A maior rede de estudos do Brasil

Grátis
152 pág.
Fundamentos_de_geometria_plana

Pré-visualização | Página 1 de 28

Fundamentos de 
Geometria Plana
Fundamentos de Geometria Plana.indd 1 25/09/2012 20:56:24
Fundamentos de Geometria Plana.indd 2 25/09/2012 20:56:29
Fundamentos de 
Geometria Plana
Belo Horizonte
CAED-UFMG
2012
P. F. Machado 
Fundamentos de Geometria Plana.indd 3 25/09/2012 20:56:33
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Profº Clélio Campolina Diniz 
Reitor
Profª Rocksane de Carvalho Norton 
Vice-Reitoria
Profª Antônia Vitória Soares Aranha 
Pró Reitora de Graduação
Profº André Luiz dos Santos Cabral 
Pró Reitor Adjunto de Graduação
CENTRO DE APOIO DE EDUCAÇÃO À DISTÂNCIA
Profº Fernando Selmar Rocha Fidalgo 
Diretor de Educação a Distância 
Prof º Wagner José Corradi Barbosa 
Coordenador da UAB/UFMG
Profº Hormindo Pereira de Souza Junior 
Coordenador Adjunto da UAB/UFMG
 
EDITORA CAED-UFMG
Profº Fernando Selmar Rocha Fidalgo 
CONSELHO EDITORIAL 
Profª. Ângela Imaculada Loureiro de Freitas Dalben 
Profº. Dan Avritzer 
Profª. Eliane Novato Silva 
Profº. Hormindo Pereira de Souza
Profª. Paulina Maria Maia Barbosa
Profª. Simone de Fátima Barbosa Tófani 
Profª. Vilma Lúcia Macagnan Carvalho
Profº. Vito Modesto de Bellis 
Profº. Wagner José Corradi Barbosa
COLEÇÃO EAD – MATEMÁTICA 
Coordenador: Dan Avritzer
LIVRO: Fundamentos de Geometria Plana
Autor: P. F. Machado
Revisão: Jussara Maria Frizzera
Projeto Gráfico: Laboratório de Arte e Tecnologia 
para Educação/EBA/UFMG
Formatação: Sérgio Luz
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dados Internacionais de Catalogação na Publicação (CIP) 
(Luciana de Oliveira M. Cunha, CRB-6/2725) 
 
 
 
 Machado, P. F. 
M149f Fundamentos de geometria plana / P. F. Machado. – Belo 
 Horizonte : CAED-UFMG, 2012. 
 151 p. : il. color. ; 27 cm. 
 
 Inclui bibliografia. 
 ISBN 978-85-64724-16-7 
 
 1. Geometria plana. 2. Geometria euclidiana. 3. Ensino a 
 distância. I. Universidade Federal de Minas Gerais. II. Título. 
 
 
 
 CDD 516.22 
 CDU 514.112 
 
Fundamentos de Geometria Plana.indd 4 25/09/2012 20:56:33
SUMáRIo
Inrodução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Nota do Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Aula 1 - o plano, retas e segmentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
 1.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
 1.2 Axiomas: grupo I, axiomas de incidência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
 1.3 Axiomas: grupo II, parte 1: métrica e ordem na reta . . . . . . . . . . . . . . . . . . . . . . . . .17
 1.4 Axiomas: grupoII, parte2: ordem no plano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
 1.5 Exercícios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Aula 2 - Ângulos e congrências de segmentos e ângulos . . . . . . . . . . . . . . . . . . . . . . . 31
 2.1 Inrodução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
2.2 Axiomas: grupo III, medida de ângulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
 2.3 Congruência de segmentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
 2.4 Congrência de ângulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
 2.5 Triângulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
 2.6 Exercícios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Aula 3 - Congruência de triângulos e consequências . . . . . . . . . . . . . . . . . . . . . . . . . . 49
 3.1 Inrodução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
 3.2 Axiomas: grupo IV, congrência de triângulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
 3.3 Os critérios ALA e LLL de congruência de triângulos . . . . . . . . . . . . . . . . . . . . . . . . 53
 3.4 O Teorema de Ângulo Externo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
 3.5 Exercícios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Aula 4 - Perpendicularismo e desigualdades triangulares . . . . . . . . . . . . . . . . . . . . . . 63
 4.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
 4.2 Perpendicularismo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
 4.3 As desigualdades triangulares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
 4.4 Triângulos retângulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
 4.5 Exercícios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Aula 5 - Paralelismo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
 5.1 Inrodução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
 5.2 Existência de retas paralelas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
 5.3 Condições de paralelismo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
 5.4 Axiomas: grupo V, axioma das paralelas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
 5.5 Paralelas como lugar geométrico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
 5.6 Exercícios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Fundamentos de Geometria Plana.indd 5 25/09/2012 20:56:34
Aula 6 - Circunferências e aplicações . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
 6.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
 6.2 Definições e Conceitos Básicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
 6.3 Tangência entre retas e circunferências . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
 6.4 Mediatriz de segmentos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
 6.5 Pontos Notáveis de Triângulos: Circuncentro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
 6.6 O princípio de continuidade para circunferências . . . . . . . . . . . . . . . . . . . . . . . . . . 96
 6.7 Posição relativa de retas e circunferências . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
 6.8 Exercícios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Aula 7 - Quadriláteros e áreas de figuras planas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
 7.1 Inrodução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
 7.2 Quadriláteros em geral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Crie agora seu perfil grátis para visualizar sem restrições.