ou modos) fundamentais pelos quais uma carga pode operar sobre uma trinca e cada um afetará um diferente deslocamento da superfície da trinca; estes estão ilustrados na Figura 8.9. Modo I é uma carga de abertura (ou de tração), enquanto que os modos II e III são modos de deslizamento e de rasgamento ("tearing"), respectivamente. Modo I é encontrado mais frequentemente e somente êle será tratado aqui na discussão que se segue sobre a mecânica de fratura. Figura 8.9 - Os 3 modos de deslocamento da superfície da trinca. (a) Modo I, modo de abertura ou de tração; (b) modo II, modo deslizante; e (c) modo III, modo de rasgamento (ou de corte com tesoura; "tearing") Para a configuração deste modo I, as tensões que agem sobre um elemento de material estão mostrados na Figura 8.10. Usando princípios de teoria elástica e a notação indicada, tensões de tração (σx e σy ) e cizalhante (τxy) são funções tanto da distância radial r quanto do ângulo θ como segue1: σx = [K / (2πr)1/2] fx (θ) (8.5a) σy = [ K / (2πr)1/2] fy (θ) (8.5b) τxy = [K / (2πr)1/2 ] fxy (θ) (8.5c) Figura 8.10 - As tensões agindo em frente de uma trinca que é carregada numa configuração em modo I de tração. _________________________________________________ 1 As funções f(θ) são as seguintes: fx(θ) = cos (θ/2) [ 1 - sen (θ/2) sen (3θ/2)] fy(θ) = cos (θ/2) [ 1 + sen (θ/2) sen (3θ/2)] fxy (θ) = sen (θ/2) cos (θ/2) cos (3θ/2) _________________________________________________ Se a placa for fina em relação às dimensòes da trinca, então σz = 0, ou se diz que existe uma condição de tensão plana. No outro extremo (uma placa relativamente espessa), σz = ν (σx + σy), e o estado é referido como deformação plana (uma vez que εz = 0); ν nesta expressão é a razão de Poisson. Na Equação 8.5, o parâmetro K é denominado fator intensidade de tensão; seu uso proporciona uma conveniente especificação da distribuição da tensão ao redor de uma falha. Dever-se-ía notar que este fator de intensidade de tensão e o fator de concentraçào de tensão Kt na equação 8.2, embora similares, não são equivalentes. O valor do fator de intensão de tensão é uma função da tensão aplicada, o tamanho e posição da trinca, bem como a geometria da peça sólida na qual a trinca está localizada. Tenacidade à Fratura Na discussão acima, um critério foi desenvolvido para a propagação de trinca num material frágil contendo um defeito(falha); fratura ocorre quando o nível da tensão aplicadaexcede algum valor crítico σc (Equação 8.3). Similarmente, de vez que as tensões na vizinhança de uma ponta de trinca pode ser definida em termos do fator intensidade de tensão, existe um valor crítico deste parâmetro que pode ser usado para especificar as condições de fratura frágil;este valor crítico é denominado tenacidade à fratura Kc . Em geral, ela pode ser expressa na forma Kc = Y σ(πa)1/2 (8.6) onde Y é um parâmetro adimensional que depende das geometrias tanto da amostra quanto da trinca. Por exemplo, para placa de largura infinita na Figura 8.11a, Y = 1,0 ; ou para uma placa de largura semi-infinita contendo uma trinca de aresta de comprimento a (Figura 8.11b), Y = 1,1. Figura 8.11 - Representações esquemáticas de (a) uma trinca do interior numa placa de largura infinita, e (b) uma trinca de aresta num plano de largura semi-infinita. Por definição, tenacidade à fratura é uma propriedade que é a medidad da resistência de um material à fratura frágil quando uma trinca estiver presente. Dever-se-ía notar também que tenacidade à fratura tem unidades não-usuais de psi (polegada)1/2 (ou MPa [m]1/2). Para amostras relativamente finas, o valor de Kc dependerá da espessura da amostra B e decrescerá com o aumento da mesma, como indicado na Figura 8.12. Eventualmente, Kc se torna independente de B, no tempo em que a condição de deformação plana existir2. O valor da constante Kc para amostra mais grossas é conhecido como tenacidade à fratura de deformação plana , KIc , que é também definida por KIc = Y σ (πa)1/2 (8.7) É a tenacidade à fratura normalmente citada de vez que seu valor é sempre menor do que Kc . O subscrito para KIc denota que o valor crítico de K é para o deslocamento da trinca no modo I , como ilustrado na Figura 8.9a. Materiais frágeis, para os quais apreciável deformação plástica não é possível na frente de uma trinca avançante, têm baixos valores de KIc e são vulneráveis à falha castrastrófica em serviço. Por outro lado, valores de KIc são relativamente grandes para materiais dúteis. Mecânica de fratura é especialmente útil na previsão de falha castrófica em serviço em materiais tendo dutilidades intermediárias. Valores de tenacidade à fratura de deformação plana para um número de diferentes materiais são apresentados na Tabela 8.1. Figura 8.12 - Representação esquemática mostrando o efeito de espessura de placa na tenacidade à fratura. Tabela 8.1 - Resistência ao Escoamento à Temperatura Ambiente para Selecionados Materiais de Engenharia. _________________________________________________ 2 Experimentalmente, foi verificado que condições de deformação plana B $ 2,5 (KIc / σy)2 (8.8) onde σy é o limite de escoamento para um valor de desvio de deformação 0,002 do material. _________________________________________________ O fator de intensidade de tensão nas Equações 8.5 e tenacidade à fratura de deformação plana KIc estão inter-relacionados no mesmo sentido que o relacionamento entre tensão de escoamento e resistência ao escoamento. Um material pode ser submetido a muitos valores de tensão; entretanto, existe um nível de tensão específico no qual o material se deforma plasticamente - isto é, a resistência ao escoamento. Do mesmo modo, uma variedade de valores de K são possíveis mas KIc é única para um particular material. Várias técnicas diferentes de teste são usadas para medir KIc. Virtualmente quaisquer tamanho e forma de amostra consistente com o modo I de deslocamento da trinca pode ser utilizado e valores precisos serão obtidos desde que o parâmetro de escala Y na equação 8.7 tenha sido apropriadamente determinado. A tenacidade à fratura de deformação plana KIc é uma propriedade material fundamental que depende de muitos fatores, dos quais os mais influentes são, taxa de deformação e microestrutura. A magnitude de KIc decresce com o aumento da taxa de deformação e com o decréscimo da temperatura. Além disso, uma melhoria na resistência ao escoamento trabalhado por solução sólida ou adições de dispersão ou por endurecimento por deformação geralmente produz um correspondente decréscimo em KIc . Além disso, KIc normalmente decresce com a reduçãodo tamanho de grão quando a composição e as variáveis microestruturais são mantidas constantes. Resistências ao escoamento para alguns materiais estão listados na Tabela 8.1. Projeto Usando Mecânica de Fratura De acordo com a Equações 8.6 e 8.7, três variáveis devem ser consideradas em relação à possibilidade de ocorrência de fratura de algum componente estrutural - isto é, a tenacidade à fratura (KI ) ou tenacidade à fratura por deformação plana (KIc), a tensão imposta (σ), e o tamanho do defeito (a), supondo, naturalmente,que Y tenha sido determinado. Quando se estiver projetando um componente é primeiro importante decidir quais destas variáveis estão constrangidas pela aplicação e quais estão sujeitas ao controle do projeto. Por exemplo, seleção de material (e portanto Kc ou KIc) é às vezes ditado por fatores tais como densidade (para aplicações de baixo peso) ou as características de corrosão do ambiente. Ou o tamanho permissível de defeito é quer medido ou especificado pelas limitações das disponíveis técnicas de detecção de falhas. É importante perceber, entretanto, que uma vez qualquer combinação de 2 dos parâmetros acima sejam prescritos, o terceiro se torna fixo (Equações 8.6 e 8.7). Por exemplo, suponha que Kc e a magnitude de a sejam especificadas pelos constrangimentos da aplicação; portanto,a tensão de projeto (ou tensão crítica) σc deve ser σc # KIc / [ Y (πa)1/2] (8.9) Por outro lado, se o nível de tensão e a tenacidade à fratura por deformação plana são fixados pela situação do projeto, então o máximo tamanho de falha permissível ac é ac = (1/π)[KIc / (σY)]2 (8.10) Foram desenvolvidas um número de técnicas de teste não destrutivo (TND ou"NDT", em inglês) que permitem detectar e medir defeitos tanto internos quanto superficiais. Tais métodos de TND são usados para evitar a ocorrência de falhas catastróficas por exame de componentes estruturais em relação aos defeitos e falhas que têm dimensões que se aproximam do tamanho crítico. PROBLEMA EXEMPLO 8.1. 8.6 - TESTE DE FRATURA POR IMPACTO Anterior ao advento da mecânica de fratura como uma disciplina científica, técnicas de testes de impacto foram estabelecidas de maneira a determinar as características de fratura de materiais. Percebeu-se que os resultados de testes de tração de laboratório não poderíam ser extrapolados para prevero comportamento de fratura; por exemplo, sob algumas circunstâncias metais normalmente dúteis se fraturavam abruptamente e com muito pouca deformação plástica. Foram escolhidas condições de teste de impacto para representar aquelas mais severas em relação ao potencial para fratura (isto é: (1) deformação numa temperatura relativamente baixa, (2) uma alta taxa de deformação e (3) um estado de tensão triaxial (que pode ser introduzido pela presença de um entalhe). Técnicas de Teste de Impacto Dois testes padronizados, o Charpy e o Izod, foram projetados e ainda são usados para medir a energia de impacto, às vezes também denominada tenacidade de entalhe. A técnica Charpy entalhe em V (CEV ou "CVN", em inglês) é a mais comumente usada nos Estados Unidos da América. Tanto para Charpy quando para Izod, a amostra tem a forma de uma barra de seção quadrada, na qual é usinado um entalhe em V (Figura 8.13a). O aparato para realizar testes de impacto com entalhe em V é ilustrado na Figura 8.13b. A carga é aplicada como um golpe de impacto a partir de um martelo de pêndulo que é liberado a partida de uma posição engatilhada numa altura fixa h. A amostra é posicionada na base como mostrado. Ao ser liberado, uma aresta de faca montada no pêndulo bate e fratura a amostra no entalhe, que age como um ponte de concentração de tensão para este golpe de impactoem alta velocidade. O pêndulo continua sua oscilação, subindo até uma altura máxima h' , que é inferior a h. A absorção de energia, computada a partir da diferença entre h e h' , é a medida da energia de impacto. A diferença principal entre as técnicas Charpy e Izod reside na maneira como a amostra é suportada, como ilustrado na Figura 8.13b. Além disso, estes são denominados testes de impacto à luz da maneira como a carga é aplicada. Variáveis incluindo tamanho e forma da amostra bem como configuração e profundidade do entalhe influenciam os resultados do teste. Tanto os testes de tenacidade à fratura por deformação plana quanto estes testes de impacto determinam as propriedades de fratura de materiais. Os primeiros são quantitativos em natureza, no sentido de que a propriedade específica do material é determinada (isto é, KIc). Os resultados dos testes de impacto, por outro lado, são mais qualitativos e são de menor uso para propósitos de projeto. As energias de impacto são de interesse principalmente num sentido relativo e para fazer comparações - valores absolutos são de pouca significância. Tentativas têm sido feitas para correlacionar tenacidade à fratura por deformação plana e energias Charpy de Entalhe em V (CEV ou "CVN", em inglês), com apenas limitado sucesso. Testes de tenacidade à fratura por deformação plana não são tão simples de realização quanto testes de impacto; além disso, equipamento e amostras são mais caros. Transição Dútil-a-Frágil Uma das funções principais dos testes Charpy e Izod é determinar se um material experimenta ou não uma transição dútil-a-frágil com o abaixamento da temperatura e, se este for o caso, a faixa de temperatura na qual ela ocorre. A transição dútil-a-frágil está relacionada à dependência em relação à temperatura da medida absorção de energia de impacto. Esta transição é representada pra um aço pela curva A na Figura 8.14. Em temperaturas maiores a energia CEV (ou "CVN") é relativamente grande, em correlação com o modo de fratura dútil. À medida em que a temperatura é abaixada, a energia de impacto decresce repentinamente ao longo de uma relativamente estreita faixa de temperatura, abaixo da qual a energia tem um valor constante mas de valor pequeno; isto é, o modo de fratura é frágil. Alternativamente, aparência da superfície de falha é indicativa da natureza da fratura e pode ser usada em determinações de temperatura de transição. Para fratura dútil, esta superfície aparenta fibrosa (ou de caráter cizalhante); ao contrário, supefície totalmente frágeis têm uma textura granular (ou caráter de clivagem). Ao longo da transição dútil-a-frágil, existem as caractgerísticas de ambos os tipos de fratura (Figura 8.15). Frequentemente, a porcentagem de fratura cizalhante é graficada como uma função da temperatura - curva B na figura 8.14. Para muitas ligas existe uma faixa de temperatura na qual ocorre a transição dútil-a-frágil (Figura 8.14); isto apresenta alguma dificuldade na especificação de uma única temperatura de transição dútil-a-frágil. Nenhum critério explícito foi estabelecido e assim esta temperatura é às vezes definida como aquela temperaturta na qual a energia CEV (ou "CVN") assume algum valor (por exemplo, 20 J ou 15 ft-lb), ou correspondente a alguma dada aparência de fratura (por exemplo, 50% fratura fibrosa). Os assuntos se complicam mais ainda porquanto uma diferente temperatura de transição pode ser obtida para cada um desses critérios. Talvez a mais conservadora temperatura de transição dútil-a-frágil é aquela na qual a superfície de fratura se torna 100% fibrosa; nesta base, a temperatura de transição é aproximadamente 110oC (230oF) para aço liga que é o assunto da Figura 8.14. Estruturas construídas a partir de ligas que exibem este comportamento dútil-a-frágil deveríam ser usadas apenas em temperaturas acima da temperatura de transição, a fim de evitart falha frágil e catastrófica. Exemplos clássicos deste tipo de falha ocorreram, com desastrosas consequências, durante a Segunda Guerra Mundial quando um número de navios de transporte soldados, fora de combate, repentinamente e precipitadamente se partiram ao meio. Estes vasos foram constrúidos com um aço liga que tinha adequada dutilidade em testes de tração à temperatura ambiente de sala (aprox. 25oC). As fraturas dúteis ocorreram em temperaturas ambientes relativamente baixas, cerca de 4oC (40oF), na vizinhança da temperatura de transição da liga. Cada trinca de fratura se originou em algum ponto de concentração de tensão, provavelmente em cantos vivos ou defeitos de fabricação, cujas trincas se propagaram ao redor de toda a barrigueira ("girth") dos navios que se partiram. Nem todas as ligas metálicas apresentam uma transição dútil-a-frágil. Aquelas tendo estruturas cristalinas CFC (incluindo ligas à base de alumínio e à base de cobre) remanescem dúteis mesmo em temperaturas extremamente baixas. Entretanto, ligas CCC e HC experimentam esta transição. Para estes materiais a temperatura de transição é sensível tanto à composição da liga quanto à sua microestrutura. Por exemplo, o decréscimo do tamanho médio de grão de aços resulta num abaixamento da temperatura de transição. Também, o teor de carbono tem uma influência decisiva sobre o comportamento da energia CEV(ou "CVN")-temperatura de um aço, como indicado na Figura 8.16. A maioria das cerâmicas e polímeros experimentam a transição dútil-a-frágil. Para materiais cerâmicos, a transição ocorre apenas em temperaturas elevadas, ordinariamente acima de 1000oC (1850oF). Este comportamento, no que se relaciona a polímeros, é discutido na Seção 16.9. FADIGA Fadiga é uma forma de falha que ocorre em estruturas submetidas a tensões dinâmicas e flutuantes (por exemplo, pontes, aeronaves e componentes de máquinas). Sob estas circunstâncias é possível para a falha ocorrer num nível de tensão consideravelmente inferior ao limite de resistência à tração ou ao limite de escoamento para uma carga estática. O termo "fadiga" é usado porque este tipo de falha normalmente ocorre após um prolongado período de ciclagem de tensão ou deformação. Fadiga é importante porquanto êle é a maior causa simples de falha metais, estimada como compreendendo aproximadamente 90% de todas as falhas metálicas; polímeros e cerâmicas (exceto par vidros) são também susceptíveis a este tipo de falha. Além disto, ela é catastrófica e traiçoeira, ocorrendo muito repentinamente e sem aviso. Falhas de fadiga é do tipo frágil em natureza mesmo em metais normalmente dúteis, no sentido de que existe muito pouca, se é que exista alguma, deformação plástica bruta associada com a falha. O processo ocorre pela iniciação e propagação de trincas e ordinariamente a superfície de fratura é perpendicular à direção de uma tensão de tração aplicada. 8.7 - TENSÕES CÍCLICAS A tensão aplicada pode ser axial (tração-compressão), flexiva (dobramento), ou de torsão (torsiva) em natureza. Em geral, 3 diferentes modos flutuantes de tensão-tempo são possíveis. Um está representado esquematicamente por uma regular e senoidal dependência em relação ao tempo na Figura 8.17a, onde a amplitude é simétrica ao redor de uma média de nível zero de tensão, por exemplo, alterando a partir de uma tensão máxima de tração (σmax) para uma tensão compressiva mínima (σmin) de igual magnitude; isto é referido como um ciclo de tensão revertido. Um outro tipo denominado ciclo de tensão repetido, é ilustrado na Figura 8.17b; os máximos e mínimos são assimétricos em relação ao nível de tensão zero. Finalmente, o nível de tensão pode variar randomicamente em amplitude e frequência, como exemplificado na Figura 8.17c. Também indicada na Figura 8.17b estão vários parâmetros usados para caracterizar o ciclo de tensão flutuante. A amplitude da tensão se alternaao redor de uma tensão média σm , definida como a média das tensões máxima e mínima no ciclo,ou σm = (σmax + σmin) / 2 (8.11) Além disso, a faixa de tensão σr é justo a diferença entre σmax e σmin , isto é, σr = σmax - σmin (8.12) A amplitude da tensão σa é justo a metade desta faixa de tensão, ou σa = σr / 2 = ( σmax - σmin) / 2 (8.13) Finalmente, a razão de tensão R é justo a razão de mínima e máxima amplitudes de tensão: R = σmin / σmax (8.14) Por convenção, tensões de tração são positivas e tensões de compressão são negativas. Por exemplo, para ciclo de tensão revertido, o valor de R é -1. 8.8 - A CURVA S-N Tal como com as outras características mecânicas, as propriedades de fadiga de materiais podem ser determinadas a partir de testes simulativos de laboratório. Um aparelho de teste deveria ser projetado para duplicar de maneira tão próxima quanto possível as condições de tensão de serviço (nível de tensão, frequência de tempo, modelo de tensão, etc..). Um diagrama esquemático de um aparelho de teste de rotação-dobramento, comumente usado para testes de fadiga, é mostrado na Figura 8.18; as tensões de compressão e tração são impostas sobre a amostra enquanto ela simultaneamente se dobra e roda. Testes são também frequentemente conduzidos usando um ciclo alternativo de de tensão uniaxial tração-compressão. Uma série de testes são começados submetendo uma amostra à ciclagem da tensão numa relativamente grande amplitude de tensão máxima (σmax), usualmente da ordem de 2/3 do limite de resistência à tração estática; o número de ciclos para a falha é encontrada. Este procedimento é repetido em outras amostras em progressivamente decrescentes amplitudes detensão máxima. Dados são graficados na forma de tensão S versus o logarítmo do número N de ciclos para falha para cada uma das amostras. Os valores de S são normalmente tomados como amplitudes de tensão (σa, Equação 8.13); ocasionalmente, valores de σmax ou σmín podem ser usados. São observados dois distintos tipos de comportamento S-N , que são representados esquematicamente nas Figuras 8.19. Conforme estes gráficos indicam, quanto maior a magnitude da tensão, tanto menor número de ciclos o material é capaz de suportar antes da fratura. Para algumas ligas ferrosas (à base de ferro) e ligas de titânio, a curva S-N (Figura 8.19a) se torna horizontal em maiores valores de N ; ou, existe um nível de tensão limite, chamado limite de fadiga (também às vezes conhecido como limite de resistência à fadiga ["endurance limit"]) abaixo do qual falha por fadiga não ocorrerá. Este limite de fadiga representa o mais alto valor de tensão flutuante que não causará falha para um número essencialmente infinito de ciclos. Para muitos aços, limites de fadiga variam entre 35 e 60% do limite de resistência à tração. A maioria das ligas não-ferrosas (por exemplo, de alumínio, cobre, magnésio) não têm um limite de fadiga, uma vez que a curva S-N continua a sua tendência para baixo em valores crescentemente maiores de N (Figura 8.19b). Assim fadiga finalmente ocorrerá independente da magnitude da tensão. Para estes materiais, a resposta de fadiga é especificada como resistência à fadiga, que é definida como o nível de tensão na qual falha ocorrerá para algum especificado número de ciclos (por exemplo, 107 ciclos). A determinaçào da resistência à fadiga é também demonstrada na Figura 8.19b. Um outro importante parâmetro que caracteriza um comportamento de fadiga de um material é a vida em fadiga Nf . Ela é o número de ciclos para causar falha num especificado nível de tensão, como tomado a partir do gráfico S-N (Figura 8.19b). Desafortunadamente, existe sempre considerável dispersão em dados de fadiga, isto é, uma variação no valor N medido para um número de amostras testadas no mesmo nível de tensão. Isto pode conduzir a uma significativa incerteza quando vida em fadiga e/ou limite(ou resistência) de fadiga estiver sendo considerado. A dispersão em resultados é uma consequência da sensibilidade da fadiga a um número de teste e de parâmetros de teste que são impossíveis de controlar precisamente. Estes parâmetros incluem fabricação da amostra e preparação da superfície, variáveis metalúrgicas, alinhamento da espécie no aparelho, tensão média e frequência de teste. Curvas S-N similares àquelas mostradas na figura 8.19 representam curvas de "melhor ajuste" que foram traçadas através dos pontos dos dados de valor médio. É um pouco difícil de perceber que aproximadamente metade das amostras testadas realmente falharam em níveis de tensão que ficam aproximadamente 25% abaixo da curva (como deteminado com base nos tratamentos estatísticos). Foram desenvolvidas várias técnicas estatísticas que são usadas para especificar vida em fadiga e limite de fadiga em termos de probabilidades. Um meio conveniente de representar dados tratados desta maneira é com uma série de curvas de probabilidade constante, várias das quais estão graficadas na Figura 8.20. O valor de P associado a cada curva representa a probabilidade de falha. Por exemplo, numa tensão de 30000 psi, nós esperamos que 1% das amostras falhem ao redor de 106 ciclos e 50% falhem ao redor de 2 x 107 ciclos, e assim por diante. Dever-se-ía lembrar que curvas S-N representadas na literatura são normalmente valores médios, a menos que doutra forma especificado. Os comportamentos de fadiga representados nas Figuras 8.19a e 8.19b pode ser classificados em 2 domínios. Um associado a relativamente altas cargas que produz não apenas deformação elástica mas também alguma deformação plástica durante cada ciclo. Consequentemente, vidas em fadiga são relativamente pequenas; este domínio é denominado fadiga de baixo-ciclo e ocorre com menos de cerca de 104 ou 105 ciclos. Para menos níveis de tensão onde deformações são totalmente elásticas, tem-se vidas mais longas. Isto é chamado fadiga de alto-ciclo porquanto um relativamente grande número de ciclos é requerido para produzir a falha por fadiga. Fadiga de alto-ciclo está associado com vidas em fadiga maiores do que 104 a 105 ciclos. 8.9 - INICIAÇÃO E PROPAGAÇÃO DE TRINCA O processo de falha por fadiga é caracterizado pelos 3 distintos estágios: (1) iniciação de trinca, onde uma pequena trinca se forma em algum ponto de alta concentração de tensão; (2) propagação de trinca, durante a qual esta trinca avança incrementalmente com cada ciclo de tensão; e (3) falha final, que ocorre muito rapidamente uma vez a trinca avançante tenha atingido um tamanho crítico. A vida em fadiga Nf , o número total de ciclos para fadiga, portanto pode ser tomado como a soma do número de ciclos para iniciação de trinca Ni e para propagação de trinca Np. Nf = Ni + Np (8.15) A contribuição do estágio final de falha à vida total em fadiga é significativa de vez que ela ocorre tão rapidamente. Porções de Ni e de Np em relação à vida total dependem do particular material e das condições de teste. Em baixos níveis de tensão (isto é, para fadiga de alto-ciclo), uma grande fração da vida em fadiga é utilizada na iniciação da trinca. Com o aumento do nível de tensão, Ni decresce e trincas se formam mais rapidamente. Assim para fadiga de baixo-ciclo (altos níveisde tensão), o estágio de propagação predomina (isto é, Np > Ni). Trincas associadas com falha por fadiga quase sempre iniciam-se (ou nucleiam-se) na superfície de um componente em algum ponto de concentração de tensão. Sítios de nucleação de trinca incluem arranhões de superfície, filetes agudos, rasgo de chaveta, fios de rosca, dentes e similares. Em adição, carregamento cíclico pode produzir descontinuidades superficiais microscópicas resultantes de degraus de escorregamento de discordâncias que podem agir como elevadores de tensão e, portanto, como sítios de iniciação de trinca. Uma vez uma trinca estável tenha se nucleado, ela então se propagará inicialmente de maneira muito lenta e, em metais policritalinos, ao longo dos planos cristalográficosde alta tensão cizalhante; isto é às vezes denominado propagação de estágio I (Figura 8.21). Este estágio pode constituir uma grande ou pequena fraçào da vida total em fadiga dependendo do nível de tensão e da natureza da amostra de teste; altas tensões e presença de entalhes favorecem um estágio I de vida-curta. Em metais policristalinos, trincas normalmente se estendem através de apenas alguns grãos durante este estágio de propagação. A superfície de fadiga que é formada durante o estágio I de propagação tem uma aparência plana e não-característica. Eventualmente, acontece um segundo estágio de propagação (estágio II) onde a taxa de extensão da trinca aumenta dramaticamente. Além disso, neste ponto existe também uma mudança em direção de propagação para uma que é grosseiramente perpendicular à tensão de tração aplicada (vide Figura 8.21). Durante este estágio de propagação, procede-se o crescimento da trinca por um processo repetitivo de embotamento (cegueira da aresta viva) plástico e afiamento (criação de aresta viva) na ponta da trinca, um mecanismo ilustrado na Figura 8.22. No começo do ciclo de tensão (carga zero), a ponta da trinca tem a forma de um entalhe duplo (Figura 8.22a). Quando a tensão de tração é aplicada (Figura 8.22b), ocorre deformação localizada em cada um destes entalhes da ponta ao longo de planos de escorregamento que estão orientados em ângulos de 45o em relação ao plano da trinca. Com o crescente alargamento da trinca, a ponta avança por continuada deformação cizalhante e a adoção de uma configuração embotada (Figura 8.22c). Durante a compressão, as direções de deformação cizalhante na ponta da trinca são revertidas (Figura 8.22d) até que,no auge do ciclo, um a nova ponta aguda duplamente entalhada tenha se formado (Figura 8.22e). Assim a ponta da trinca terá avançado um entalhe em distância durante o curso de um ciclo completo. Este processo é repetido em cada subsequente ciclo até que eventualmente seja alcançada uma dimensão crítica de trinca que precipite o estágio final de falha e aconteça a falha catastrófica. A regiãode uma superfície de fratura que se formou durante o estágio II de propgação pode ser caracterizada por 2 tipos de marcas denominadas marcas de praia ("beachmarks") e estriações ("striations") . Ambas estas características indicam a posição da ponta da trinca em algum ponto no tempo e aparecem como estrias concêntricas que se expandem para fora a partir dos sítios de inciação da trinca, frequentemente num forma circular ou semi-circular. Marcas-de- praia (às vezes denominadas marcas de concha-de-mexilhão, "clamshell marks") são de dimensões macroscópicas (Figura 8.23) e podem ser observadas com a olho nu. Estas marcas são encontradas em componentes que experimentaram interrupções durante o estágio II de propgação - por exemplo, uma máquina que operou apenas durante as horas normais de (expediente) trabalho. Cada banda de marca-de-praia representa um período de tempo ao longo do qual ocorreu o crescimento de trinca. Por outro lado, estriações de fadiga são microscópicas em tamanho e só observáveis com o microscópio eletrônico (quer MET (ou "TEM") quer MEV (ou "SEM")). A Figura 8.24 é uma fractografia eletrônica que mostra esta característica. Cada estriação é pensada como representando a distância de avanço da frente da trinca durante um único ciclo de carregamento. A largura de estriação depende da faixa de tensão e cresce com o aumento da mesma. Neste ponto dever-se-ía enfatizar que embora tanto as marcas-de-praia quanto estriações sejam características de superfícies de fratura por fadiga tendo aparências semelhantes, elas, não obstante, são diferentes, tanto em origem quanto em tamanho. Podem existir literalmente milhares de estriações dentro de uma única marca-de-praia. Às vezes, a causa da falha pode ser deduzida após exame das superficies de falha. A presença de marcas-de-praia e/ou estriações numa superfície de fratura confirma que a causa da fratura foi fadiga. Não obstante, a ausência de uma ou ambas não exclui a fadiga como a causa da falha. Um comentário final a respeito das superfícies de falha por fadiga: Marcas-de-praia e estriações não aparecerão naquela região sobre a qual ocorre falha rápida. Em vez disto, falha rápida pode ser ou dútil ou frágil; evidência de deformação plástica estará presente para falha dútil e ausente em falha frágil. Esta região de falha pode ser notada na Figura 8.25. 8.10 - TAXA DE PROPAGAÇÃO DE TRINCA Mesmo embora medidas possam ser tomadas para minimizar a possibilidade de falha por fadiga, trincas e sítios de nucleação de trinca sempre existirão em componentes estruturais. Sob a influência de tensões cíclicas, trincas se formarão inevitavelmente e crescerão; este processo, se não for impedido, pode ultimamente conduzir à falha. A intenção da presente discussão é desenvolver um critério pelo qual vida em fadiga possa ser prevista com base nos parâmetros do material e dos estados de tensão. Princípios de mecânica de fratura (Seção 8.5) serão empregados porquanto o tratamento envolve determinação de um comprimento máximo detrinca que pode ser tolerado sem induzir à falha. Dever-se-ía notar que esta discussão relaciona-se ao domínio de fadiga de alto-ciclo, isto é, para vidas em fadiga maiores do que cerca de 104 a 105 ciclos. Resultados de estudos de fadiga mostraram que a vida de um componente estrutural pode ser relacionada à taxa de crescimento de trinca. Durante o estágio II de propagação, trincas podem crescer a partir de um tamanho dificilmente perceptível até algum comprimento crítico. São disponíveis técnicas experimentais que são empregadas para monitorar comprimento de trinca durante o estressamento(tensionamento) cíclico. Dados são registrados e a seguir graficados como comprimento de trinca a versus o número de ciclos N. 3 Um gráfico típico é mostrado na Figura 8.26, onde estão incluídas curvas de dados gerados em 2 diferentes níveis de tensão; o comprimento inicial de trinca ao para ambos os conjuntos de testes é o mesmo. A taxa de crescimento de trinca da/dN é tomado como a inclinação de algum ponto da curva. Vale a pena notar dois importantes resultados: (1) inicialmente, taxa de crescimento é pequena, mas cresce com o aumento do comprimento da trinca; e (2) taxa de crescimento é acentuada com o crescente nível de tensão aplicada e para um específico comprimento de trinca (a1 na Figura 8.26). __________________________________________________________________________ 3 O símbolo N no contexto de Seção 8.8 representa o número de ciclos para falha por fadiga ; na presente discussão êle denota o número de ciclos associado a um comprimento de trinca anterior à fratura. __________________________________________________________________________ Taxa de propagação de trinca de fadiga é uma função não apenas do nível de tensão e do tamanho de trinca mas também de variáveis do material. Matematicamente, esta taxa pode ser expressa em termos de fator de intensidade de tensão K (desenvolvido usando mecânica de fratura na Seção 8.5) e toma a forma da/dN = A (∆K )m (8.16) Os parâmetros A e m são constantes para o particular material, que também dependerão do ambiente, frequência e razão de tensão (R na equação 8.14). O valor de m normalmente varia entre 1 e 6. Além disso, ∆K é a faixa do fator de intensidade de tensão na ponta da trinca, isto é ∆K = Kmax - Kmin (8.17a) ou, a partir da Equação 8.6 , ∆K = Y∆σ (πa)1/2 = Y (σmax - σmin)(πa)1/2 (8.17b) De vez que crescimento de trinca se interrompe ou se torna desprezível para uma porção de compressão do ciclo de torsão, se σmin for compressiva, então Kmin e σmin são tomados como zero; isto é, ∆K = Kmax e ∆σ = σmax. Também note-se que Kmax e Kmin na Equação 8.17a representam fatores de intensidade, não tenacidade à fratura KI nem tenacidade à fraturapor deformação plana KIc . Comportamento típico de taxa de crescimento de trinca de fadiga de materiais está representado esquematicamente na Figura 8.27 como logarítmo da taxa de crescimento de trinca da/dN versus o logarítmo da faixa do fator intensidade de tensão ∆K . A curva resultante tem uma forma sigmoidal que pode ser dividida em 3 distintas regiões, denominadas I, II e III. Na região I (em baixos níveis de tensão e/ou pequenos tamanhos de trinca), trincas pré-existentes não crescerão com carga cíclica. Além disso, associado com a região III está o crescimento de trinca acelerado, que ocorre justo antes da fratura rápida. A curva é essencialmente linear na região II, que é consistente com Equação 8.16. Isto pode ser confirmado tomando-se o logarítmo de ambos os lados desta expressão, o que conduz a log (da/dN) = log [ A (∆K)m] (8.18a) log (da/dN) = m log ∆K + log A (8.18b) De fato, de acordo com a Equação 8.18b, um segmento de linha reta resulta quando dados de log (da/dN) versus log ∆K são graficados; a inclinação e o intercepto correspondem aos valores de m e log A , respectivamente, que podem ser determinados a partir de dados de teste que tenha sido representados na maneira da Figura 8.27. A Figura 8.28 é um tal gráfico para uma liga Ni-Mo-V. Pode ser notada a linearidade dos dados que verifica a correlação da lei da potência da Equação 8.16. Além disso, a inclinação fornece um valor de 3 para m; A é aproximadamente 1,8 x 10-14, como tomado a partir do intercepto extrapolado para da/dN em polegada/ciclo e ∆K em psi/ (polegada)1/2. Uma das metas da análise de falha é ser capaz de prever vida em fadiga para alguns componentes, dados os seus constrangimentos em serviço e os dados de teste de laboratório. Nós agora somos capazes de desenvolver uma expressão analítica para Nf por integração da Equação 8.16. É necessário antes fazer um rearranjo como se segue: dN = da / [A(∆K)m] (8.19) que pode ser integrada como Nf = I0NfdN = Iaoac da / [A (∆K)m] (8.20) Os limites da segunda integral estão entre o comprimento inicial da falha(defeito) ao , que pode ser medida usando técnicas de exame não-destrutivas e o comprimento crítico da trinca ac determinado a partir de testes de tenacidade à fratura. Substituição da expressão para ∆K (Equação 8.17b) conduz a Nf = Iaoac da / [ A (Y ∆σ)m(πa)m/2] = { 1 / [A πm/2 (∆σ)m] Iaoac {da / [Ymam/2]} (8.21) Aqui é suposto que ∆σ (ou σmax - σmin) é constante; além disso, em geral Y dependerá do comprimento da trinca a e portanto não pode ser removido a partir de dentro da integral. Uma palavra de cautela: Equação 8.21 presume a validade da Equação 8.16 ao longo de toda a vida do componente, que pode ou não manter-se verdade. Portanto, esta expressão deveria ser tomada apenas como uma estimativa de Nf . PROBLEMA EXEMPLO 8.2 8.11 - FATORES QUE AFETAM A VIDA EM FADIGA Como mencionado na Seção 8.8, o comportamento de fadiga de materiais de engenharia é altamente sensível a um número de variáveis. Alguns destes fatores incluem nível de tensão médio, projeto geométrico, efeitos superficiais, variáveis metalúrgicas, bem como o ambiente. Esta seção é devotada à discussão destes fatores e, em adição, a medidas que podem ser tomadas para melhorar a resistência à fadigade componentes estruturais. Tensão Média A dependência da vida em fadiga em relação à amplitude da tensão está representada no gráfico S- N. Tais dados são tomados para uma tensão média constante σm , às vezes para a situação de ciclo revertido (σm = 0). Tensão média, entretanto, também afetará a vida em fadiga, cuja influência pode ser representada por uma série de curvas S-N, cada uma medida numa diferente σm ; isto é esboçado esquematicamente na Figura 8.29. Como pode ser notado, o aumento do nível de tensão média conduz a um decréscimo na vida em fadiga. Efeitos de Superfície Para muitas situações de carregamento comuns, a tensão máxima dentro de um componente ou estrutura ocorre tal como na sua superfície. Consequentemente, a maioria das trincas conduzindo à falha por fadiga se origina em posições da superfície, especificamente em sítios de amplificação de tensão. Portanto, tem sido observado que a vida em fadiga é especialmente sensível à condição e configuração da superfície do componente. Numerosos fatores influenciam a resistência à fadiga, a apropriada administração dos mesmos conduzirão a uma melhoria na vida em fadiga. Estes incluem critérios de projeto bem como vários tratamentos superficiais. Fatores de Projeto. O projeto de um componente pode ter significativa influência sobre suas características de fadiga. Qualquer entalhe ou descontinuidade geométrica pode agir como um elevador de tensão e sítio de iniciação de trinca de fadiga; estes fatores de projeto incluem ranhuras, buracos, rasgosde chaveta, adoçamento e assim por diante. Quando mais aguda for a descontinuidade (isto é, quanto menor for o raio de curvatura), tanto mais severo é a concentração de tensão. A probabilidade de falha por fadiga pode ser reduzida evitando-se (quando possível) estas irregularidades estruturais ou fazendo-se modificações de projeto pelas quais mudanças bruscas de contorno conduzindo a arestas vivas são eliminadas - por exemplo, exigindo adoçamentos arredondados com grandes raios de curvatura no ponto onde exista uma mudança de diâmetro para uma árvore rotativa (Figura 8.30). Tratamentos de Superfície. Durante operações de usinagem, pequenos arranhões e ranhuras são invariavelmente introduzidos na superfície da peça de trabalho por ação de ferramenta cortante. Estas marcas de superfície podem limitar a vida em fadiga. Tem sido observado que melhorando o acabamento da superfície por polimento melhorará significativamente a vida em fadiga. Um dos mais efetivos métodos de aumentar o desempenho de fadiga é impondo tensões residuais compressivas dentro de de uma fina camada superficial externa.Assim uma tensão de tração superficial de origem externa será parcialmente nulificada e reduzida em magnitude pela tensão compressiva residual. O efeito líquido é que a probabilidade de formação de trinca e portanto de falha por fadiga é reduzida. Tensões residuais compressivas são comumente introduzidas mecanicamente dentro de metais dúteis por deformação plástica localizada dentro da região da superfície externa. Comercialmente, isto é às vezes realizado por um processo denominado encruamento por jato- percussão ("shot peening"). Partículas pequenas e duras tendo diâmetro dentro da faixa de 0,1 a 1,0 mm são projetadas em altas velocidades sobre a superfície a ser tratada. A deformação resultante induz tensões compressivas até uma profundidade entre 1/4 e 1/2 do diâmetro da partícula ("shot"). Cementação é uma técnica pela qual tanto a dureza superficial quanto a vida em fadiga são melhoradas para ligas de aço. Isto é realizado por um processo de carburação ou nitretação pelo qual um componente é exposto a uma atmosfera carbonosa ou nitrogenosa numa elevada temperatura. Uma camada superficial externa (ou capa, "case") rica em carbono ou nitrogênio (é introduzida por difusão atômica a partir da fase gasosa). A capa é normalmente da ordem de 1 mm de profundidade e é mais dura do que o núcleo interior do material. (A influência do teor de carbono sobre a dureza de ligas Fe-C está demonstrada na Figura 10.21a). A melhoria das propriedades de fadiga resulta da aumentada dureza dentro da capa, bem como as desejadas tensões residuais compressivas cuja formação assiste ao processo de carburação e nitretação. Uma capa externa rica em carbono pode ser observada para a engrenagem mostrada na fotografia da página 94; ela aparece como uma casca externa preta dentro do segmento seccionado. O aumento na dureza da capa é demonstrada na fotomicrografia que aparece na Figura 8.31.As escuras e alongadasformas de diamante são indentações de microdureza Knoop. A indentação superior, que cai dentro da camada carburada, é menor do que a indentação no núcleo. 8.12 - EFEITOS AMBIENTAIS Fatores ambientais podem também afetar o comportamento de fadiga dos materiais. Uns poucos comentários breves serão dados em relação a 2 tipos de falhas por fadiga assitido pelo ambiente: fadiga térmica e fadiga por corrosão. Fadiga térmica é normalmente induzida em temperaturas elevadas por tensões térmicas flutuantes; tensões mecânicas a partir de uma fonte externa não precisa estar presente. A origem destas tensões térmicas é o restringimento à expansão e/ou contração dimensional que normalmente ocorreria num elemento estrutural com variações na temperatura. A magnitude de uma tensão térmica desenvolvida por uma mudança de temperatura ∆T é dependente do coeficiente de expansão térmica α l e do módulo de elasticidade E de acordo com σ = α l E ∆T (8.22) (Os tópicos de expansão térmica e tensões térmicas são discutidas nas Seções 20.3 e 20.5). Naturalmente, tensões térmicas não aparecerão se este restringimento mecânico estiver ausente. Portanto, um meio óbvio de prevenir este tipo de fadiga é eliminar ,ou pelo menos reduzir, a fonte de restringimento, assim permitindo desimpedidas mudanças dimensionais com variações de temperatura, ou escolher materiais com apropriadas propriedades físicas. Falha que ocorre pela ação simultânea de uma tensão cíclica e ataque químico é denominada fadiga por corrosão. Ambientes corrosivos têm uma influência deletéria e produz menores vidas em fadiga. Mesmo a atmosfera ambiente normal afetará o comportamento de fadiga de alguns materiais. Pequenos buracos podem se formar como um resultadode reações químicas entre o ambiente e o material, servindo estes mesmos buracos como pontos de concentração de tensões e, portanto, como sítios de nucleação de trinca. Em adição, taxa de propagação de trinca é acentuada como um resultado do ambiente corrosivo. A natureza dos ciclos de tensão influenciará o comportamento de fadiga; por exemplo, abaixamento da frequência de aplicação de carga conduz a períodos mais longos durante os quais a trinca aberta estará em contato com o ambiente e a uma redução na vida em fadiga. Existem várias abordagens para prevenção de fadiga por corrosão. Por um lado, nós podemos tomar medidas para reduzir a taxa de corrosão por alguma das técnicas discutidas no Capítulo 18, por exemplo, aplicar revestimento superficiais protetores, selecionar um material mais resistente à corrosão e reduzir a corrosividade do ambiente. E/ou seria aconselhável tomar ações para minimizar a probabilidade de falha normal por fadiga, como delineado acima, por exemplo, reduzir o nível de tensão de tração aplicada e impor tensões compressivas residuais na superfície do elemento estrutural. FLUÊNCIA ("CREEP") Materiais são às vezes colocados em serviço a elevadas temperaturas e expostos a tensões mecânicas estáticas (por exemplo, rotores de turbinas em engenhos a jato e geradores de vapor dágua que experimentam tensões centrífugas, e linhas de vapor de água de alta pressão). Deformação sob tais circunstâncias é denominada fluência ("creep"). Definida como deformação permanente, dependente do tempo, de materiais quando submetidos a uma carga ou tensão constante, a fluência é normalmente um fenômeno indesejável e às vezes o fator limitante na vida de uma parte. Ela é observada em todos os tipos de materiais; para metais ela só se torna importante para temperaturas maiores do que cerca de 0,4 Tm ( Tm = temperatura absoluta de fusão). Polímeros amorfos, que incluem plásticos e borrachas, são especialmente sensíveis à deformação por fluência como discutido na Seção 16.6. 8.13 - COMPORTAMENTO GENERALIZADO DE FLUÊNCIA Um teste típico de fluência consiste em submeter uma amostra a uma carga ou tensão constante enquanto se mantém a temperatura constante; deformação é medida e graficada como uma função do tempo decorrido. A maioria dos testes é do tipo de carga constante, que fornece informação de uma natureza de engenharia; testes de tensão constante são empregados para fornecer um melhor entendimento dos mecanismos de fluência. A Figura 8.32 é uma representação esquemática do comportamento típico de fluência de metais sob carga constante. Ao se aplicar a carga existe uma deformação instantânea, como indicada na figura, que é principalmente elástica. A resultante curva de fluência consiste de 3 regiões, cada qual tendo a sua própria característica distintiva deformação-tempo. Fluência prinmária ou transiente ocorre primeiro, tipificada por uma continuamente decrescente taxa de fluência; isto é, a inclinação da curva diminui com o tempo. Isto sugere que o material está experimentando um aumento na resistência à fluência ou endurecimento por deformação (Seção 7.10) - deformação se torna mais difícil à medida em que o material é esticado. Para a fluência secundária, às vezes denominada fluência de estado estacionário, a taxa é constante; isto é, o gráfico se torna linear. Este é às vezes o estágio de fluência que é de mais longa duração. A constância da taxa de fluência é explicada com base num balanço entre os processos competitivos de endurecimento por deformação e recuperação, recuperação (Seção 7.11) sendo o processo pelo qual um material se torna mais macio e retém sua capacidade para experimentar deformação. Finalmente, para a fluência terciária, existe uma aceleração da taxa e da falha final. Esta falha é frequentemente denominada ruptura e resulta a partir de mudanças microestrutural e/ou metalúrgicas; por exemplo, separação de contorno de grão e a formação de trincas internas, cavidades e vazios. Também para cargas de tração, um pescoço pode se formar em algum ponto dentro da região de deformação. Tudo isto conduz a um decréscimo na área da seção reta efetiva e um aumento na taxa de deformação. Para materiais metálicos a maioria dos testes de fluência são conduzidos em tensão uniaxial usando uma amostra tendo a mesma geometria que para os testes de tração (Figura 6.2). Por outro lado, testes de compressão uniaxial são mais apropriados para materiais frágeis; estes fornecem uma melhor medida das intrínsecas propriedades de fluência porquanto não exista nenhuma amplificação de tensão e propagação de trinca, tal comocom cargas de tração. Amostras de testes compressivos são usualmente cilindros retos ou paralelepípedos tendo razões comprimento-para-diâmetro variando a partir de 2 até 4. Para a maioria dos materiais propriedades de fluênciasão virtualmente independente da direção de carregamento. Possivelmente o mais importante parâmetro a partir de um teste de fluência é a inclinação da porção secundária da curva de fluência (∆ε/∆t na Figura 8.32); esta é às vezes chamada taxa de fluência mínima ou taxa de fluência de estado estacionário εs. Ela é o parâmetro de projeto de engenharia que é considerado para aplicações de longa vida, tal como componente de uma planta de potêcia nuclear que é planejada para operar durante várias décadas, e quando falha ou demasiada deformação não é uma opção. Por outro lado, para muitas situações de fluência de relativamente curta vida (por exemplo lâminas de turbina em aviões militares ou bicos de motores de foguetes), tempo de vida para a ruptura tr é a dominante consideração de projeto; êle também está indicado na Figura 8.32. Naturalmente, para a sua determinação, testes de fluência devem ser conduzidas até o ponto da falha; estes são denominados testes de ruptura de fluência. Assim um conhecimento destas características de fluência de um material permite ao engenheiro de projeto determinar sua adequacidade para uma aplicação específica. 8.14 - EFEITOS DA TENSÃO E DA TEMPERATURA Tanto temperatura quanto o nível da tensãoaplicada influenciam as características de fluência (Figura 8.33). Numa temperatura substancialmente abaixo de 0,4 Tm e após a deformação inicial, o esticamento é virtualmente independente do tempo. Com o aumento da tensão ou da temperatura, o seguinte será notado: (1) a deformação instantânea no tempo da aplicação de tensão aumenta; (2) a taxa de fluência em estado estacionário é aumentada; e (3) o tempo de vida de ruptura é diminuído. Figura 8.33 - Influência da tensão σ e da temperatura T sobre o comportamento de fluência. Os resultados de testes de ruptura por fluência são muito comumente apresentados como o logarítmo da tensão versus o logarítmo do tempo de vida. A Figura 8.34 é um tal gráfico para uma liga de níquel em que se pode observar a existência de uma correlação linear em cada temperatura. Para algumas ligas e ao longo de relativamente grandes faixas de tensão, não linearidade é observada. Figura 8.34 - Logarítmo da tensão versus logarítmo do tempo de vida de ruptura para uma liga de níquel de baixo carbono nas 3 temperaturas. (A partir de Metals Handbook: Properties and Selection : Stainless Steels, Tool Materials and Special Purpose Metals, Vol.3, 9a. Edição, D. Benjamin, Editor Senior, American Society for Metals,1980, p.130). Foram desenvolvidas correlações empíricas nas quais é expressa a taxa de fluência em estado estacionário como uma função da temperatura. Sua dependência em relação à tensão é escrita na forma _s = K1 σn (8.23) onde K1 e n são constantes do material. Um gráfico do logarítmo de _s versus o logarítmo de σ fornece uma linha retacom inclinação n ; isto é mostrado na Figura 8.35 para uma liga de níquel em 3 diferentes temperaturas. Claramente, um segmento de linha reta é traçado em cada temperatura. Figura 8.35 Logarítmo da tensão versus logarítmo da taxa de fluência em estado estacionário para uma liga de níquel de baixo carbonoem 3 temperaturas (A partir de Metals Handbook: Propriedades e Seleção : Aços Inoxidáveis, Materiais Ferramentas e Metais para Propósitos Especiais, Vol. 3, 9a. Edição, D.Benjamin, Editor Senior, American Society for Metals, 1980,p.131). Agora, quando a influência da temperatura for incluída, _s = K2 σn exp( - Qc / RT ) (8.24) onde K2 e Qc são constantes; Qc é denominado a energia de ativação para a fluência. Vários mecanismos teóricos foram propostos para explicar o comportamento de fluência para vários materiais; 3 mecanismos envolvem difusão de vacância induzida por tensão; difusão por contorno de grão; movimento de discordâncias e deslizamento de contorno de grão. Cada umconduz a um diferente valor do expoente n , da tensão , na Equação 8.23. Foi possível elucidaro mecanismo de fluência para um material particular por comparação do seu valor experimental de n com os valores previstos pelos diferentes mecanismos. Em adição, correlações foram feitas entre a energia de ativação para fluência (Qc) e a energia de ativação para difusão (Qd, na Equação 5.8). Dados de fluência desta natureza estão representados pictorialmente para alguns distemas bem estudados na formade diagramas de tensão-temperatura, os quais são chamados mapas de mecanismos de deformação. Estes mapas indicam os regimes tensão-temperatura (ou áreas) ao longo dos quais vários mecanismos operam. Contornos de taxa constante de deformação às vezes são também incluídos. Assim algumas situações de fluência, dado o apropriado mapade mecanismo de deformação e quaisquer 2 dos 3 parâmetros - temperatura, nível de tensão e taxa de deformação por fluência - o terceiro parâmetro pode ser determinado. 8.15 - MÉTODOS DE EXTRAPOLAÇÃO DE DADOS Às vezes surge a necessidade de dados de engenharia sobre fluência que são coleta impraticável a partir de testes normais de laboratório. Isto é especialmente verdadeiro para exposições prolongadas (da ordem de anos). Uma solução deste problema envolve a realização de testes de fluência ou de ruptura por fluência em temperaturas maiores do que aquelas requeridas, a fim de diminuir os períodos de tempo e num nível de tensão comparável, e a seguir realizar uma adequada extrapolação para a condição de serviço. Um procedimento de extrapolação comumente usado emprega o parâmetro de Larson-Miller, definido como T ( C + log tr ) (8.25) onde C é uma constante (usualmente da ordem de 20), para T em Kelvin e o tempo de vida de ruptura tr em horas. O tempo de vida de ruptura de um dado material medido num específico nível de tensão variará com a temperatura de tal maneira que este parâmetro permaneça constante. Ou, os dados podem ser graficados como o logarítmo da tensão versus o parâmetro de Larson-Miller, como mostrado na Figura 8.36. Utilização desta técnica é demonstrada no seguinte problema exemplo. Figura 8.36 Logarítmo da tensão versus o parâmetro de Larson-Miller para um ferro S-590. (A partir de F.R.Larson e J. Miller, Trans.ASME, 74, 765 (1952), Reimpresso por permissão de ASME). PROBLEMA EXEMPLO 8.3 8.16 - LIGAS PARA USO EM ALTA TEMPERATURA Existem vários fatores que afetam as características de metais. Estas incluem temperatura de fusão, módulo elástico e tamanho de grão. Em geral, quanto maior a temperatura de fusão, quanto maior o módulo elástico e quanto maior o tamanho de grão e tanto melhor é a resistência do material à fluência. Aços inoxidáveis (Seção 12.5), os metais refratários (Seção 12.11) e as superligas (Seção 12.12) são especialmente resilientes à fluência e comumente empregados em aplicações de alta temperatura de serviço. A resistência à fluência de ligas de cobalto e de níquel é melhorada por ligagem por solução sólida e também pela adição de uma fase dispersa que seja virtualmente insolúvel na matriz. Em adição, técnicas de processamento avançadas tem sido utilizadas, das quais uma é a solidificação direcional, que produz quer grãos altamente alongados ou componentes de monocristal (Figura 8.37). Uma outra é a solidificação controlada unidirecional de ligas tendo composições especialmente projetadas onde resultam compósitos bifásicos. Figura 8.37 (a) Lâmina policristalina de turbina que foi produzida por técnica convencional de fundição. Resistência à fluência em alta temperatura é melhorada como um resultado de uma estrutura granular orientada colunar. (b) produzida por sofisticada técnica de solidificação unidirecional. Resistência à fluência é adicionalmente aumentada quando lâminas de monocristal (c) são usadas (Cortesia dePratt & Whitney). MATERIALS SCIENCE AND ENGINEERING An Introduction William D. Callister, Jr., John Wiley & Sons, 1991 9. DIAGRAMAS DE FASES 9.1 - INTRODUÇÃO O entendimento de diagramas de fases para sistemas de ligas é extremamente importante porque existe uma forte correlação entre microestrutura e propriedades mecânicas e o desenvolvimento de microestrutura de uma liga está relacionado às características de seu diagrama de fases. Em adição, diagramas de fases fornecem valiosa informação sobre fusão, solidificação, cristalização e outros fenômenos. Este capítulo apresenta e discute os seguintes tópicos: (1) terminologia associada com diagramas de fases e transformações de fase; (2) a interpretação de diagramas de fases; (3) alguns dos diagramas de fases binários comuns e relativamente simples, incluindo aquele para o sistema ferro-carbono; e (4) o desenvolvimento de microestruturas de equilíbrio, no resfriamento, para várias situações. DEFINIÇÕES E CONCEITOS BÁSICOS É necessário estabelecer uma base de definições e conceitos básicos relacionados a ligas, fases e equilíbrio antes de estudar a interpretação e a utilização de diagramas de fases. O termo componente é frequentemente usado nesta discussão; componentes são metais puros e/ou compostos dos quais uma liga é constituída. Por exemplo, num latão de cobre-zinco, os componentes são Cu e Zn. Soluto e solvente, que são tambémtermos comuns, foram definido na Seção 4.3. Um outro termo usado neste contexto é sistema, que tem 2 significados. Primeiro, "sistema" pode referir-se a um específico corpo de material sob consideração (por exemplo, uma panela de aço líquido). Ou, êle pode relacionar à série de possíveis ligas do mesmo componente, mas sem consideração à composição da liga (por exemplo, sistema ferro-carbono). O conceito de uma solução sólida foi introduzido na Seção 4.3. À guisa de revisão, uma solução sólida consiste de átomos de pelo menos 2 diferentes tipos; os átomos de soluto ocupam posições quer substitucionais quer intersticiais na rede do solvente, e a estrutura cristalina do solvente é mantida. 9.2 - LIMITE DE SOLUBILIDADE Para muitos sistemas de ligas e alguma temperatura específica, existe uma máxima concentração de átomos soluto que podem se dissolver no solvente para formar uma solução sólida; isto é denominado um limite de solubilidade . A adição de soluto em excesso a este limite de solubilidade resulta na formação de uma outra solução sólida ou um composto que tenha composiçã distintamente diferente. Para ilustrar este conceito, considere-se o sistema açucar-água ( C12H22O11-H2O). Inicialmente, à medida em que açucar é adicionado à água, a solução açucar-água ou xarope se forma. À medida em que mais açucar é introduzido, a solução se torna mais concentrada, até que o limite de solubilidade seja atingido ou a solução se torna saturada com açucar. Neste ponto a solução não é mais capaz de dissolver nenhum açucar mais e novas adições simplesmente sedimentam-se na base do recipiente.Assim, o sistema agora o sistema consiste de 2 substâncias separadas: uma solução líquida açucar-água e cristais sólidos de açucar não dissolvidos. O limite de solubilidade do açucar em água depende da tempeatura da água e pode ser representado na forma gráfica num gráfico de temperatura ao longo da ordenada e composição (porcentagem em peso de açucar) na abcissa, como mostrado na Figura 9.1. Ao longo do eixodacomposição, o aumento da concentração de açucar é da esquerda para a direita e a porcentagem de água é lida da direita para a esquerda. Uma vez que apenas 2 componentes estão envolvidos (açucar e água) a soma da concentrações em qualquer composição será iguala 100% em peso. O limite de solubilidade está representado na Figura 9.1 como uma linha quase vertical. Para composicões e temperaturas no lado esquerdo da linha de solubilidade, existe apenas solução líquida de xarope; no lado direito da linha, coexistem xarope e açucar sólido. O limite de solubilidade numa temperatura é a composição que corresponde à interseção da coordenada da dada temperatura e a linha do limite de solubilidade. Por exemplo, a 20oC a máxima solubilidade de açucar em água é 65% em peso. Como a Figura 9.1 indica, o limite de solubilidade cresce levemente com a elevação da temperatura. 9.3 FASES O conceito de fase é também crítico para o entendimento de diagramas de fases. Uma fase pode ser definida como uma porção homogênea de um sistema que tem características química e físicas uniformes. Todo material puro é considerado como sendo uma fase; assim é também toda solução sólida, solução líquida e solução gasosa. Por exemplo, a solução de xarope açucar-água justo discutida é uma fase e o açucar sólido é uma outra. Cada uma tem diferentes propriedades físicas (uma é um líquido, a outra é um sólido); além disso, cada uma é diferente quimicamente (isto é, tem uma composição química diferente); uma é um açucar virturalmente puro, a outra é uma solução de água e C12H22O11. Se mais de uma fase estiver presente num dado sistema, cada uma terá suas propriedades distintas e existirá um limite separando as fases através do qual haverá uma descontínua e abrupta mudança em características físicas e/ou químicas. Quando 2 fases estiverem presentes num sistema, não é necessário que haja uma diferença simultaneamente em propriedades físicas e químicas; uma disparidade num ou outro conjunto de propriedades é suficiente. Quando água e gelo estiverem presentes num recipiente, existem 2 fases separadas ; elas são fisicamente dissimilares (uma é solida, a outra é um líquido) mas idênticas em composição química. Também, quando uma substância pode existirem 2 ou mais formas polimórficas ( por exemplo, tendo estruturas tanto CFC quanto CCC), cada uma destas estruturas é uma fase separada porque suas respectivas características físicas se diferem. Às vezes, um sistema monofásico é denominado "homogêneo". Sistemas compostos de 2 ou mais fases são denominados "misturas" ou "sistemas heterogêneos". A maioria das ligas metálicas e para tal fim sistemas cerâmicos, poliméricos e compósitos são heterogêneos. Ordinariamente, as fases se interagem em tal maneira que a combinação de propriedade do sistema multifásico é diferente em relação a cada uma das fases individuais e mais atraentre do que cada uma das mesmas. 9.4 - MICROESTRUTURA Muitas vezes , as propriedades típicas e, em particular, o comportamento mecânico de um material depende da microestrutura. Microestrutura é assunto para observação microscópica direta, usando microscópios ótico ou eletrônico; este tópico foi tocado na Seção 4.9. Em ligas metálicas, microestrutura é caracterizada pelo número de fases presentes, suas proporções e a maneira na qual elas estão distribuídas ou arranjadas. A microestrutura de uma liga depende de tais variáveis como os elementos de liga presentes, suas concentrações e o tratamento térmico da liga (isto é, a temperatura do tratamento, o tempo de aquecimento até a temperatura do tratamento e a taxa de resfriamento desde a temperatura do tratamento até à temperatura ambiente). O procedimento para a preparação da amostra para exame microscópico foi brevemente delineado na Seção 4.9. Após apropriado polimento e ataque, as diferentes fases podem ser distintuidas pelas suas aparências. Por exemplo, a fotomicrografia mostrada na página 246 é de uma liga bifásica alumínio-cobre; uma das fases aparece clara, a outra fase é escura. Quando apenas uma única fase ou solução sólida estiver presente,. a textura será uniforme, exceto para os contornos de grão que podem ser revelados (Figura 4.12b). 9.5 - EQUILÍBRIOS DE FASES Equilíbrio é um outro conceito essencial. Ele é melhor descrito em termos de uma quantidade termodinâmica chamada energia livre . Brevemente, energia livre é uma função da energia interna de um sistema e também da randomicidade ou desordem dos átomos ou moléculas (ou entropia). Um sistema se encontra em equilíbrio se sua energia livre estiver num mínimo sob alguma especificada combinação de temperatura, pressão e composição. Num sentido macroscópico, isto significa que as características do sistema não mudam com o tempo mas sim persiste indefinidamente; isto é, o sistema é estável. Uma mudança em temperatura, pressão e/ou composição para um sistema em equilíbrio resultará num aumento na energia livre e numa possível mudança esponânea para um outro estado mediante o que a energia livre é abaixada. O termo equilíbrio de fase, às vezes usado no contexto desta discusssão, refere-se a equilíbrio como ele se aplica a sistemas nos quais mais do que uma fase pode existir. Equilíbrio de fase é refletido por uma constância com o tempo nas características de fases de um sistema. Talvez um exemplo melhor ilustre este conceito. Suponha-se que um xarope açucar- água esteja contido num vaso fechado e a solução esteja em contato com açucar sólido a 20oC. Se o sistema estiver em equilíbrio, a composição do xarope é 65% C12H22O11-35%H2O, em peso (Figura9.1) e as quantidades e composições do xarope e de açucar sólido remanescerão constantes com o tempo. Se a temperatura do sisrtema é repentinamente elevada - digamos, para 100oC - este equilíbrio ou balanço é temporaraiamente perturbado no sentido de que o limite de solubilidade foi aumentado para80%C12H22O11 (Figura 9.1). Assim, uma quantidade de açucar sólido se dissolverá na solução de xarope. Isto continuará até que nova concentração de equilíbrio do xarope é establecida na tempeatura maior. Figura 9.1 - A solubilidade de açucar (C12H22O11) num xarope açucar-água. Este exemplo açucar-xarope ilustrou o princípio de equilíbrio de fase usando um sistema líquido-sólido. Em muitos sistemas metalúrgicos e materiais de interesse, equilíbrios de fases envolvem justo fases sólidas. Neste sentido o estado do sistema é refletido nas características da microestrutura, que necessariamente incluem não apenas as fases presentes e suas composições mas, em adição, as quantidades relativas de fases e seus arranjos ou distribuiçòes espaciais. Considerações de energia livre e diagramas similares àquele da Figura 9.1 fornecem informação sobre as características de equilíbrio de um particular sistema, que é importante; mas êles não indicam o período de tempo necessário para o atingimento de um novo estado de equilíbrio. É às vezes o caso, especialmente em sistemas sólidos, que um estado de equilíbrio não é nunca atingido completamente porque a taxa de aproximação do equilíbrio é extremamente lenta; um tal sistema é dito estar em estado de não-equilíbrio ou metaestável. Um estado metaestável ou uma microestrutura metaestável pode persistir indefinidamente, experimentando apenas extremamente leves e quase imperceptíveis mudanças com o progresso do tempo. Às vezes, estruturas metaestáveis são de importância prática maior do que aquelas de equilíbrio. Por exemplo, alguns aços e ligas de alumínio devem suas resistências mecânicas está em suas microestruturas metaestáveis geradas durante cuidadosamente projetados tratamentos térmicos (Seção 10.5 e 11.7). Assim, não apenas é importante o entendimento dos estados de equilíbrio e das estruturas de equilíbrio, mas também deve ser considerados a velocidade ou taxa na qual êles são estabelecidos e os fatores que afetam a taxa. Este capítulo é devotado quase que exclusivamente a estruturas de equilíbrio; o tratamento de taxas de reações e de estruturas de não-equilíbrio é deferido aos Capítulos 10 e 11. DIAGRAMAS DE FASES DE EQUILÍBRIO Muito da informação sobre o controle de microestrutura ou estrutura de fase de um particular sistema de liga é convenientemente e concisamente exposto no que é chamado um diagrama de fases, também às vezes denominado um diagrama de equilíbrio ou diagrama constitucional. Muitas microestruturas se desenvolvem a partir de transformações de fase, as mudanças que ocorrem entre fases quando a temperatura é alterada (ordinariamente no resfriamento). Isto pode envolver a transiçãoa partir de uma fase para uma outra, ou o aparecimento ou desaparecimento de uma fase. Diagramas de fases são úteis na previsão de transformações e as microestruturas resultantes, que podem ter caráter de equilíbrio ou de não-equilíbrio. Diagramas de fase de equilíbrio representam a correlação entre temperatura e as composições e quantidades de fases em equilíbrio. Existem várias diferentes variedades; mas na presente discussão, temperatura e composição são os parâmetros variáveis, para ligas binárias. Uma liga binária é uma que contém 2 componentes. Se maais de 2 componentes estiverem presentes, diagramas de fase se tornam extremamente complexos e difíceis de representar. Os princípios de controle microestrutural com a ajuda de diagrama de fases pode ser ilustrado com ligas binárias mesmo embora, na realidade, a maioria das ligas contenham mais do que 2 componentes. Pressão externa é também um parâmetro que influencia a estrutura de fase. Entretanto, em praticalidade, pressão remanesce virtualmente constante; assim, os diagramas de fases apresentados aqui são para uma pressão constante de uma atmosfera ( 1 atm). 9.6 - SISTEMAS ISOMORFOS BINÁRIOS Possivelmente o tipo mais fácil de diagrama de fases binário para entender e interpretar é aquele caracterizado pelo sistema cobre-níquel (Figura 9.2). Temperatura é graficada ao longo da ordenada e a abcissa representa a composição da liga, em porcentagem em peso (base) e porcentagem atômica (topo) de níquel. As faixas de composição de 0%Ni (100%Cu), em peso, na extremidade horizontal esquerda até 100%Ni(0%Cu), em peso, na extremidade horizontal direita. Três diferentes regiões de fase, ou campos, aparecem no diagrama de fases, um campo alfa (α), um campo de líquido (L) e um campo bifásico α + L. Cada região é definida pela fase ou fases que existem ao longo da faixa de temperaturas e composições delimitadas pelas linhas de limites de fase. Figura 9.2 (a) Diagrama de fases cobre-níquel. (Adaptado a partir de Metals Handbook: Metallography, Structures and Phase Diagrams, Vol. 8, 8a.Edição, ASM Handbook Committee, T. Lyman, Editor, American Society for Metals, 1973,p.294) (b) Uma porção do diagrama de fases cobre-níquel para a qual composições e quantidades de fase são determinadas no ponto B. O líquido L é uma solução líquida composta de cobre e de níquel. A fase α é uma solução sólida substitucional consistindo de átomos de Cu e de Ni e tendo uma estrutura cristalina CFC. Em temperaturas abaixo de cerca de 1080oC cobre e níquel são mutuamente solúveis no estado sólido para todas as composições. Esta solubilidade completa é explicada pelo fato de que Cu e Ni têm a mesma estrutura cristalina (CFC), raios iônicos e eletronegatividades quase idênticos e valências similares (como discutido na Seção 4.3). O sistema cobre-níquel é denominado isomorfo por causa desta completa solubilidade líquida e sólida dos 2 componentes. Existem um par de comentários a respeito da nomenclatura. Primeiro, para ligas metálicas, soluções sólidas são comumente designadas por letras gregas minúsculas ( α, β , γ, etc..). Em relação aos limites de fase a linha que separa os campos das faes L e α + L é denominada a linha liquidus, como indicada na Figura 9.2a; a fase líquida está presente em todas as temperaturas e composições acima desta linha. A linha solidus está localizada entre as regiões α e α + L , abaixo da qual só existe a fase α sólida. Para a Figura 9.2a, as linhas solidus e liquidus se intersectam nas 2 extremidades de composição; estas correspondem às temperaturas de fusão dos componentes puros. Por exemplo, as temperaturas de fusão de cobre puro e de níquel puro são 1085oC e 1455oC, respectivamente. O aquecimento do cobre puro corresponde a se mover para cima ao longo do eixo da temperatura no lado esquerdo do diagrama. O cobre se mantém sólido até que a sua temperatura de fusão seja atingida. A transformação sólido-a-líquido ocorre na temperatura de fusão e nenhum aquecimento adicional é possível até que esta transformação tenha se completado. Para qualquer composição que não seja a dos componentes puros, este fenômeno de fusão ocorrerá ao longo da faixa de temperatura entre as linhas solidus e liquidus; as fases sólido α e líquida estarão em equilíbrio dentro da faixa de temperatura. Por exemplo, ao se aquecer uma liga de composição em peso igual a 50%Ni-50%Cu, em peso, (Figura9.2a), a fusào se inicia a aproximadamente 1280oC; a quantidade de fase líquida cresce continuamente com a elevação da temperatura até cerca de 1320oC, na qual a liga estará completamente líquida. Interpretação de Diagramas de Fases Para um sistema binário de composição e temperatura conhecidas que esteja em equilíbrio, pelo menos 3 tipos de informação são disponíveis: (1) as fases que estão presentes; (2) as composiçòes destas fases, e (3) as porcentagens ou frações das fases. Os procedimentos para fazer estas determinações serão demonstrados usando o sistema cobre-níquel. Fases presentes. O estabelecimento de que fases estão presentes é relativamente simples. Se deve justo localizar o ponto temperatura-composição no diagrama e notar a(s) fase(s) que corresponde(m ) ao campo de fase rotulado. Por exemplo,uma liga de composição em peso igual a 60%Ni e 40%Cu a 1100oC estaria localizada no ponto A na Figura 9.2a; de vez que este ponto se situa na região α, apenas a única fase α estará presente. Por outro lado, uma liga 35%Ni- 65%Cu, em peso, a 1250oC (ponto B ) consistirá das fases α e líquido em equilíbrio. Determinação das composições de fases. A primeira etapa na determinação de composições de fases (em termos das concentrações dos componentes) é localizar o ponto tempeatura-composição no diagrama de fases. Diferentes métodos são usados para regiões monofásicas e bifásicas. Se apenas uma fase estiver presesente, o procedimento é trivial: a composição desta fase é simplesmente a mesma composição global da liga. Por exemplo, considere-se a liga 60%Ni-40%Cu, em peso, a 1100oC (ponto A, Figura 9.2a.). Nesta composição e temperatura, apenas a fase α está presente, tendo uma composição 60%Ni-40%Cu, em peso. Para uma liga tendo composição e temperatura localizada numa região bifásica, a situaçào é mais complicada. Em todas as regiões bifásicas (e em regiões bifásicas apenas apenas), se pode imaginar uma série de linhas horizontais, uma em cada uma das temperaturas; cada uma destas linhas horizontais é conhecida como uma linha de ligação ("tie line"), ou às vezes como uma isoterma. Estas linhas de ligação se estendem através da região de 2 fases e teminam nas linhas de limite de fases em ambos os lados. Para calcular as concentrações de equilíbrio das 2 fases, o seguinte procedimento é usado: 1. Uma linha de ligação é construída através da região de 2 fases na temperatura da liga. 2. As interseções da linha de ligação com as linhas de limites de fases em cada lado são notadas . 3. Perpendiculares são traçadas a partir destas interseções ao eixo horizontal de composição, onde a composição de cada uma das respectivas fases é lida. Por exemplo, considere-se de novo a liga 35%Ni-65%Cu, em peso, a 1250oC, localizada no ponto B na Figura 9.2b e situando-se na região α + L. Assim o problema é determinar a composição (em % em peso de Ni e de Cu) para as fases α e líquido. A linha de ligaçào foi construída através da região de fase α + L, como mostrado na Figura 9.2b. A perpendicular a partir da interseção da linha de ligação com o limite de liquidus encontra o eixo da composição em 32% de Ni e 68%de Cu, em peso, que é a composição da fase líquida, CL . Do mesmo modo, para a interseção solidus-linha de ligação, nós encontramosuma composiçào para a fase solução sólida α, Cα , de 43%de Ni e 57% de Cu, em peso. Determinação das Quantidades de Fases. As quantidades relativas (como fração ou porcentagem) das fases presentes em equilíbrio podem também ser calculadas com a ajuda de diagrama de fases. Na região monofásica a liga é composta inteiramente daquela fase, isto é 100%. Para uma liga 60%Ni-40%Cu, em peso, a 1100oC (ponto A, da Figura 9.2a), apenas a fase α está presente; portanto, a liga é completamente α ou 100%α. Se a posição da composição e temperatura estiver localizada dentro de uma região de 2 fases, a linha de ligação deve ser utilizada em conjunção com um procedimento que é às vezes conhecido como a regra da alavanca ("lever rule", ou regra da alavanca inversa), que é aplicada do seguinte modo: 1. A linha de ligação é construída através da região de 2 fases na temperatura da liga. 2. A composição total da liga é localizada na linha de ligação. 3. A fração de uma fase é calculada tomando o comprimento da linha de ligação a partir da composição global da liga até o limite de fase para a outra fase e dividindo pelo comprimento total da linha de ligação. 4. A fração da outra fase é determinada da mesma maneira. 5. Se as porcentagens de fases forem desejadas, cada fração deve ser multiplicada por 100. Quando o eixo de composição for posto em escala de porcentagem em peso, as frações de fase computadas usando a regra da alavanca são frações de massa - a massa (ou peso) de uma fase específica dividida pela massa (ou peso) total da liga. A massa de cada fase é calculada a partir do produto da fração de cada fase e a massa total da liga. Ocasionalmente, se torna necessário calcular as frações volumétricas de fases, que é realizado considerando as densidades das fases, como delineado no Problema Exemplo 9.3. No emprego da regra da alavanca, os comprimentos da linha de ligação podem ser determinados quer por medição direta a partir do diagrama de fases usando uma escala linear, de preferência em mm, ou subtraindo composições tomadas a partir do eixo das composições. Considere-se novamente o exemplo mostrado na Figura 9.2b, no qual a 1250oC para uma liga 35%Ni-65%Cu, em peso, as fases α e líquido estão presentes. O problema é calcular a fração de cada uma das fases α e líquido. Foi construída a linha de ligação que foi usada para determinação das composições de α e L. Seja localizada a composição global da liga ao longo a linha de ligação e denotada como Co e representadas por WL e Wα as frações mássicas para as respectivas fases. A partir da regra da alavanca, WL pode ser calculada de conformidade com WL = S / (R + S) (9.1a) ou, por subtração de composições, WL = (Cα - Co) / (Cα - CL) (9.1b) Composição tem que ser especificada apenas em termos de um dos constituintes para uma liga binária; para o cálculo acima, a % em peso de Ni será usada (isto é, Co = 35%Ni, em peso, Cα = 43%Ni e CL = 32%Ni) e WL = (43 - 35) / (43 - 32) = 0,73 Similarmente, para a fase α, WL = R / (R+S) (9.2a) = (Co - CL) / (Cα - CL) (9.2b) = (35 - 32) / (43 - 32) = 0,27 PROBLEMA EXEMPLO 9.1 DESENVOLVIMENTO DE MICROESTRUTURA EM LIGAS ISOMÓRFICAS Neste ponto é instrutivo examinar o desenvolvimento de microestrutura que ocorre para ligas isomórficas durante a solidificação. Nós primeiro tratamos a situação na qual o resfriamento ocorre muito lentamente, no sentido de que o equilibrio de fase é continuamente mantido. Consideremos o sistema cobre-níquel (Figura 9.2a), especificamente uma liga de composição 35%Ni-65%Cu, em peso, enquanto ela é resfriada a partir de 1300oC. A região do diagrama de fase Ni-Cu na vizinhança desta composição está mostrada na Figura 9.3. O resfriamento de uma liga de composição acima corresponde a mover-se para baixo ao longo da linha vertical tracejada. A 1300oC, ponto a, a liga está completamente líquida (de composição 35%Ni-65%Cu) e tem a microestrutura representada pelo círculo inserido na figura.Quando o resfriamento se inicia, nenhuma mudança microestrutural ou de composição ocorrerá até que atinjamos a linha liquidus (ponto b, aproximadamente 1270oC). Neste ponto, começa a se formar o primeiro sólido α, que tem uma composição ditada pela linha de ligação traçada nesta temperatura (isto é, 49%Ni-51%Cu, em peso); a composição do líquido é ainda aproximadamente 35%Ni- 65%Cu, que é diferente daquela do sólido α. Com o continuado resfriamento, tanto as composições quanto as quantidades relativas de cada uma das fases mudarão. As composições das fases líquido e α seguirão as linhas liquidus e solidus, respectivamente. Além disso, a fração da fase α aumentará com o continuado resfriamento.Também, a composição global da liga (35%Ni- 65%Cu) remanesce a mesma durante o resfriamento mesmo embora exista uma redistribuição de cobre e de níquel entre as fases. Figura 9.3 - Representação esquemática do desenvolvimento de microestrutura durante a solidificação de equilíbrio de uma liga 35%Ni-65%Cu. A 1250oC, ponto c na Figura 9.3, as composições, em peso, das fases líquido e α são 30%Ni-70%Cu e 43%Ni-57%Cu, respectivamente. O processo de solidificação está virtualmente completo a 1220oC, ponto d; a composição do sólido é aproximadamente 35%Ni-65%Cu (a composição global da liga) enquanto que aquela do último líquido remanescente é 23%Ni-77%Cu. Ao atravessar a linha solidus, estelíquido remanescente se solidificará; o produto final é então uma fase policristalina de fase α que tem uma composição uniforme 35%Ni-65%Cu (ponto e, Figura 9.3). Subsequente resfriamento não produzirá nenhuma alteração microestrutural ou composicional. Condições de solidificação de equilíbrio são realizadas apenas para taxas de resfriamento extremamente lentas. A razão para isto é que com mudanças na temperatura, devem existir reajustes nas composições das duas fases de acordo com o diagrama de fases, como discutido nos parágrafos precedentes. Estes reajustes são realizados por processos difusionais, isto é, difusão nas fases tanto sólida quanto líquida e também através da interface sólido-líquido. Porquanto difusão é um fenômeno dependente do tempo (Seção 5.3), para manter equilíbrio durante o resfriamento, suficiente tempo deve ser permitido em cada temperatura para os apropriados ajustes de composição. Taxas de difusão (isto é, a magnitude dos coeficientes de difusão) são especialmente baixas para a fase sólida e, para ambas as fases, decrescem com o abaixamento da temperatura. Em virtualmente todas as situações práticas de solidificação, taxas de resfriamento são demasiado rápidas para permitir estes ajustes de composição e a manutenção de equilíbrio e resultam microestruturas outras que aquelas descritas acima. Uma consequência importante de solidificação de não-equilibrio para ligas isomorfas é uma distribuição não uniforme dos dois elementos dentro dos grãos, que é denominada segregação. A região central de cada grão, que é a primeira a se solidificar, é rica em elemento de alto ponto de fusão (por exemplo, níquel para um sistema Ni-Cu), enquanto que a concentração do elemento de baixo ponto de fusão aumenta com a posição a partir desta região para o contorno do grão; assim, são estabelecidos gradientes de concentração através dos grãos, que está esquematicamente representado na Figura 9.4. Isto é às vezes denominado uma estrutura "em camadas concêntricas", que dá origem a propriedades menores do que as ótimas. Quand uma peça fundida (soldificada em moldes) tendo uma estrutura em camadas concêntricas é reaquecida, regiões de contorno de grão se fundirão primeiro porquanto elas sejam mais ricas no componente de menor ponto de fusão. Isto produz uma repentina perda na integridade mecânica devida ao filme fino líquido que separa os grãos. Além disso, esta fusão pode começar numa temperatura abaixo da temperatura solidus de equilíbrio da liga. A estrutura em camadas concêntricas pode ser eliminada por um tratamento térmico de homogenização realizado numa temperatura abaixo do ponto de solidus para a particular composição de liga. Durante este processo, ocorre a difusão atômica, que produz grãos composicionalmente uniformes. Figura 9.4 - Representação esquemática de formação de camadas concêntricas num único grão. Para uma estrutura de camadas concêntricas, gradientes de concentração são estabelecidos através dos grãos; linhas tracejadas indicam contornos de concentração constante (C1, C2 e C3, etc..). PROPRIEDADES MECÂNICAS DE LIGAS ISOMORFAS Agora exploraremos brevemente como as propriedades mecânicas de ligas sólidas isomorfas são afetadas por composição quando outras variáveis estruturais (por exemplo, tamanho de grão) são mantidas constantes. Para todas as temperaturas e composições existirá apenas uma única fase sólida abaixo da temperatura de fusão do componente de mais baixo ponto de fusão. Portanto, cada componente experimentará endurecimento por solução sólida (Seção 7.9), ou um aumento na resistência mecânica ou na dureza por adições do outro componente. Este efeito é demonstrado na Figura 9.5a na forma de resistência à tração versus composição para o sistema níquel-cobre à temperatura ambiente; em alguma composição intermediária, a curva necessariamente passa através de um máximo. Graficado na Figura 9.5b está o comportamento dutilidade (%EL)-composição, que é justo o oposto da resistência à tração; isto é, a dutilidade decresce com adições do segundo componente, e a curva exibe um mínimo. Figura 9.5 - Para um sistema cobre-níquel, (a) resistência à tração versus composição, e (b) dutilidade (%EL) versus dutilidade. Existe uma solução sólida para todas as composições deste sistema binário. 9.7 - SISTEMAS EUTÉTICOS BINÁRIOS Um outro tipo de diagrama de fase comum e relativamente simples encontrado para ligas binárias é mostrado na Figura 9.6 para o sistema cobre-prata; este é conhecido como diagrama de fase eutético binário. Um número de características deste diagrama de fase são importantes e vale a pena notá-las. Antes de mais nada, são encontradas no diagrama 3 regiões monofásicas: α, β e líquido. A fase α é uma solução sólida rica em cobre; ela tem prata como o componente soluto e uma estrutura cristalina CFC. A fase solução sólida β também tem uma estrutura CFC, mas cobre é o soluto. Tecnicamente, cobre puro e prata pura são considerados como sendo fases α e β , respectivamente. Figura 9.6 - Diagrama de fase cobre-prata. (Adaptado a partir de Metals Handbook: Metallography, Structures and Phase Diagrams, Vol.8, 8th edition, ASM Handbook Committee, T. Lyman, Editor, American Society for Metals, 1973, p.253). Assim a solubilidade de cada uma destas fases sólidas é limitada, no sentido de que em qualquer temperatura abaixo da linha BEG apenas uma limitada concentração de prata se dissolve em cobre (para a fase α) e, similarmente, para o cobre em prata (para a fase β). O limite de solubilidade para a fase α corresponde à linha de limite de fase, denominada CBA, entre as regiões de fases α/(α + β) e α/(α + L) ; ele cresce com a temperatura até um máximo [7,9 %Ag, em peso, a 780oC (1436oF)] no ponto B, e decresce até zero na temperatura de fusão do cobre puro, ponto A [1085oC (1985oF)]. Em temperatura inferior a 780oC (1436oF), a linha de limite de solubilidade sólida separando as regiões de fase α e α + β é denominada a linha solvus ; o limite AB entre os campos de α e de α + L é a linha solidus, como indicado na Figura 9.6. Para a fase β , existem também as linhas tanto solvus quanto solidus, HG e GF, respectivamente, como mostrado. A solubilidade máxima de cobre na fase β , ponto G (8,8% em peso de Cu), também ocorre a 780oC (1436oF). Esta linha horizontal BEG, que é paralela ao eixo da composição e se estende entre estas posições de máxima solubilidade, pode ser considerada como sendo uma linha solidus; ela representa a mais baixa temperatura na qual uma fase líquida pode existir para qualquer liga cobre-prata que esteja em equilíbrio. Existem também 3 regiões bifásicas no diagrama de fase do sistema cobre-prata (Figura 9.6): α + L, β + L e α + β . As soluções sólidas das fases α e β coexistem para todas as composições e temperaturas dentro do campo de fase α + β; as fases α + L e β + L também coexistem em suas respectivas regiões de fases. Além disso, composições e quantidade relativas para as fases podem ser determinadas usando linhas de ligação e a regra da alavanca como delineada na seção precedente. À medida em que prata é adicionada ao cobre, a temperatura na qual as ligas se tornam totalmente líquidas decrescem ao longo da linha liquidus, linha AE; assim a temperatura de fusão do cobre é abaixada por adições de prata. O mesmo pode ser dito para a prata: a introdução de cobre reduz a temperatura de fusão completa ao longo da outra linha liquidus, FE. Estas linhas liquidus se encontram no ponto E do diagrama de fase, por onde também passa a linha horizontal isotérmica BEG. O ponto E é chamado um ponto invariante e é designado pela composição CE e temperatura TE ; para o sistema cobre-prata, os valores de CE e TE são 71,9% em peso de Ag e 780oC (1436oF), respectivamente. Quando uma liga de composição CE muda de temperatura e passa por TE , ocorre uma importante reação, que pode ser escrita da seguintemaneira: resfriamento L(CE) º α(CαE) + β(CβE) (9.5) aquecimento Ou, no resfriamento, uma fase líquida é transformada em 2 fases sólidas α e β à temperatura TE ; a reação oposta ocorre no aquecimento. Esta é chamada uma reação eutética (eutética signifca facilmente fundida) e CE e TE representama composição e temperatura eutéticas, respectivamente; CαE e CβE são as respectivas composições das fases α e β na temperatura TE. Assim, para o sistema cobre-prata, a Equação 9.5 pode ser escrita como segue: resfriamento L (71,9 % Ag em peso) º α(7,9 %Ag) + β (91,2%Ag) aquecimento Às vezes, a linha solidus horizontal em TE é chamada a isoterma eutética. A reação eutética, no resfriamento, é similar à solidificação para componentes puros no sentido de que a reação se processa até o fim numa temperatura constante, ou isotermicamente em TE. Entretanto, o produto sólido da solidificação eutética é sempre o conjunto de 2 fases, enquanto que para um componente puro apenas uma única fase se forma. Por causa desta reação eutética, diagramas de fase similares aqueles da Figura 9.6 são denominados diagramas de fase eutéticos; componentes exibindo este comportamento compreendem um sistema eutético. Na construção de diagramas de fase binários, é importante entender que uma ou no máximo 2 fases podem estar em equilíbrio dentro de um campo de fase. Isto se aplica para os diagramas de fase da Figura 9.2a e 9.6. Para um sistema eutético, 3 fases (α, β e L) pode estar em equilíbrio, mas apenas em pontos ao longo da isoterma eutética. Uma outra regra geral é que regiões monofásicas são sempre separadas entre si por uma região bifásica que consiste das 2 fases simples que ela separa. Por exemplo, o campo α + β está situado entre as regiões de monofases α e β na Figura 9.6. Um outro sistema eutético comum é aquele para chumbo e estanho; o diagrama de fase (Figura 9.7) tem uma forma geral similar aquela do sistema cobre-prata. Para o sistema chumbo- prata as fases solução sólida são também designadas por α e β; neste caso, α representa uma solução sólida de estanho em chumbo e para β o estanho é o solvente e chumbo é o soluto. O ponto invariante eutético está localizado em 61,9%Sn, em peso, e 183oC (361oF). Naturalmente, composições de máxima solubilidade sólida bem como temperaturas de fusão dos componentes serão diferentes para os sistemas cobre-prata e chumbo-estanho, como pode ser observado pela comparação do seus diagramas. Figura 9.7 - Diagrama de fase chumbo-estanho. (Adaptado a partir de Metals Handbook: Metallography, Structures and Phase Diagrams, Vol.8, 8th edition, ASM Handbook Committee, T. Lyman, Editor, American Societyfor Metals, 1973,p.330). Ocasionalmente, são preparadas ligas de baixo ponto de fusão tendo composições quase eutéticas. Um exemplo familiar é a solda 60-40, contendo 60%Sn e 40%Pb, em peso. Figura 9.7 indica que uma liga desta composição está completamente fundida a cerca de185oC (365oF), o que faz deste material especialmente atrativo como uma solda de baixa temperatura, de vez que ele é facilmente fundido. PROBLEMA EXEMPLO 9.2. PROBLEMA EXEMPLO 9.3. DESENVOLVIMENTO DE MICROESTRUTURA EM LIGAS EUTÉTICAS Dependendo da composição, vários diferentes tipos de microestrutura são possíveis para resfriamento lento de ligas pertencendo a sistemas eutéticos binários. Estas possibilidades serão consideradas em termos dos diagrama de fase chumbo-estanho, Figura 9.7. O primeiro caso é para composições variando entre um componente puro e a máxima solubilidade sólida para aquele componente à temperatura ambiente [20oC (70oF)]. Para o sistema chumbo-estanho, isto inclui ligas ricas em chumbo contendo entre 0 e cerca de 2% em peso de Sn ( para a solução sólida α) e também estanho essencialmente puro, de vez que a solubilidade de chumbo em estanho(para a fase β) é desprezível à temperatura ambiente. Por exemplo, considere- se uma liga de composição C1 (Figura 9.9) quando ela é resfriada a partir de uma temperatura compreendida dentro da região de fase líquida, por exemplo, 350oC; isto corresponde a mover-se para baixo ao longo da linha vertical ww' na figura. A liga remanesce totalmente líquida e a composição C1 até nós cruzarmos a linha liquidus a cerca de aproximadamente 330oC, tempo em que a fasse α sólida começa a se formar. Enquanto se passa através desta estreita região de fase α + L, solidificação se processa da mesma maneira como descrita para a liga cobre-níquel na sseção precedente; isto é, com continuado resfriamento mais sólido α se forma. Além disso, são diferentes entre si as composições de líquido e de fase sólida que seguem ao longo dos limites liquidus e solidus, respectivamente. Solidificação se completa no ponto onde ww cruza a linha solidus. A liga resultante é policristalina com uma composição uniforme de C1 e nenhuma subsequente mudança ocorrerá no resfriamento até à temperatura ambiente. Esta microestrutura está representada esquematicamente pela inserção no pontoc na Figura 9.9. Figura 9.9 - Representações esquemáticas de microestruturas de equilíbrio para liga chumbo- estanhode composição C1 à medida em que ela é resfriada a partir da região de fase líquida. O segundo caso considerado é para composições que variam entre o limite de solubilidade à temperatura ambiente e a solubilidade máxima na temperatura eutética. Para o sistema chumbo-estanho (Figura 9.7), estas composições se estendem desde cerca de 2%Sn, em peso, até 19,2%Sn (para ligas ricas em chumbo) e desde 97,5%Sn até estanho virtualmente puro (para ligas ricas em estanho). Examinemos uma liga de composição C2 à medida em que ela é resfriada ao longo da linha vertical xx ' na Figura 9.10. Para baixo até a interseção de xx ' e a linha solvus, mudanças que ocorrem são similares ao caso anterior, quando nós passamos através das correspondentes regiões de fase (como demonstrado pelas inserções nos pontos d, e e f). Justo acima da interseção de solvus, ponto f, a microestrutura consiste de grãos α de composição C2. Ao cruzar a linha solvus, a solubilidade no sólido α é excedida, o que resulta na formação de pequenas partículas de fase β; estas estão indicadas na inserção de microestrutura no ponto g. Com o continuado resfriamento, estas partículas crescerão em tamanho porque a fração mássica da fase β cresce ligeiramente com o decrescimo da temperatura. Figura 9.10 - Representações esquemáticas da microestrutura de equilíbrio para uma liga chumbo- estanho de composição C2 à medida em que ela é resfriada a partir da região de fase líquida. O terceiro caso envolve solidificação da composição eutética, 61,9% em peso de Sn ( C3 na Figura 9.11). Considere-se uma liga tendo esta composição que é resfriada a partir de uma temperatura situada na região de fase líquida (por exemplo, 250oC) para baixo ao longo da linha yy' na Figura 9.11. À medida em que a temperatura é abaixada, nenhuma mudança ocorre até que nós atingimos a temperatura eutética, 183oC. Ao se cruzar a isotérma eutética, o líquido se transforma nas duas fases α e β . Esta transformação pode ser representada pela reação L (61,9%Sn em peso) 6 α (19,2%Sn em peso) + β(97,5%Sn em peso) (9.6) na qual as composições das fases α e β são ditadas pelos pontos extremos da isoterma eutética. Durante esta transformação deve existir necessariamente uma redistribuição dos componentes chumbo e estanho, porquanto as fases α e β têm diferentes composições sendo que nenhuma delas é a mesma daquela do líquido. Esta redistribuição é realizada por difusão atômica. Figura 9.11 - Representações esquemáticas das microestruturas de equilíbrio para uma liga chumbo-estanho de composição eutética C3 acima e abaixo da temperatura eutética. A microestrutura resultante consiste de camadas alternadas(às vezes denominadas lamelas) de fases α e β que se formam simultaneamente durante a transformação. Esta microestrutura, representada esquematicamente na Figura 9.11, ponto i, é chamada uma estrutura eutética e é característica desta reação. Uma fotomicrografia desta estrutura para o eutético chumbo-estanho é mostrada na Figura 9.12. As fases α e β se formam nestas camadas alternantes porque, para esta configuração lamelar, difusão atômica necessita apenas ocorrer ao longo de relativamente pequenas distâncias. Subsequente resfriamento da liga a partir de justo abaixo da temperatura eutética até a temperatura ambiente resultará apenas em menores variações microestruturais. Figura 9.12 - Fotomicrografia mostrando a microestrutura de uma liga chumbo-estanho de composição eutética. Esta microestrutura consiste de camadas alternadas de uma fase solução sólida α (camadas escuras) rica em chumbo e de uma fase solução sólida β rica em estanho (camadas claras), 375x. (Reproduzida com permissão a partir de Metals Handbook, Vol.9, 9a.Edição, Metallography and Microstructures, American Society for Metals, Materials Park, OH, 1985. O quarto e último caso microestrutural para este sistema inclui todas as composições outras que não a eutética que, quando resfriada, cruzam a isoterma eutética. Considere-se, por exemplo, a composição C4, Figura 9.13a, que se situa no lado esquerdo do eutético; à medida em que a temperatura é abaixada, nós movemos para baixo a linha zz', começando no ponto j. O desenvolvimento microestrutural entre pontos j e l é similar aquele para o segundo caso, de tal maneira que justo antes de cruzar a isotérma eutética (ponto l ), as fases α e líquido estão presentes tendo composições de aproximadamente 19,2 e 61,9%Sn em peso, respectivamente, como determinado a partirda apropriada linha. À medida em que a temperatura é baixada até justo abaixo do eutético, a fase líquida, que é de composição eutética, se transformará à estrutura eutética (isto é, lamelas alternadas de fases α e β); variações insignificantes ocorrerão com a fase α que ses formou durante o resfriamento através da região α + L. Esta microestrutura está representada esquematicamente pela inserçào no ponto m na Figura 9.13a. Assim a fase α estará presente tanto na estrutura eutética quando também à medida em que a fase que se formou durante o resfriamento através do campo de fase α + L. Para distinguir uma α da outra, aquela que reside na estrutura eutética é denominada α eutético, enquanto que a outra que se formou antes da passagem pela isoterma eutética é denominada α primário; ambos se encontram denominados na Figura 9.13a. A fotomicrografia da Figura 9.13b é de uma liga de chumbo-estranho na qual as estruturas tanto de α primário quanto de eutético estão mostradas. Figura 9.13 (a) Representações esquemáticas das microestruturas de equilíbrio para uma liga chumbo-estanho de composição C4 à medida em que ela é resfriada a partir da região de fase líquida. (b) Fotomicrografia mostrando a microestrutura de uma liga chumbo-estanho de composiçào 50%Sn-50%Pb, em peso. Esta microestrutura é composta de uma fase α rica em chumbo (regiões escuras grandes) dentro de uma estrutura eutética lamelar que consiste de uma fase β rica em estanho (camadas claras) e uma fase α rica em chumbo (camadas escuras). 400x. (Reproduzida com permissãoa partir de Metals Hambook, Vol.9, 9a.Edição, Metallography jand Microstructures, American Society for Metals, Materials Park, OH, 1985). Ao tratar com microestruturas, é às vezes conveniente usar o termo microconstituinte, isto é, um elemento da microestrutura tendo uma estrutura identificável e característica. Por exemplo, na inserção do ponto m, Figura 9.13a, existem 2 microconstituintes, isto é, α primário e a estrutura eutética. Assim a estrutura eutética é um microconstituinte mesmo embora seja uma mistura de 2 fases, porque ela tem uma estrutura lamelar distinta, com um razão fixa das 2 fases. É possível calcular as quantidades relativas dos microconstituintes tanto de eutético quanto de α primário. De vez que o microconstituinte eutético sempre se forma a partir do líquido tendo a composição eutética, este microconstituinte pode ser suposto tendo uma composição de 61,9%Sn em peso. Portanto, a regra da alavanca é aplicada usando a linha de ligação entre o limite de fase α-(α + β), correspondente a 19,2%Sn em peso, e a composição eutética. Por exemplo, considere- se a composição C4 na Figura 9.14. A fração do microconstituinte eutético We é justo a mesma fração de líquido WL a partir do qual se transforma, ou We = WL = P / (P + Q) = = (C4 - 19,2) / (61,9 - 19,2) = (C4 - 19,2)/42,7 (9.7) Figura 9.14 - Diagrama chumbo-estanho usado em cálculos para quantidades relativas dos microconstituintes α primário e eutético para uma liga de composição C4 . Além disso, a fração de α primário, Wα , é justo a fração da fase α que existiu antes da transformação eutética; ou, a partir da Figura 9.14, Wα' = Q / (P + Q) = = (61,9 - C'4 ) / (61,9 - 19,2) = (61,9 - C'4)/42,7 (9.8) As frações de α total, Wα (tanto eutético quanto primário) e também de β total, Wβ , são determinadas pelo uso da regra da alavanca e uma linha de ligação que se estende inteiramente através do campo de fase α + β . De novo, para uma liga tendo composição C'4 , Wα = (Q + R)/(P + Q + R) = = (97,5 - C'4)/(97,5 -19,2) = (97,5 - C'4)/78,3 (9.9) e Wβ = P / (P + Q + R) = = (C'4 - 19,2) / (97,5 - 19,2) = (C'4 - 19,2) / 78,3 (9,10) Transformações e microestruturas análogas resultam para ligas que têm composiçòes à direita da composição eutética (isto é, entre 61,9%Sn e 97,5%Sn). Entretanto, abaixo da temperatura eutética, a microestrutura consistirá dos microconstituintes eutético e β primário porque no resfriamento a partirdo líquido, nós passamos através do campo de fase β + líquido. Quando, para o caso 4 (representado na Figura 9.13a), condições de equilíbrio não são mantidas enquanto se passa através da região de fase α (ou β) + líquido, as seguintes consequências serão realizadas para a microestrutura ao se cruzar a isoterma eutética: (1) grãos do microconstituinte primário serão em camadas concêntricas, isto é, terão uma distribuição não- uniforme de soluto através dos grãos; e (2) a fração do microconstituinte eutético formado será maior do que para a situação de equilíbrio. 9.8 - DIAGRAMAS DE EQUILÍBRIO TENDO FASES OU COMPOSTOS INTERMEDIÁRIOS Os diagramas de fase isomorfos e eutéticos discutidos até aqui são relativamente simples, mas aqueles para muitos sistemas de ligas binárias são muito mais complexos. Os diagramas de fases eutéticos cobre-prata e chumbo-estanho (Figuras 9.6 e 9.7) têm apenas duas fases sólidas, α e β; estas são às vezes denominadas soluções sólidas terminais, porque elas existem ao longo de faixas de composição próximas às extremidades de concentração do diagrama de fase. Para outros sistemas de ligas, soluções sólidas intermediárias (ou fases intermediárias) podem ser encontradas em outras que não as 2 composições extremas. Tal é ocaso para o sistema cobre- zinco. Seu diagrama de fase (Figura 9.15) em primeiro lugar revela-se formidável porque existem alguns pontos invariantes e reações similares à eutética que ainda não haviam sido discutidos. Em adição, existem 6 diferentes soluções sólidas - 2 terminais e 4 intermediárias (β , γ, δ e ε). ( A fase β ' é denominada uma solução sólida ordenada, uma na qual átomos de cobre e de zinco estão situados num arranjo específico e ordenado dentro de cada célula unitária). Algumas linhas de limite de fases perto da base da Figura 9.15 estão tracejadas para indicar que suas posições não foram determinadas de uma maneira exata. A razão para isto é que em baixas temperaturas, taxas de difusão são muito lentas e tempos ordinariamente longos são requeridos para atingir o equilíbrio. Denovo, apenas regiões monofásicas e bifásicas são encontradas no diagrama e as mesmas regras delineadas na Seção 9.6 são utilizadas para calcular as composições de fase e as quantidades relativas de fases. Os latões comerciais são ligas ligas cobre-zinco ricas em cobre; por exemplo, latão para cartuchos tem uma composição de 70%Cu-30%Zn, em peso, e uma microestrutura consistindo de uma fase α única. Figura 9.15 - O diagrama de fase cobre-zinco. (Adaptado apartir de Metals Handbook: Metallography, Structures and Phase Diagrams, Vol.8, 8a. edição, ASM Handbook Committee, T. Lyman, Editor, American Society for Metals, 1973,p.301). Para alguns sistemas, compostos intermediários discretos em vez de soluções sólidas podem ser encontradas no diagrama de fase e estes compostos tem distintas fórmulas químicas ; para sistemas metal-metal, eles são chamados compostos intermetálicos. Por exemplo, considere- se o sistema magnésio-chumbo (Figura 9.16). O composto Mg2Pb tem uma composição de 19%Mg em peso-81%Pb em peso (33at%Pb) e está representado como uma linha vertical no diagrama, em vez de uma região de fase de largura finita; portanto, Mg2Pb pode existir por si mesmo somente nesta composição precisa. Figura 9.16 - O diagrama de fase magnésio-chumbo. (Adaptado a partir de Metals Handbook: Metallography, Structures and Phase Diagrams, Vol.8, 8a.Edição, ASM Handbook Committee, T. Lyman, Editor, American Society for Metals, 1973,p.315). Vale a pena notar várias outras características para este sistema magnésio-chumbo. Primeiro, o composto Mg2Pb se funde a aproximadamente 550oC (1020oF), como indicado pelo ponto M na Figura9.16. Também, a solubilidade do chumbo em magnésio é bastante extensa, como indicada pela relativamente grande extensão de composição para o campo da fase α. Por outro lado, a solubilidade do magnésio em chumbo é extremamente limitada. Isto está evidente a partir da muito estreita região de solução sólida terminal β no lado direito ou lado rico em chumbo do diagrama. Finalmente, este diagrama de fase pode ser pensado como sendo 2 diagramas eutéticos simples juntados pelas suas traseiras, um para o sistema Mg-Mg2Pb, o outro para Mg2Pb-Pb; como tal, o composto Mg2Pb é realmente considerado como sendo um componente. Esta separação de diagramas de fase complexos em unidades de componentes menores pode simplificá- los e, além disso, apressar a sua interpretação. 9.9 - REAÇÕES EUTETÓIDES E PERITÉTICAS Em adição ao ponto eutético, outros pontos invariantes envolvendo 3 diferentes fases são encontrados em alguns sistemas de ligas. Um deles ocorre nosistema cobre-zinco (Figura 9.15) a 558oC(1036oF) e 75%Zn-25%Cu, em peso. Uma porção do diagrama de fase nesta vizinhança aparece ampliada na Figura 9.17. No resfriamento,uma fase sólida δ transforma-se a 2 outras fases sólidas (γ e ε) de acordo com a reação resfriamento δ W γ + ε (9.11) aquecimento Figura 9.17 - Uma região do diagrama de fase cobre-zinco que foi ampliada para mostrar pontos eutetóide e peritético, denominados E (558oC, 75%Zn em peso) e P (598oC, 78,6%Zn em peso), respectivamente. A reação reversa ocorre no aquecimento. Ela é denominada uma reação eutetóide (ou do tipo eutético) e o ponto invariante (ponto E, Figura 9.17) e a linha de ligação horizontal em 558oC são denominados eutetóide e isoterma eutetóide, respectivamente. A característica que distingue "eutetóide"de "eutética" é que uma fase sólida em vez de um líquido transforma-se em 2 outras fases sólidas numa única temperatura. Uma reaçào eutetóide é encontrada no sistema ferro-carbono (Seção 9.13), que é muito importante no tratamento térmico de aços. A reação peritética é ainda uma outra reação invariante envolvendo 3 fases em equilíbrio. Com esta reação, no aquecimento,uma fase sólida se transforma numa fase líquida e numa outra fase sólida. Existe uma reação peritética para o sistema cobre-zinco (Figura 9.17, ponto P ) a 598oC(1108oF) e 78,6%Zn-21,4%Cu; esta reação é como se segue: resfriamento δ + L W ε (9.12) aquecimento A fase sólida de baixa temperatura pode ser uma solução sólida intermediária (por exemplo, ε na reação acima), ou ela pode ser uma solução sólida terminal. Existe um dos últimos peritéticos ao redor de 97%Zn em peso a 425oC(797oF), onde a fase η , quando aquecida, transforma-se às fases ε e líquida. São encontrados no sistema Cu-Zn outros 3 peritéticos, cujas reações envolvem soluções sólidas intermediárias β , δ e γ como as fases de baixa temperatura que se transformam no aquecimento. 9.10 - TRANSFORMAÇÕES DE FASE CONGRUENTES Transformações de fase podem ser classificadas de acordo com a existência ou não de qualquer mudança na composição para a fase envolvida. Aquelas para as quais não existem nenhuma alteração de composição são ditas transformações congruentes. Ao contrário, para transformaçòes incongruentes, pelo menos uma das fases experimentará uma mudança em composição. Exemplos de transformações congruentes incluem transformações alotrópicas (Seção 3.6) e fusão de materiais puros. Reações eutética e eutetóide, bem como a fusãode uma liga que pertence a um sistema isomorfo, todas elas representam transformações incongruentes. Fases de solução sólida intermediárias são às vezes classificadas em função delas se fundirem congruentemente ou incongruentemente. O composto intermetálico Mg2Pb se funde congruentemente no ponto designado M no diagrama magnésio-chumbo, Figura 9.16. Também, para o sistema níquel-titânio, Figura 9.18, existe um ponto de fusão congruente para a solução sólida γ que corresponde ao ponto de tangência para os pares de linhas de liquidus e solidus, a 1312oC e 44,9%Ti em peso. Além disso, a reação peritética é um exemplo de fusão incongruente para uma fase intermediária. Figura 9.18 - Uma porção do diagrama de fase níquel-titânio no qual é mostrado um ponto de fusão congruente para a fase solução sólida γ a 1312oC e 44,9%Ti em peso. (Adaptado com permissão a partir de Metals Handbook, Vol.8, 8a.Edição, Metallography, Structures and Phase Diagrams, American Society for Metals, Metals Park, OH, 1973.). 9.11 - DIAGRAMAS DE FASE CERAMICOS E TERNÁRIOS Não é necessário supor que diagramas de fase existem apenas sistemas metal-metal; de fato, diagramas de fase que são muito úteis no projeto e processamento de sistemas cerâmicos têm sido experimetalmente determinados para um bom número destes materiais. Diagramas de fase cerâmicos são discutidos na Seção 13.5. Diagramas de fase também foram determinados para sistemas metálicos (bem como para sistemas cerâmicos) contendo mais de 2 componentes; entretanto, sua representação e interpretação pode ser excessivamente complexa. Por exemplo, um diagrama de fase composição-temperatura ternário, ou tri-componente, em sua integridade é desenhado por um modelo tridimensional. Descrição de características do diagrama ou modelo em 2 dimensões é possível mas algo difícil. 9.12 - A REGRA DE FASE DE GIBBS A construção de diagramas bem como alguns dos princípios que governam as condições para equilíbrios de fases são ditadas por lei da termodinâmica. Uma destas é a regra de fases de Gibbs , proposta pelo físico do século XIX J. Willard Gibbs. Esta regra representa um critério para o número de fases que coexistirão num sistema em equilíbrio e é expresso pela equação simples P + F = C + N (9.13) onde P é o número de fases presentes (o conceito de fase é discutido na Seção 9.3). O parâmetro F é denominado o número de graus de liberdade ou o número de variáveis externamente controladas (por exemplo, temperatura, pressão, composiçào) que devem ser especificadas para definir completamente o estado do sistema. Ou, expresso de outra maneira, F é o número destas variáveis que podem ser mudadas independentemente sem alterar o número de fases que coexistem em equilíbrio. O parâmetro C na equação 9.13representa o númerode componentes no sistema. Componentes são normalmente elementos ou compostos estáveis e, no caso dos diagramas de fases, são os materiais das 2 extremidades do eixo horizontal de composição (por exemplo H2O e C12H22O11, e Cu e Ni para os diagramas de fase das Figuras 9.1 e 92a, respectivamente). Finalmente, N na Equação 9.13 é o número de variáveis não-composicionais (por exemplo, temperatura e pressão). Demonstremos a regra de fases aplicando-a a diagramas de fase temperatura-composição binários, especificamente sistema cobre-prata, Figura 9.6. De vez que a pressão é constante (1 atm), o parâmetro N é 1 - temperatura é a única variável não-composicional. Equação 9.13 agora toma a forma P + F = C + 1 (9.14) Além disso, o número de componentes C é 2 (isto é, Cu e Ag) e P + F = 2 + 1 = 3 ou F = 3 - P Considere-se o caso dos campos monofásicos do diagrama de fases (por exemplo, regiões de α, β e líquido). De vez que somente uma fase está presente, P = 1 e F = 3 - P = 3 - 1 = 2 Isto significa que para descrever completamente as características de qualquer liga que existe dentro de um destes campos de fase, nós devemos especificar 2 parâmetros; estes são composição e temperatura, que localiza, respectivamente, as posições horizontal e vertical da liga no diagrama de fases. Para a situação onde 2 fases coexistem, por exemplo, regiões de fase α+ L, β + L e α + β , Figura 9.16, a regra de fases estipula que nós temos apenas um grau de liberdade uma vez que F = 3 - P = 3 - 2 = 1 Assim, é necessário especificar ou a temperatura ou a composição de uma das fases para definir completamente o sistema. Por exemplo, suponha que nós decidimos especificar a temperaturta para a região de fase α + L, digamos, T1 na Figura 9.19. As composições das fases α e líquido ( Cα e CL) são assim ditadas pelas extremidades da linha de ligaçào construídas em T1 através através do campo α + L. As composições das fases α e líquido (Cα e CL) são assim ditadas pelas extremidades da linha de ligaçào construída em T1 através do campo α + L. Dever-se-ía notar que apenas a natureza das fases é importante neste tratamento e não as quantidades relativas. Isto é para dizer que a composição global da liga poderia situar-se em qualquer lugar ao longo da linha de ligaçào construída na temperatura T1 e ainda fornece composições Cα e CL para as respectivas fases α e líquido. Figura 9.19 - Seção ampliada da seção rica em cobre do diagrama de fases Cu-Ag na qual a regra de fase de Gibbs para a coexistência de 2 fases (isto é, α e L) é demonstrada. A segunda alternativa é estipular a composiçào de uma das fases para esta situação bifásica, que deste modo fixa completamente o estado do sistema. Por exemplo, se nós especificarmos Cα como a composição da fase α que se encontra em equilíbrio com o líquido (Figura 9.19)d, então tanto a temperatura da liga ( T1) quanto a composição da fase líquida ( CL) são estabelecidos, de novo pela linha de ligação traçada através do campo de fase α + L de maneira a dar esta composição Cα . Para sistemas binários, quando 3 fases estiverem presentes, não há nenhum grau de liberdade, uma vez que F = 3 - P = 3 - 3 = 0 Isto significa que as composições de todas as 3 fases bem como a temperatura são fixas. Esta condição é encontrada para o sistema eutético pela isoterma eutética; para o sistema Cu-Ag (Figura 9.6), é a linha horizontal que se estende entre os pontos B e G. Nesta temperatura, 780oC, os pontos nos quais cada um dos campos de fases α, L e β tocam a linha isoterma correspondem às respectivas composições das fases; isto é, a composição da fase α é fixa em 7,9%Ag em peso, aquela do líquido em 71,9%Ag em peso e aquela da fase β em 91,2%Ag em peso. Assim, o equilíbrio trifásico não será representado por uma campo de fase, mas sim pela única linha isoterma horizontal. Além disso, todas a 3 fases estarão em equilíbrio para qualquer composição de liga que se situa ao longo do comprimento da isoterma eutética (por exemplo, para o sistema Cu-Ag a 780oC e composições entre 7,9 e 91,2%Ag em peso). Um uso da regra de fases de Gibbs é na análise de condições fora de equilíbrio. Por exemplo, uma microestrutura para uma liga binária que desenvolveu ao longo de uma faixa de temperaturas e consistindo de 3 fases é uma microestrutura fora do equilíbrio; sob estas circunstâncias, 3 fases existirão somente numa única temperatura. O SISTEMA FERRO-CARBONO De todos os sistemas de ligas binárias, uma que é possivelmente a mais importante é aquele para ferro e carbono. Tanto aços quanto ferros-fundidos, principais materiais estruturais em todas as culturas tecnologicamente avançadas, são essencialmente ligas ferro-carbono. Esta seção é devotada ao um estudo do diagrama de fases para este sistema e o desenvolvimento de várias possíveis microestruturas. As correlações entre tratamento térmico, microestrutura e propriedades mecânicas são exploradas nos Capítulos 10 e 11. 9.13 - DIAGRAMA DE FASE FERRO-CARBONETO DE FERRO (Fe-Fe3C) Uma porção do diagrama de fase ferro-carbono é apresentada na Figura 9.20. Ferro puro, no aquecimento, experimenta 2 mudanças em estrutura cristalina antes de se fundir. À temperatura ambiente a forma estável, chamada ferrita, ou ferro α, tem uma estrutura cristalina CCC. A ferrita experimenta uma transformação polimórfica à austenita CFC, ou ferro γ, a 912oC(1674oF). Esta austenita persiste até 1394oC(2541oF), temperatura na qual a austenita CFC se reverte de volta para a fase CCC conhecida como ferrita δ, que finalmente se funde a 1538oC(2800oF). Todas estas mudanças são visíveis ao longo do eixo vertical esquerdo do diagrama de fases. Figura 9.20 - O diagrama ferro-carboneto de ferro. (Adaptado a partir de Metals Handbook: Metallography, Structures and Phase Diagrams, Vol.8, 8a.Edição, ASM Handbook Committee, T. Lyman, Editor, American Society for Metals, 1973, p.275). O eixo de composição na Figura 9.20 se estende apenas até 6,70%C, em peso; nesta concentração o composto intermediário carboneto de ferro (ou carbeto de ferro), ou cementita (Fe3C), é formada, sendo ela representada por uma linha vertical no diagrama de fases. Assim o sistema ferro-carbono pode ser dividido em 2 partes: uma porção rica em ferro, como na Figura 9.20 e a outra (não mostrada) para composições entre 6,70%C e 100%C em peso (grafita pura). Na prática, todos os aços e ferros-fundidos têm teores de carbono menores doque 6,70%C, em peso; portanto, nós consideramos apenas o sistema ferro-carboneto de ferro. A Figura 9.20 seria mais apropriadamente denominada diagrama de fases Fe-Fe3C, de vez que Fe3C é agora considerado como sendo um componente. Convenção e conveniência ditam que composição seja ainda expressa em "%C em peso" em vez de "%Fe3C em peso"; 6,70%C corresponde a 100%Fe3C. Carbono é uma impureza intersticial em ferro e forma uma solução sólida com cada uma das ferritas α e δ e também com austenita, como indicado pelos campos de monofases α, δ e γ na Figura 9.20. Na ferrita α CCC, apenas pequenas concentrações de carbono são solúveis; a máxima solubilidade é 0,022%C em peso a 727oC (1341oF). A limitada solubilidade é explicada pela forma e tamanho das posições intersticiais, que torna difícil acomodar os átomos de carbono. Mesmo embora presente em relativamente baixas concentrações, o carbono afeta significativamente as propriedades mecânicas da ferrita. Esta particular fase ferro-carbono é relativamente macia, pode ser tornada magnética em temperaturas inferiores a 768oC(1414oF) e tem uma densidade de 7,88g.cm-3. Figura 9.21a é uma fotomicrografia da ferrita α. Figura 9.21 - Fotomicrografia de (a) ferrita α (90x) e (b) austenita (325x). (Copyright 1971 por United States Steel Corporation). A austenita, ou a fase γ do ferro, quando em liga justamente com o carbono,