Prévia do material em texto
12/09/2020 UNIASSELVI - Centro Universitário Leonardo Da Vinci - Portal do Aluno - Portal do Aluno - Grupo UNIASSELVI https://portaldoalunoead.uniasselvi.com.br/ava/notas/request_gabarito_n2.php 1/4 Acadêmico: Tatiana Adam Lutz (1902779) Disciplina: Cálculo Diferencial e Integral (MAT22) Avaliação: Avaliação I - Individual FLEX ( Cod.:649868) ( peso.:1,50) Prova: 22122197 Nota da Prova: 10,00 Legenda: Resposta Certa Sua Resposta Errada 1. Ao estudar limites de funções racionais no infinito, nos deparamos com a necessidade de utilizarmos as propriedades operatórias dos limites de uma função. No entanto, existem alguns dispositivos práticos que permitem sua resolução mediante uma análise do grau de cada termo da razão (numerador e denominador). Assinale a alternativa CORRETA que apresenta o valor do limite a seguir: a) 1. b) 3. c) Infinito. d) 0. 2. Ao estudar limites de funções racionais no infinito, nos deparamos com a necessidade de utilizarmos as propriedades operatórias dos limites de uma função. No entanto, existem alguns dispositivos práticos que permitem sua resolução mediante uma análise do grau de cada termo da razão (numerador e denominador). Assinale a alternativa CORRETA que apresenta o valor do limite a seguir: a) Infinito. b) 1. c) 0. d) 1/2. 3. Em matemática, o conceito de limite é usado para descrever o comportamento de uma função à medida que o seu argumento se aproxima de um determinado valor, assim como o comportamento de uma sequência de números reais. Calcule o limite da questão a seguir e assinale a alternativa CORRETA: a) Somente a opção I está correta. b) Somente a opção IV está correta. c) Somente a opção II está correta. d) Somente a opção III está correta. Anexos: Formulário - Cálculo Diferencial e Integral (MAD) - Paulo https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjIxMjIxOTc=&action2=NTM4MzQ4 12/09/2020 UNIASSELVI - Centro Universitário Leonardo Da Vinci - Portal do Aluno - Portal do Aluno - Grupo UNIASSELVI https://portaldoalunoead.uniasselvi.com.br/ava/notas/request_gabarito_n2.php 2/4 4. Os limites são usados no cálculo diferencial e em outros ramos da análise matemática para definir derivadas e a continuidade de funções. Aplicando as propriedades de limites, determine o valor do limite na questão a seguir e assinale a alternativa CORRETA: a) Somente a opção I está correta. b) Somente a opção IV está correta. c) Somente a opção II está correta. d) Somente a opção III está correta. Anexos: Formulário - Cálculo Diferencial e Integral (MAD) - Paulo Formulário - Cálculo Diferencial e Integral (MAD) - Paulo 5. Em matemática, uma função é contínua quando, intuitivamente, pequenas variações nos objetos correspondem a pequenas variações nas imagens. Nos pontos onde a função não é contínua, diz-se que a função é descontínua, ou que se trata de um ponto de descontinuidade. A função a seguir: a) x = 0 e x = - 3. b) Apenas x = 3. c) x = 0 e x = 3. d) Apenas x = - 3. Anexos: Formulário - Cálculo Diferencial e Integral (MAD) - Paulo Formulário - Cálculo Diferencial e Integral (MAD) - Paulo Formulário - Cálculo Diferencial e Integral (MAD) - Paulo 6. Se os valores de uma variável crescem sem parar, nós escrevemos que x tende ao infinito, já se os valores decrescem sem parar, escrevemos que x tende a menos infinito. Entretanto, uma função pode tanto tender ao infinito quanto ao menos infinito. Dado o limite no infinito a seguir, analise as sentenças e assinale a alternativa CORRETA quanto ao seu resultado: https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjIxMjIxOTc=&action2=NTM4MzQ4 https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjIxMjIxOTc=&action2=NTM4MzQ4 https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjIxMjIxOTc=&action2=NTM4MzQ4 https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjIxMjIxOTc=&action2=NTM4MzQ4 https://portaldoalunoead.uniasselvi.com.br/extranet/layout/request/imag_prova_ead_anexo_n2.php?action1=MjIxMjIxOTc=&action2=NTM4MzQ4 12/09/2020 UNIASSELVI - Centro Universitário Leonardo Da Vinci - Portal do Aluno - Portal do Aluno - Grupo UNIASSELVI https://portaldoalunoead.uniasselvi.com.br/ava/notas/request_gabarito_n2.php 3/4 a) Somente a opção II está correta. b) Somente a opção III está correta. c) Somente a opção IV está correta. d) Somente a opção I está correta. 7. Na matemática, o limite tem o objetivo de determinar o comportamento de uma função à medida que ela se aproxima de alguns valores, sempre relacionando os pontos x e y. A utilização de limites ajuda na compreensão de diversas situações envolvendo funções, através de pontos notáveis como mínimo e máximo ou até mesmo os pontos de intersecção entre funções. A continuidade de funções também utiliza as noções de limites, bem como os problemas envolvendo séries numéricas convergentes ou divergentes. Sendo assim, analise os cálculos de limites a seguir, classifique V para as opções verdadeiras e F para as falsas e assinale a alternativa que apresenta a sequência CORRETA: a) V - F - V - F. b) V - V - V - V. c) F - F - V - V. d) V - F - F - V. 8. Em matemática, o conceito de limite é usado para descrever o comportamento de uma função à medida que o seu argumento se aproxima de um determinado valor, assim como o comportamento de uma sequência de números reais, à medida que o índice (da sequência) vai crescendo. Os limites são usados no cálculo diferencial e em outros ramos da análise matemática para definir derivadas e a continuidade de funções. Com base no exposto, assinale qual o limite da função y, quando x tende a 2. a) 2 b) -1 c) 3 d) 1 9. Em uma aula de matemática, onde se estudava o conceito de limites, foi questionado aos alunos A, B e C acerca do limite da função f(x)= x - 2. Considerando o gráfico descrito a seguir e as informações dadas pelos alunos, assinale a alternativa CORRETA: 12/09/2020 UNIASSELVI - Centro Universitário Leonardo Da Vinci - Portal do Aluno - Portal do Aluno - Grupo UNIASSELVI https://portaldoalunoead.uniasselvi.com.br/ava/notas/request_gabarito_n2.php 4/4 a) Os alunos A e C estão corretos. b) Todos os alunos estão corretos. c) Os alunos B e C estão corretos. d) Os alunos A e B estão corretos. 10. Uma árvore de determinada espécie foi plantada na região central de sua cidade. Você realizou alguns estudos e determinou que esta espécie de árvore cresce, em altura, segundo a função a seguir, em que h é a altura da árvore (em metros) e t é o tempo (em anos) de vida da árvore. Considerando que a árvore não seja podada, utilizando o conceito de limite, calcule a altura máxima que esta árvore pode atingir e assinale a alternativa CORRETA: a) 50. b) 40. c) 35. d) 30. Prova finalizada com 10 acertos e 0 questões erradas.