Buscar

02-InteVarVar-2017.pdf

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 396 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 396 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 396 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Coleção Lições de Matemática
C Á L C U L O
I N T E G R A L
e
F U N Ç Õ E S D E
V Á R I A S V A R I Á V E I S
Christian Q. Pinedo
Milagros Q. Castillo
2017
ii Pinedo. Christian & Castillo. Milagros
SUMÁRIO
PREFÁCIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 ANTIDERIVADAS 1
1.1 Introdução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Integral indefinida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Propriedades da integral indefinida . . . . . . . . . . . . . . . . . . 5
1.2.2 Integral imediata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Fórmulas elementares de integração . . . . . . . . . . . . . . . . . . 6
Exercícios 1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Métodos de integração . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Integração por substituição . . . . . . . . . . . . . . . . . . . . . . 19
Exercícios 1-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.2 Método de integração por partes . . . . . . . . . . . . . . . . . . . . 31
Exercícios 1-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.3.3 Integração de funções trigonométricas e hiperbólicas . . . . . . . . . 41
1.3.4 Integração por substituição trigonométrica . . . . . . . . . . . . . . 49
Exercícios 1-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.3.5 Integração de funções racionais . . . . . . . . . . . . . . . . . . . . 59
Exercícios 1-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1.3.6 Integração de funções racionais trigonométricas . . . . . . . . . . . 75
1.3.7 Integração de funções irracionais elementares . . . . . . . . . . . . . 78
Exercícios 1-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1.4 Outros métodos de integração . . . . . . . . . . . . . . . . . . . . . . . . . 89
1.4.1 Integrais do tipo:
∫
Pn(x)√
px2 + qx+ r
dx (1o de Ostrogradski) . . . . 90
1.4.2 Integrais do tipo:
∫
P (x)
Q(x)
dx (2o de Ostrogradski) . . . . . . . . . 91
1.4.3 Integração de diferenças binômias . . . . . . . . . . . . . . . . . . . 92
1.4.4 Integrais do tipo:
∫
P (x) exdx . . . . . . . . . . . . . . . . . . . . 93
1.4.5 Integrais dos tipos:
∫
P (x)sen bx dx e
∫
P (x) cos bx dx . . . . . . 93
iii
iv Pinedo. Christian & Castillo. Milagros
Exercícios 1-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Miscelânea 1-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2 INTEGRAL DEFINIDA 101
2.1 Somatórios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Exercícios 2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.2 Cálculo da área de uma região plana . . . . . . . . . . . . . . . . . . . . . 109
2.2.1 Partição de um intervalo fechado . . . . . . . . . . . . . . . . . . . 109
2.2.2 Aproximação da área de uma região por áreas de retângulos . . . . 109
Exercícios 2-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.3 Significado geométrico das somas: Inferior e superior . . . . . . . . . . . . 119
2.3.1 Propriedades das somas: Inferior e superior . . . . . . . . . . . . . . 119
2.4 Integrais: Inferior e superior . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.4.1 Propriedades da integral: Inferior e superior . . . . . . . . . . . . . 121
2.5 Integral de Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2.5.1 Propriedades da integral definida . . . . . . . . . . . . . . . . . . . 124
2.5.2 Teorema do Valor Médio para integrais . . . . . . . . . . . . . . . . 125
2.5.3 Teorema fundamental do cálculo integral . . . . . . . . . . . . . . . 126
Exercícios 2-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2.6 Mudança de variável em uma integral definida . . . . . . . . . . . . . . . . 137
2.7 Integração por partes em uma integral definida . . . . . . . . . . . . . . . . 141
2.8 Integração de funções descontínuas . . . . . . . . . . . . . . . . . . . . . . 142
Exercícios 2-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.9 Integrais impróprias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
2.9.1 Integrais impróprias com limites infinitos. . . . . . . . . . . . . . . 153
2.9.2 Integrais impróprias com limites finitos . . . . . . . . . . . . . . . . 156
2.10 Critérios de convergência . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Exercícios 2-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Miscelânea 2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3 APLICAÇÕES DA INTEGRAL DEFINIDA 173
3.1 Aplicações geométricas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.1.1 Área de regiões planas . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.1.2 Comprimento de arco de uma curva . . . . . . . . . . . . . . . . . . 182
Exercícios 3-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
3.1.3 Área de superfície de revolução . . . . . . . . . . . . . . . . . . . . 192
Exercícios 3-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
3.1.4 Volume de um corpo . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Exercícios 3-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Cálculo Integral e Funções de Várias Variáveis v
3.2 Aplicações à mecânica e física . . . . . . . . . . . . . . . . . . . . . . . . . 209
3.2.1 Momentos e centro de massa . . . . . . . . . . . . . . . . . . . . . . 209
Exercícios 3-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
3.2.2 Outras aplicações . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
3.2.3 Problemas na Física . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Exercícios 3-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Miscelânea 3-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
4 FUNÇÕES DE VÁRIAS VARIÁVEIS 237
4.1 O espaço tridimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
4.1.1 Vetores no espaço tridimensional . . . . . . . . . . . . . . . . . . . 241
4.2 O espaço n-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.3 Superfícies quadráticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.3.1 Elipsoide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.3.2 Paraboloide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
4.3.3 Hiperboloide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
4.3.4 O cone elíptico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
4.3.5 Cilindros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
4.4 Superfícies de revolução . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
4.5 Pares de planos e superfícies imaginárias . . . . . . . . . . . . . . . . . . . 253
4.5.1 Geometria das funções com valores reais . . . . . . . . . . . . . . . 254
Exercícios 4-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
4.6 Funções de várias variáveis . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
4.6.1 Gráfico de funções de várias variáveis . . . . . . . . . . . . . . . . . 261
4.6.2 Operações com funções. . . . . . . . . . . . . . . . . . . . . . . . . 262
4.6.3 Conjuntos de nível . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
4.7 Conjunto aberto. Conjunto fechado . . . . . . . . . . . . . . . . . . . . . . 264
4.7.1 Ponto de acumulação . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Exercícios 4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
4.8 Limite de uma função . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
4.8.1 Propriedades dos limites . . . . . . . . . . . . . . . . . . . . . . . . 272
4.8.2 Limites reiterados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
4.9 Continuidade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
4.9.1 Teorema de continuidade da função composta . . . . . . . . . . . . 278
Exercícios 4-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
5 DERIVADAS 291
5.1 Derivadas parciais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
5.1.1 Incremento da função . . . . . . . . . . . . . . . . . . . . . . . . . . 292
vi Pinedo. Christian & Castillo. Milagros
5.1.2 A técnica de derivadas parciais . . . . . . . . . . . . . . . . . . . . 295
5.2 Funções homogêneas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
5.2.1 Propriedades das funções homogêneas . . . . . . . . . . . . . . . . . 299
5.3 Matriz jacobiana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Exercícios 5-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
5.4 Interpretação geométrica da derivada . . . . . . . . . . . . . . . . . . . . . 305
5.4.1 Plano tangente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
5.5 Derivadas parciais de ordem superior . . . . . . . . . . . . . . . . . . . . . 308
5.6 Derivadas parciais como taxa de variação . . . . . . . . . . . . . . . . . . . 311
Exercícios 5-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
5.7 Diferenciais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
5.8 Diferenciabilidade, linearização e plano tangente . . . . . . . . . . . . . . . 315
5.9 Diferencial total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.10 Diferenciabilidade e continuidade . . . . . . . . . . . . . . . . . . . . . . . 320
Exercícios 5-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
5.11 Diferencial exata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
5.12 Derivada de funções compostas . . . . . . . . . . . . . . . . . . . . . . . . 329
5.13 Derivada de uma função implícita de duas ou mais variáveis . . . . . . . . 333
5.13.1 Derivada da função inversa . . . . . . . . . . . . . . . . . . . . . . . 335
Exercícios 5-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
5.14 Derivada direcional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
5.14.1 Propriedades da derivada direcional . . . . . . . . . . . . . . . . . . 343
5.14.2 Máximo da Derivada Direcional . . . . . . . . . . . . . . . . . . . . 343
5.15 Gradiente de uma função . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
5.15.1 O Gradiente como vetor de incremento rápido . . . . . . . . . . . . 344
5.16 Plano tangente e reta normal a uma superfície . . . . . . . . . . . . . . . . 346
Exercícios 5-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Miscelânea 5-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
6 Aplicações das derivadas parciais 357
6.1 Máximos e Mínimos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
6.1.1 Máximos e mínimos sobre conjunto compacto. . . . . . . . . . . . . 365
Exercícios 6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
6.2 Multiplicadores de Lagrange. . . . . . . . . . . . . . . . . . . . . . . . . . . 373
6.2.1 Para funções de duas variáveis. . . . . . . . . . . . . . . . . . . . . 373
6.2.2 Para funções de várias variáveis. . . . . . . . . . . . . . . . . . . . . 375
Exercícios 6-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Miscelânea 6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Cálculo Integral e Funções de Várias Variáveis vii
Bibliografia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Índice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
viii Pinedo. Christian & Castillo. Milagros
PREFÁCIO
Estas notas de Cálculo Integral e Funções de Várias Variáveis são o resultado das
aulas ministradas pelo professor Dr. Christian P. durante muitos anos dedicados ao ensino
de Cálculo II para estudantes de Engenharia e Matemática. Em parceria com a filha,
Milagros Q. Castillo, compilaram-nas, apresentando aqui uma abordagem de conceitos e
teorias novas para estudantes do primeiro ano da Graduação.
Representando o esforço de síntese na seleção de um conjunto de problemas e temas
frequentes na continuação e no aprofundamento dos estudos acadêmicos, esta obra é
também a sequência do estudo do “Cálculo Diferencial em R”, disciplina básica para
cursos de Engenharia, Matemática, Física, Química e outros.
A obra, organizada em seis capítulos, destaca, ao longo de suas páginas, temas como
a “Integração em R” e o “Cálculo diferencial com funções de várias variáveis”, assim como
suas aplicações aos diferentes ramos das ciências, úteis no estudo das equações diferenciais.
Pormenorizadamente, no primeiro capítulo, apresentam-se os métodos para o cálculo
de integrais e faz-se uma abordagem prática com grande variedade de exemplos e técnicas
para a solução dos mais variados exemplos.
No segundo, são dispostos os conceitos de integral definida, no estilo da “Integral de
Riemann”, e são iniciados os estudos com os conceitos de somatório como interpretação
geométrica da integral.
O terceiro capítulo está reservado para múltiplas aplicações em diferentes ramos do
ix
x Pinedo. Christian & Castillo. Milagros
conhecimento científico e o quarto, para o estudo das funções de várias variáveis, passando
por uma sutil abordagem do estudo das quádricas até o estudo dos limites, continuidade
e derivadas de funções.
O penúltimo capítulo dedica-se às derivadas e diferenciais com funções de várias va-
riáveis e o último, à aplicação do cálculo diferencial, na procura de pontos de extremo
para funções de várias variáveis.
Assim, cada capítulo se inicia com os objetivos que pretende alcançar e dispõe de
exercícios em quantidade e variedade suficientes, classificando-se de menor a maior di-
ficuldade. Essa estrutura de organização pretende possibilitar que o leitor partilhe da
experiência dos autores, que atuaram profissionalmente em diversas instituições do Brasil
e do exterior.
O presente material é acompanhado dos “Suplementos II” (em edição), cujo teor con-
templa a solução de todos os exercícios aqui propostos (outras possibilidades de respostas
ou indicações para a solução dos exercícios propostos podem ser obtidas no endereço
christianjqp@yahoo.com.br).
Esperamos cumprir o objetivo deste trabalho, que é o de orientar a metodologia para
que o leitor identifique e construa um modelo matemático, logo o resolvendo.
Os autores.
Palmas, Novembro de 2012
“A Matemática é a honra do espírito humano”
Leibnitz
Capítulo 1
ANTIDERIVADAS
Riemann
Georg Friedrich Bernhard Riemann nasceu em Brese-
lenz, Hanover (Alemanha) em 17 de setembro de 1826 e faleceu
em Selasca (Itália) em 20 de Julho de 1866.
Em 1840 entrou diretamente na terceira classe ao Lyceum
emHannover. Trabalhou muito nos assuntos clássicos como o
hebreu e teologia. Riemann mostrou interesse particular pela ma-
temática e o diretor do Ginásio permitiu Bernhard estudar textos
de matemática em sua biblioteca particular.
Em 1846 Riemann se matriculou na Universidade de Göt-
tingen para estudar teologia. Porém assistiu a algumas aulas de
matemática.
Riemann mudou-se de Göttingen para Universidade de Ber-
lin pela primavera de 1847 para estudar os trabalhos de Jakob
Steiner, Carl G. Jacobi, Johann P. Dirichlet e Gotthold M. Eisenstein.
Em 1849 defendeu em Göttingen sua tese de doutorado supervisionada por Gauss. Nesta tese
estudou a teoria de variáveis complexas e, em particular, o que agora chamamos “Superfícies
de Riemann”. Introduziu métodos de topologia na teoria das funções de complexa. O trabalho
constrói nas bases de Cauchy a teoria de variáveis complexas construídas durante muitos anos e
também nas idéias de Puiseux de pontos fixos. A tese de Riemann é notavelmente um trabalho
original que examinou propriedades geométricas das funções analíticas, além disso é um dos
trabalhos mais notáveis e originais a aparecer em uma tese doutoral. Foi examinado em 16 de
dezembro de 1851.
Recomendado por de Gauss, Riemann foi designado a um posto em Göttingen. Nomeado pro-
fessor nesta Universidade em 1854 apresentou um trabalho perante o corpo docente e que resultou
na mais célebre conferência da história da Matemática. Nele estava uma ampla e profunda visão
da Geometria e seus fundamentos que até então permaneciam desconhecidos.
Riemann conseguiu muitos teoremas em Teoria dos Números, relacionando-os com Análise,
onde encontramos também a equação de Cauchy-Riemann que é uma concepção intuitiva e geo-
métrica da Análise, em contraste com a aritmetização de Weierstrass. Um de seus brilhantes
resultados foi perceber que a integral exigia uma definição mais cuidadosa do que a de Cauchy.
Em 1859, Riemann foi nomeado sucessor de Dirichlet na cadeira de Göttingen já ocupada
por Euler. Com seu estado de saúde sempre precário, acabou por morrer de tuberculose.
1
2 Pinedo. Christian & Castillo. Milagros
1.1 Introdução
Todo cálculo de uma derivada proporciona, devido ao segundo teorema fundamental do
cálculo infinitesimal [?], uma fórmula para integrais. Por exemplo, se f(x) = x(Lnx− 1),
então f ′(x) = Lnx.
O conceito intuitivo de integrar corresponde aos seguintes significados:
• Dada uma função y = f(x) definida num intervalo A ⊆ R, determinar uma função
F (x) de modo que a derivada de F (x) seja a função f(x); isto é F ′(x) = f(x) ∀x ∈
A.
• Dada uma função y = f(x) definida num intervalo A ⊆ R, calcular o limite das
somas de determinado tipo, construídas para f(x) no intervalo A.
A operação em qualquer dos casos chama-se “integração”. No sentido matemático, o
segundo caso é amplamente ilustrado para o cálculo de áreas limitadas por curvas, volume
do sólidos, comprimento de curva, trabalho de uma força e outras múltiplas aplicações.
Os dois tipos de integração são conhecidos como “integral indefinida” e “integral definida”
respectivamente.
1.2 Integral indefinida
Definição 1.1. Funções elementares.
São chamadas de “funções elementares” as três funções seguintes:
(1) y = x (2) y = ax, a > 0 (3) y = sen x
Elas se dizem elementares porque grande número de funções podem se expressar como
suas combinações, mediante as operações simples da aritmética ou da inversão (função
inversa!).
Exemplo 1.1.
1. A função y = xm provêm de (1), pois pode considerar-se como o produto de funções
do tipo (1). Um polinômio inteiro em x é uma combinação linear de funções do
tipo (1).
2. A função y = cos x provêm de (1) e (3), pois temos que cosx = sen (
π
2
− x), e o
cosseno será o seno de certo polinômio em x
3. Por inversão, (2) e (3) dão ainda as funções da qual provêm novas funções como:
y = loga x, y = arctanx, y = arcsen
x√
1 + x2
, . . . etc.
Cálculo Integral e Funções de Várias Variáveis 3
Definição 1.2.
Seja f : A ⊆ R −→ R uma função. A função F : A −→ R tal que F ′(x) =
f(x) ∀ x ∈ A é chamada “Primitiva” ou “Antiderivada de f(x) em A” e escreve-
se F (x) = Ant(f(x)) em A.
Exemplo 1.2.
Se f(x) = 7x6+8 , então a função F (x) = x7+8x é uma antiderivada de f(x); isto
é F (x) = Ant(7x6 + 8).
Observe que outras antiderivadas para f(x) são: x7 + 8x + 3; x7 + 8x − 6; x7 +
8x− 8, . . . etc.
Observação 1.1.
• Se F (x) = Ant(f(x)) em algum intervalo A ⊆ R, então F (x) + C, onde C
é uma constante real é também antiderivada de f(x) em A. Logo a função
f(x) tem um conjunto infinito de primitivas [4]. Logicamente, uma função
contínua f(x) sempre tem uma primitiva.
• Em geral, não existe um método para o cálculo de primitivas das “funções
elementares” ou das combinações destas. É inclusive fácil formar funções
cujas primitivas não sejam expressas mediante “funções elementares”.
• Em geral, não é possível achar primitivas elementares; por exemplo, não existe
alguma função elementar F (x) de modo que F ′(x) = e−x2 para todo x.
A preocupação por funções elementares está justificada pelo seguinte:
a) A integração é um tema clássico do cálculo infinitesimal.
b) Pode acontecer que seja necessário calcular uma integral, em condições em que não
seja possível consultar tabelas de integração.
c) Os métodos mais úteis de integração são, na verdade teoremas, importantes (aplicáveis
a todas as funções, não somente às elementares).
Propriedade 1.1.
Consideremos as funções f : A −→ R e F : A −→ R, onde A ⊆ R e F (x)
uma antiderivada de f(x). Se F1 : A −→ R é também uma antiderivada de f(x), então
F1(x) = F (x) + C para alguma constante C
Demonstração.
4 Pinedo. Christian & Castillo. Milagros
Seja H(x) = F1(x) − F (x); derivando esta função temos: H ′(x) = F ′1(x) − F ′(x) =
f(x)− f(x) = 0; então H ′(x) = 0 logo H(x) = C.
Portanto, F1(x) = F (x) + C.
Definição 1.3.
Se F (x) é antiderivada de f(x) em A ⊆ R, a integral indefinida de f(x) é o
conjunto das antiderivadas de f(x) no intervalo A, denotado por
∫
f(x)dx ; isto
é: ∫
f(x)dx = F (x) + C
onde C ∈ R é uma constante que assume qualquer valor, o número C é chamado
constante de integração.
No que segue, escreveremos
∫
f(x)dx = F (x) + C, onde F ′(x) = f(x), a expressão
f(x) chama-se “integrando”, f(x)dx é chamado “elemento de integração” , o símbolo
a∫
b
denomina-se ”símbolo de integração no intervalo [a, b]”; a notação
a∫
b
f(x)dx é chamada
“integral definida no intervalo [a, b]”. A expressão
∫
f(x)dx lê-se “integral indefinida de
f(x) diferencial da variável x ”.
Propriedade 1.2.
Da Definição (1.3) deduzem-se as seguintes propriedades:
a)
d
dx
(
∫
f(x)dx) = (
∫
f(x)dx)′ = (F (x) + C)′ = F ′(x) = f(x). Isto é, a derivada da
integral indefinida é igual ao integrando ou:
d
dx
(
∫
f(x)dx) = f(x).
b) d(
∫
f(x)dx) =
d
dx
(
∫
f(x)dx)dx = f(x)dx. Isto é, o diferencial da integral indefi-
nida, é igual ao elemento de integração ou: d(
∫
f(x)dx) = f(x)dx.
c) Se f(x) é uma função derivável no intervalo A, então uma primitiva de f ′(x) é f(x)
e:
∫
f ′(x)dx = f(x) + C.
d) Sendo d(f(x)) = f ′(x)dx, do item c) deduz-se que:
∫
d(f(x))dx = f(x) + C
e)
∫
a.f(x)dx = a
∫
f(x)dx onde a é uma constante.
Cálculo Integral e Funções de Várias Variáveis 5
f) Se
∫
f(x)dx = F (x) + C e u = g(x), então
∫
f(u)du = F (u) + C.
De b) e d), a integral indefinida pode ser interpretada como uma operação inversa da
diferenciação.
Exemplo 1.3.
i)
∫
e5xdx =
1
5
e5x + C ii)
∫
6x5dx = x6 + C
Exemplo 1.4.
Como d(x.Lnx−x) = Lnx.dx, então da Propriedade (1.2)-d) temos que
∫
d(x.Lnx−
x)dx =
∫
Lnx.dx = x.Lnx− x+ C.
Exemplo 1.5.∫
dx
9 + x2
=
1
3
arctan(
x
3
) + C , lembre que,
d
dx
(arctan t) =
1
1 + t2
1.2.1 Propriedades da integral indefinida
Propriedade 1.3.
Se f(x) e g(x) são funções que admitem antiderivadas no intervalo A, e k é uma
constante real arbitrária, então:
i)
∫
[f(x)± g(x)]dx =
∫
f(x)dx±
∫
g(x)dx
ii)
∫
k.f(x)dx = k.
∫
f(x)dx
Demonstração. (i)
Pela Propriedade (1.2)-b) temos que:
d
dx
( ∫
[f(x)± g(x)]dx
)
= f(x)±g(x) (1.1)
Por outro lado, pela Propriedade (1.2)-b) como
d
dx
( ∫
f(x)dx
)
= f(x) e
d
dx
( ∫
g(x)dx
)
=
g(x), somando (ou subtraindo) estas igualdades temos
d
dx
(
∫
f(x)dx)± d
dx
(
∫
g(x)dx) = f(x)± g(x)
Portanto, desta última igualdade e de (1.1) segue que:
∫
[f(x)±g(x)]dx =
∫
f(x)dx±∫
g(x)dx �
6 Pinedo. Christian & Castillo. Milagros
Demonstração. (ii)
Exercício para o leitor.
Exemplo 1.6.
Observe,
∫
[e5x − 6x5 + Lnx]dx =
∫
e5xdx−
∫
6x5dx+
∫
Lnx.dx =
=
1
5
e5x − x6 + x.Lnx− x+ C.
Logo, I =
∫
[e5x − 6x5 + Lnx]dx = 1
5
e5x − x6 + x.Lnx− x+ C.
1.2.2 Integral imediata
Se conhecemos f ′(x), pela Propriedade (1.2)-c) deduzimos
∫
f ′(x)dx = f(x) + C ou∫
d(f(x))dx = f(x) + C.
Estas integrais assim obtidas denominam-se “integral imediata”; por exemplo
∫
dx =
x+ C.
Na continuação, apresenta-se uma tabela de integrais imediatas, que contém além das
integrais de funções elementares outras que serão de muita utilidade. Por comodidade,
utilizamos em vez da variável x a letra u que pode ser uma função da forma u = f(x).
1.2.3 Fórmulas elementares de integração
Considere o número real a > 0, e n ∈ Z
1.
∫
du = u+ C 2.
∫
du
u
= Ln | u | +C
3.
∫
undu =
un+1
n+ 1
+ C n ̸= 1 4.
∫
eudu = eu + C
5.
∫
audu =
au
Lna
+ C 6.
∫
sen u.du = − cosu+ C
7.
∫
cosu.du = sen u+ C 8.
∫
cotu.du = Ln | sen u | +C
9.
∫
tanu.du = Ln | secu | +C 10.
∫
secudu = Ln | secu+ tanu | +C
11.
∫
cscu.du = Ln | cscu− cotu | +C 12.
∫
sec2 u.du = tanu+ C
13.
∫
csc2 u.du = − cotu+ C 14.
∫
secu tanu.du = sec u+ C
15.
∫
cscu cotu = − cscu+ C 16.
∫
senhu.du = coshu+ C
17.
∫
coshu.du = senhu+ C 18.
∫
tanhu.du = Ln | coshu | +C
Cálculo Integral e Funções de Várias Variáveis 7
19.
∫
sech2u.du = tanhu+ C 20.
∫
cosh2 u.du = − cothu+ C
21.
∫
sechu tanhu.du = −sechu+ C 22.
∫
cschu cothu.du = −cschu+ C
23.
∫
du
u2 + a2
=
1
a
arctan(
u
a
) + C 24.
∫
du
u2 − a2
=
1
2a
Ln | u− a
u+ a
| +C
25.
∫
du
a2 − u2
=
1
2a
Ln
∣∣∣∣u+ au− a
∣∣∣∣+ C 26. ∫ du√u2 ± a2 = Ln(u+√u2 ± a2) + C
27.
∫
du√
a2 − u2
= arcsen(
u
a
) + C 28.
∫
du
(u2 + a2)3/2
=
u
a2
√
u2 + a2
+ C
29.
∫
du
u2
√
u2 + a2
= −
√
u2 + a2
a2u
30.
∫
du
u
√
u2 − a2
= (
1
a
)arcsec
| u |
a
+ C
31.
∫
du
uLnu
= Ln(Lnu) + C 32.
∫
sen 2u.du =
1
2
[u− 1
2
sen 2u] + C
33.
∫
tan2 u.du = tanu− u+ C 34.
∫
cot2 u.du = − cotu− u+ C
35.
∫
sen 3u.du =
1
3
(2 + sen 2u) cos u+ C
36.
∫
uneaudu =
1
a
uneau − n
a
∫
un−1eaudu
37.
∫
unsen u.du = −un cosu+ n
∫
un−1 cosu.du
38.
∫
cot3 u.du =
1
2
cot2 u− Ln | sen u | +C
39.
∫
tan3 u.du =
1
2
tan2 u+ Ln | cosu | +C
40.
∫
tann u.du =
1
n− 1
tann−1 u−
∫
tann−2 udu
41.
∫
unLnu.du =
un+1
(n+ 1)2
[(n+ 1)Lnu− 1] + C
42.
∫
eausen bu.du =
eau
a2 + b2
(asen bu− b. cos bu) + C
43.
∫
du
u
√
u2 + a2
= −1
a
Ln
[√
u2 + a2 + a
u
]
+ C =
1
a
Ln
[
u√
u2 + a2 − a
]
+ C
44.
∫ √
a2 − u2 · du = 1
2
[u
√
a2 − u2 + a2arcsen(u
a
)] + C
45.
∫ √
u2 + a2 · du = 1
2
[u
√
u2 + a2 + a2Ln(u+
√
u2 + a2)] + C
46.
∫ √
u2 − a2 · du = 1
2
[u
√
u2 − a2 − a2Ln(u+
√
u2 − a2)] + C
47.
∫
u2
√
u2 + a2 · du = 1
8
[u(a2 + 2u2)
√
u2 + a2 − a2Ln(u+
√
u2 + a2)] + C
48.
∫
u
√
a+ bu · du = 2
15b2
[(3bu− 2a)
√
(a+ bu)3] + C
49.
∫
u√
a+ bu
· du = 2
3b2
(bu− 2a)
√
a+ bu+ C
50.
∫ √
a+ bu
u
· du = 2
√
a+ bu+ a
∫
du
u
√
a+ bu
+ C
8 Pinedo. Christian & Castillo. Milagros
51.
∫
sen nu · du = − 1
n
sen n−1 cosu+
n− 1
n
∫
senn−2u.du
52.
∫
cosn u · du = 1
n
cosn−1 usen u+
n− 1
n
∫
cosn−2 u.du
53.
∫
secn u.du =
1
n− 1
tanu secn−2 u+
n− 2
n− 1
∫
secn−2 u.du
54.
∫
cscn u.du =
−1
n− 1
cotu cscn−2 u+
n− 2
n− 1
∫
cscn−2 u.du
55.
∫
sen (au)sen (bu) · du = sen (a− b)u
2(a− b)
− sen (a+ b)u
2(a+ b)
+ C
56.
∫
cos(au) cos(bu) · du = sen (a+ b)u
2(a+ b)
− sen (a− b)u
2(a− b)
+ C
57.
∫
sen (au) cos(bu) · du = −cos(a− b)u
2(a− b)
− cos(a+ b)u
2(a+ b)
+ C
Cada uma das fórmulas podem ser verificadas mediante derivação respeito da variável
u. Por exemplo, observe no caso da fórmula (25), temos quando a > 0:
d
dx
(
1
2a
Ln
∣∣∣u+ a
u− a
∣∣∣) = 1
2a
[
d
du
(Ln | u+ a | − | u− a |)
]
=
1
2a
[
1
u+ a
− 1
u− a
]
=
1
u2 − a2
Portanto,
∫
du
a2 − u2
=
1
2a
Ln
∣∣∣u+ a
u− a
∣∣∣+ C.
Exemplo 1.7.
Calcular I =
∫
(8x7 − 3x2 + 5)dx
Solução.
Aplicando a fórmula (3).
I =
∫
(8x7 − 3x2 + 5)dx =
∫
8x7dx−
∫
3x2dx+
∫
5dx = x8 − x3 + 5x+ C
Exemplo 1.8.
Calcular I =
∫
2(
√
x+
√
x3)
x
dx
Solução.
Aplicando a fórmula (3), temos: I =
∫
2(
√
x+
√
x3)
x
dx =
I = 2
∫
(x−1/2 + x−2/3)dx = 2
∫
x−1/2dx+ 2
∫
x−2/3dx = 4
√
x+ 6 3
√
x+ C
Exemplo 1.9.
Calcular I =
∫
x2
(a+ bx3)2
dx
Solução.
Cálculo Integral e Funções de Várias Variáveis 9
Observe, I =
∫
x2
(a+ bx3)2
dx =
∫
(a + bx3)−2x2dx, multiplicando e dividindo por
3b, temos I =
1
3b
∫
(a+ bx3)−2(3bx2)dx.
Considere u = (a+bx3) então o diferencial du = 3bx2dx; aplicando a fórmula (3) segue
I =
1
3b
∫
(a+ bx3)−2(3bx2)dx =
1
3b
∫
u−2du = − 1
3b
u−1 = − 1
3b
(a+ bx3)−1 + C
Portanto, I =
∫
x2
(a+ bx3)2
dx = − 1
3b
(a+ bx3)−1 + C.
Exemplo 1.10.
Calcular I =
∫
dx
senh2x. cosh2 x
Solução.
Pela identidade conhecida para funções hiperbólicas cosh2 x− senh2x = 1, então:
1
senh2x. cosh2 x
=
cosh2 x− senh2x
senh2x. cosh2 x
= csch2x− sech2x
pelas fórmulas (19) e (20) resulta I =
∫
dx
senh2x. cosh2 x
=
∫
(csch2x − sech2x)dx =
− cothx− tanhx+ C.
Portanto, I =
∫
dx
senh2x. cosh2 x
= − cothx− tanh x+ C.
Exemplo 1.11.
Calcular I =
∫
(3 + 2ex)2
ex
dx
Solução.
Resolvendo o quadrado: I =
∫
(3 + 2ex)2
ex
dx =
∫
9 + 12ex + 4e2x
ex
dx =
I = 9
∫
e−xdx+ 12
∫
dx+ 4
∫
exdx = −9e−x + 12x+ 4ex + C
Exemplo 1.12.
Calcular I =
∫
ax(
b
2
)xdx.
Solução.
I =
∫
ax(
b
2
)xdx =
∫
(
ab
2
)xdx =
(ab
2
)x
Ln(ab
2
)
= (
ab
2
)x[Ln(a) + Ln(b)− Ln2]−1 + C
Portanto, I =
∫
ax(
b
2
)xdx = (
ab
2
)x[Ln(a) + Ln(b)− Ln2]−1 + C.
10 Pinedo. Christian & Castillo. Milagros
Exemplo 1.13.
Calcular I =
∫
Lnx
x
dx
Solução.
Suponhamos que u(x) = Lnx, então du(x) =
1
x
· dx; assim podemos obter a integral
original
I =
∫
Lnx
x
dx =
∫
u.du =
1
2
(Lnx)2 + C
Exemplo 1.14.
Calcular I =
∫
dx
1 + e2x
.
Solução.
I =
∫
dx
1 + e2x
=
∫
e−2xdx
e−2x(1 + e2x)
=
∫
e−xdx
e−2x + 1
Suponha u(x) = e−2x + 1, então o diferencial du = −2e−2xdx; logo nossa integral.
I =
∫
e−xdx
e−2x + 1
= −1
2
∫
du
u
= −1
2
Ln(u(x)) + C = −1
2
Ln(e−2x + 1) + C
Exemplo 1.15.
Calcular I =
∫ √
cos x
sen5x
dx
Solução.
I =
∫ √
cos x
sen5x
dx =
∫ √
cosx
senx
· 1
sen4x
dx =
∫ √
cotx · csc4xdx =
∫ √
cotx · csc2x ·
dx
Supondo v(x) = cot x temos que, dv = −csc2x.dx.
Logo, I =
∫ √
cos x
sen5x
dx = −
∫ √
v · dv = −2
3
√
v3 + C = −2
3
√
cot3 x+ C.
Exemplo 1.16.
Calcular I =
∫
2x− 1
2x+ 3
dx
Solução.
A integral I =
∫
2x− 1
2x+ 3
dx =
∫ [
1− 4
2x+ 3
]
dx =
∫
dx− 2
∫
dx
x+ 3
2
=
I = x− 2Ln(2x+ 3)− 2Ln(2) = x− 2Ln(2x+ 3) + C
Exemplo 1.17.
Determine o valor da integral I =
∫
2x32x53xdx
Cálculo Integral e Funções de Várias Variáveis 11
Solução.
I =
∫
2x32x53xdx =
∫
(2 · 32 · 53)x · dx =
∫
2250x · dx = 2250
x
Ln2250
+ C
Portanto, I =
∫
2x32x53xdx =
2250x
Ln2250
+ C.
Exemplo 1.18.
Calcular I =
∫
x+ 2√
x
dx
Solução.
I =
∫
x+ 2√
x
dx =
∫
x√
x
dx+ 2
∫
dx√
x
=
∫ √
xdx+ 2
∫
x−1/2dx =
x3/2
3/2
+ 2
x1/2
1/2
=
2
3
√
x3 + 4
√
x+ C
Portanto, I =
∫
x+ 2√
x
dx =
2
3
√
x3 + 4
√
x+ C.
Exemplo 1.19.
Calcular I =
∫
sen (3x− 1) cos(2x+ 2)dx
Solução.
Lembre que, sen (A). cos(B) =
1
2
[sen (A+B) + sen (A−B)].
Sejam A = 3x− 1, B = 2x+ 2; então, A+B = 5x+ 1 e A−B = x− 3, logo
I =
∫
sen (3x− 1) cos(2x+ 2)dx = 1
2
∫
[sen (5x+ 1) + sen (x− 3)]dx =
=
1
2
∫
sen (5x+ 1)dx+
1
2
∫
sen (x− 3)dx
Suponhamos que u = 5x + 1, então du = 5dx ou
1
5
du = dx, de modo análogo,
suponhamos que v = x− 3 , então dv = dx assim:
I =
1
2
∫
sen (5x + 1)dx +
1
2
∫
sen (x − 3)dx = 1
10
∫
sen u · du + 1
2
∫
sen v · dv =
− 1
10
cosu− 1
2
cos v = − 1
10
cos(5x+ 1)− 1
2
cos(x− 3) + C.
Portanto, I =
∫
sen (3x− 1) cos(2x+ 2)dx = −1
10
cos(5x+ 1)− 1
2
cos(x− 3) + C.
Exemplo 1.20.
Calcular I =
∫
1
1 + cos2 x
dx
Solução.
12 Pinedo. Christian & Castillo. Milagros
Observe que
1
1 + cos2 x
=
1
1 + 1
sec2 x
=
sec2 x
sec2 x+ 1
=
sec2 x
tan2 x+ 2
=
sec2 x
tan2 x+ (
√
2)2
.
Aplicando a fórmula (23), temos que:
I =
∫
1
1 + cos2 x
dx =
∫
sec2 x
tan2 x+ (
√
2)2
dx =
1√
2
arctan[
tanx√
2
] + C
Exemplo 1.21.
Calcular I =
∫
dx
x4 − 16
.
Solução.
I =
∫
dx
x4 − 16
=
1
8
∫
[
1
x2 − 4
− 1
x2 + 4
]dx
Da fórmula (24) temos que I =
∫
dx
x2 − 4
=
∫
dx
x2 − 22
=
1
4
Ln | x− 2
x+ 2
|; e pela
fórmula (23), temos que,
∫
1
x2 + 4
dx =
∫
dx
x2 + 22
=
1
2
arctan
x
2
. Assim,
I =
∫
dx
x4 − 16
=
1
8
∫
[
1
x2 − 4
− 1
x2 + 4
]dx =
1
8
[
1
4
Ln | x− 2
x+ 2
| −1
2
arctan
x
2
]
Portanto, I =
∫
dx
x4 − 16
=
1
32
[Ln | x− 2
x+ 2
| −2 arctan x
2
] + C.
Exemplo 1.22.
Calcular I =
∫
x2 + 13√
x2 + 9
dx
Solução.
I =
∫
x2 + 13√
x2 + 9
dx =
∫
x2 + 9 + 4√
x2 + 9
dx =
∫
[
√
x2 + 9 +
4√
x2 + 9
]dx.
Da fórmula (45) temos que a integral∫ √
x2 + 9dx =
∫ √
x2 + 32dx =
1
2
[x
√
x2 + 33 + 32Ln(x+
√
x2 + 32]
e, pela fórmula (27), temos que, a integral∫
4 · dx√
x2 + 9
= 4
∫
dx√
x2 + 32
= 4Ln(x+
√
x2 + 32) + C
Logo, I =
∫
x2 + 13√
x2 + 9
dx =
1
2
[x
√
x2 + 33+32Ln(x+
√
x2 + 32]+4Ln(x+
√
x2 + 32+C.
Portanto, I =
∫
x2 + 13√
x2 + 9
dx =
1
2
[x
√
x2 + 9 + 17Ln(x+
√
x2 + 9)] + C.
Cálculo Integral e Funções de Várias Variáveis 13
Exemplo 1.23.
Seja f : R −→ R uma função contínua em R, de modo que f(0) = 2 e sua função
derivada é representada por:
f ′(x) =

x
| x |
, se x < 1 e x ̸= 0
ex, se x > 1
Determine a função f(x).
Solução.
Como d(| x |) = x
| x |
· dx se x ̸= 0, então a função:
f(x) =
{
| x | +C1, se x < 1 e x ̸= 0
ex + C2, se x > 1
Pela continuidade de f(x) temos que f(0) = f(0+) = f(0−) = 2, então C1 = 2; por
outro lado, f(1+) = f(1−) = e+ C2 = 1 + 2, logo C2 = 3− e.
Portanto, f(x) =
{
| x | +2, se x ≤ 1
ex + 3− e, se x > 1
.
Exemplo 1.24.
Calcular I =
∫
3ex√
1− e2x
dx
Solução.
Suponha u = ex, então du = exdx.
I =
∫
3ex√
1− e2x
dx = 3
∫
du√
1− u2
= 3arcsenx+ C = 3arcsen(ex) + C
Exemplo 1.25.
Estima-se que, dentro de x semanas, a população de um certo tipo de gafanhotos
variará segundo a taxa (7+6x) insetos por semana. A população atual é de 500 gafanhotos.
Qual será a população dentro de nove semanas?
Solução.
Se P (x) é a população de gafanhotos dentro de x semanas, então a derivada de P (x)
é a taxa de variação da população em relação ao tempo; isto é, P ′(x) = (7 + 6x).
Por outro lado, P (x) =
∫
P ′(x)dx =
∫
(7 + 6x)dx = 7x+ 3x2 + C.
Quando x = 0, temos a população atual; assim P (0) = 7(0) + 3(02) + C = 500 então
C = 500 e P (x) = 7x+ 3x2 + 500.
Dentro de nove semanas a população será P (9) = 7(9)+3(9)2+500 = 806 gafanhotos.
14 Pinedo. Christian & Castillo. Milagros
Exemplo 1.26.
O lucro marginal de uma fábrica de calçados ao produzir q pares de unidades de cal-
çados é 200 − 4q reais por unidade. Se o lucro obtido com a produção de 100 pares de
unidades é R$500, 00, qual será o lucro máximo da fábrica?
Solução.
O lucro marginal é a derivada do lucro L(q).
Sabe-se que o lucro marginal é L′(q) = 200− 4q então,
L(q) =
∫
L′(q)dq =
∫
(200− 4q)dq = 200q − 2q2 + C
Quando q = 100, temos que L(100) = 500 = 200(100) − 2(100)2 + C, onde C = 0;
assim, L(q) = 200q − 2q2.
Para calcular o lucro máximo, observe que L(q) = 200q − 2q2 = 2(100q − q2) =
2(502 − 502 + 100q − q2) = 2[2500 − (50 − q)2]; o que implica q = 50 para obter lucro
máximo.
Assim, quando q = 50, temos L(50) = 200(50)− 2(50)2 = 5.000, 00.
Portanto, o lucro máximo é R$5.000, 00.
Exemplo 1.27.
Calcular a equação da função f(x) cujo coeficiente angular da tangente em qualquer
ponto x é m = 4x3 + 2 e seu gráfico passa pelo ponto (−2, 10).
Solução.
O coeficiente angular da tangente é m = f ′(x) = 4x3 + 2 e f(x) é a primitiva; logo:
f(x) =
∫
f ′(x)dx =
∫
(4x3 + 2)dx = x4 + 2x+ C
Para o cálculo de C, consideremos o fato de que o gráfico de f(x) passa pelo ponto
(−2, 10); isto é f(−2) = (−2)4 + 2(−2) + C = 10, o que implica que C = −2.
Portanto a equação desejada é f(x) = x4 + 2x− 2.
Exemplo 1.28.
Determine a função cujo gráfico possui máximo relativo em x = 2 e mínimo relativo
em x = 6, e passa pelo ponto (0, −3)
Solução.
Pelas condições de extremos, sabemos que:
f ′(2+) < 0, f ′(2−) > 0, f ′(6+) > 0 e f ′(6−) < 0
Cálculo Integral e Funções de Várias Variáveis 15
então a derivada da função tem a forma f ′(x) = (x − 2)(x − 6), logo a antiderivada
f(x) =
∫
(x− 2)(x− 3)dx =
∫
(x2 − 8x+ 12)dx = 1
3
x3 − 4x2 + 12x+ C.
Observe que pelo fato o gráfico da função f(x) passar por (0, −3) temos que f(0) =
C = −3.
Portanto, f(x) =
1
3
x3 − 4x2 + 12x− 3.
Exemplo 1.29.
Um fabricante de componentes eletrônicos constata que o custo marginal em reais (R$)
da produção de x unidades de uma peça de filmadora é dada por 40 − 0, 01x reais. Se
o custo de produção de uma unidade é 45 reais, determine a função custo e o custo de
produção de 50 unidades.
Solução.
Seja C(x) a função de custo total, então a função de custo marginal é dada pela função
C ′(x); isto é C ′(x) = 40− 0, 01x. Logo∫
C ′(x)dx =
∫
(40− 0, 01x)dx = 40x− 0, 005x2 +K
para alguma constante K; assim C(x) = 40x− 0, 005x2 +K.
Quando x = 1 (uma unidade) temos, C(1) = 45, logo 45 = C(1) = 40(1)−0, 005(12)+
K, onde K = 5, 005.
Portanto, a função de custo total em reais é dada pela função C(x) = 40x−0, 005x2+
5, 005.
Em particular, quando x = 50, temos C(50) = 40(50) − 0, 005(502) + 5, 005, o custo
de produção de 50 unidades é: R$1.992, 505.
Exemplo 1.30.
Seja f(x) =| x− 1 | +x. Mostre que
F (x) =
x se, x < 1x2 − x+ 1 se, x ≥ 1.
é uma antiderivada de f(x) no intervalo (−∞, +∞)
Solução.
Suponhamos x ≥ 1, então f(x) = x− 1 + x = 2x− 1, onde∫
f(x)dx =
∫
(2x− 1)dx = x2 − x+ C1
16 Pinedo. Christian & Castillo. Milagros
Por outro lado, se x < 1 temos que f(x) = −(x− 1) + x = 1 onde∫
f(x)dx =
∫
(1)dx = x+ C2
onde C1 e C2 são constantes reais arbitrárias.
Em particular, quando C1 = 1 e C2 = 0 temos que:
F (x) =
x se, x < 1x2 − x+ 1 se, x ≥ 1.
é uma antiderivada de f(x) no intervalo (−∞, +∞).
Exemplo 1.31.
Considere a equação:
dy
dx
+ y = x+ 1, onde y = f(x) determine o seguinte:
a) Uma solução geral dessa equação (chamada equação diferencial).
b) Determine a solução y = f(x) que cumpra a condição inicial f(0) = 4.
Solução. a)
Seja y função de variável x, e consideremos a função implícita F (x, y) = y·ex; derivando
F implicitamente em relação à variável x temos que F ′(x, y) =
dy
dx
· ex + y · ex.
Com esta ideia, podemos escrever a equação original na forma:
dy
dx
· ex + y · ex = ex(x+ 1), de onde resulta d(y · e
x)
dx
= ex(x+ 1).
De onde,
∫
d(y · ex) =
∫
ex(x+ 1)dx ⇒ y · ex =
∫
ex(x+ 1)dx.
Portanto. uma solução geral à equação é: y = e−x ·
∫
ex(x+ 1)dx
Solução. b)
Como
∫
ex(x+ 1)dx = x · ex, da solução geral temos que
y = f(x) = e−x(x · ex) + C ⇒ f(x) = x+ C · e−x
onde C ∈ R é uma constante de integração.
Em particular quando, x = 0, temos que 4 = f(0) = 0 + C · e−0 = C ⇒ C = 4.
Portanto, a solução particular à equação é: y = x+ 4e−x.
Cálculo Integral e Funções de Várias Variáveis 17
Exercícios 1-1
1. Determine as funções primitivas para as seguintes funções:
1. 2x8 2.
5
x
+
8
x2
3.
x6 − 7x2 + 2
x
4. 1− 2sen 2x 5. 1√
a+ bx
6. e2−5x
7.
1
3
√
7x
8.
1
cos2 3x
9.
x6 − 1
x2 − 1
2. Por diferenciação determine a validade das seguintes igualdades:
1.
∫
dx
9 + x2
=
1
3
arctan
x
3
+ C 2.
∫
x
√
2x2 + 5dx =
√
(2x+ 5)3
6
+ C
3.
∫
x3 · dx√
a2 + x4
=
√
a2 + x4
2
+ C 4.
∫
dx
(a+ bx)3
= − 1
2b(a+ bx)2
+ C
5.
∫
6x.dx
(5− 3x2)2
=
1
5− 3x2
+ C 6.
∫
x(a− bx2)dx = −(a− bx
2)2
4b
+ C
7.
∫
8x · dx
3
√
x2 + 8
=
8
√
x2 + 8
3
+ C 8.
∫
x.dx
(a+ bx2)3
= − 1
4b(a+ bx2)2
+ C
9.
∫
(a+ bx)2dx =
(a+ bx)3
3b
+ C 10.
∫
x.dx
(a+ bx2)2
=
(−1)
2b(a+ bx2)
+ C
11.
∫
tan2 x.dx = tan x− x+ C 12.
∫
x(x2 + 2)2dx =
(x2 + 2)3
6
+ C
13.
∫
(2x+ 3)dx√x2 + 3x
= 2
√
x2 + 3x+ C 14.
∫
dx√
8− x2
= arcsen[
x
2
√
2
] + C
15.
∫
(
√
a−
√
x)2√
x
· dx = −2(
√
a−
√
x)3
3
+ C
16.
∫
(
√
a−
√
x)2dx = ax− 4x
√
ax
3
+
x2
2
+ C
17
∫
x(2x+ 1)2dx = x4 +
4
3
x3 +
1
2
x2 + C
18.
∫ √
x(
√
a−
√
x)2dx =
2
3
a
√
x3 − x2
√
a+
2
5
√
x5 + C
19.
∫
x(a+ bx3)2dx =
a2x2
2
+
2abx5
5
+
b2x8
8
+ C
20.
∫
xn−1
√
a+ bxndx =
2
√
(a+ bxn)3
3nb
+ C
18 Pinedo. Christian & Castillo. Milagros
21.
∫
(
√
a−
√
x)4√
x
dx = −1
2
x2 + 2x
√
ax− 3ax+ 2a
√
ax+ C
22.
∫
dx
x2 − 10
=
1
2
√
10
Ln | x−
√
10
x+
√
10
| +C
3. Calcular as integrais dos seguintes exercícios.
1.
∫
5a2x2dx 2.
∫ √
2pxdx 3.
∫
x(x+ a)(x+ b)dx
4.
∫
(nx)
1−n
n dx 5.
∫
cot2 x.dx 6.
∫
(
√
x+ 1)(x−
√
x+ 1)dx
7.
∫
dx√
4 + x2
8.
∫
(xm − xn)2√
x
dx 9.
∫ √
2 + x2 −
√
2− x2√
4− x4
dx
10.
∫
dx
x2 + 7
11.
∫
a.dx
a− x
12.
∫
x2 + 5x+ 7
x+ 3
dx
13.
∫
ax+ b
αx+ β
14.
∫
1− 3x
3 + 2x
dx 15.
∫
(a+
b
x− a
)2dx
16.
∫
b.dy√
1− y
17.
∫
x.dx√
x2 + 1
18.
∫
(6x2 + 8x+ 3)dx
19.
∫
3xexdx 20.
∫
dx
3x2 + 5
21.
∫
(a+ bx3)2dx
22.
∫
1
n
√
x
dx 23.
∫
(
3
√
a2 − 3
√
x2)3dx 24.
∫
(x2 + 1)(x2 − 2)
3
√
x2
dx
4. Sejam a e b constantes reais tais que a ̸= b, determine a antiderivada para as
seguintes funções:
1. sen (ax)sen (bx) 2. cos(ax) cos(bx) 3. sen (ax) cos(bx)
5. Mostre, calculando de duas maneiras, que:∫
tan x. sec2 x.dx =
1
2
tan2 x+ C1 =
1
2
sec2 x+ C2
6. Mostre, calculando de três maneiras distintas, que:∫
sen x. cosx.dx =
1
2
sen 2x+ C1 = −
1
2
cos2 x+ C2 =
1
4
cos 2x+ C3
7. O preço de revenda de um carro decresce a uma taxa que varia com o tempo.
Quando o carro tiver x anos de uso, a taxa de variação de seu valor será 200(x− 9)
reais por ano. Se hoje o carro foi comprado por 12.000, 00 reais, qual será o custo
do carro dentro de cinco anos?
Cálculo Integral e Funções de Várias Variáveis 19
1.3 Métodos de integração
Antes do estudo dos métodos de integração, é bom notar a diferença entre as operações
de derivação e integração indefinida.
Dizemos que uma função elementar é aquela que se obtém mediante um número finito
de operações de adição, subtração, multiplicação, divisão e composição de funções como,
por exemplo: as funções constantes; a função potência y = xn; a função exponencial
y = ax; as funções logarítmicas; trigonométricas e trigonométricas inversas.
Dada uma função elementar, sua derivada conserva esta propriedade; isto é, sua de-
rivada também expressa-se como uma função elementar, entanto na integral indefinida,
isto somente sucede em condições muito especiais. De fato, é possível escrever integrais
relativamente simples como, por exemplo:∫
ex
2
dx
∫
e−x
2
dx
∫
sen x
x
∫
tanx
x
dx∫
dx
Lnx
∫ √
1 + x3dx
∫
sen x2.dx
∫
cos x2.dx
as quais não podem ser expressas como “ combinações finitas” de funções elementares.
Do ponto de vista prático, a integração se apresenta como uma operação um tanto mais
complicada que a derivação. No entanto tínhamos regras gerais de derivação, para a
integração somente é possível fazer artifícios que são válidos para grupos mais ou menos
restritos de funções. Para cada caso particular, precisamos uma tentativa, um ensaio pelo
que se recomenda prática, mais prática e mais prática.
1.3.1 Integração por substituição
Algumas integrais inicialmente são difíceis de calcular. Uma ideia, é transformá-las
mediante uma substituição algébrica com uma conveniente mudança de variável, que
as reduz em integrais muitas mais simples. Intuitivamente explicaremos a técnica de
substituição mediante o seguinte roteiro:
1) Escreva a integral a calcular I =
∫
f(x)dx
2) Proponha uma substituição da forma u = u(x). Em geral, é melhor escolher a parte
interna de uma função composta.
3) Depois nossa intenção será achar a função inversa de u(x), isto é, temos que achar
x = x(u).
4) Calcular o diferencial dx = x′(u)du.
20 Pinedo. Christian & Castillo. Milagros
5) Escreva as substituições apropriadas
∫
f(x)dx =
∫
f(u(x))u′(x)dx.
6) Confira depois de simplificações algébricas que o cálculo da nova integral é mais simples
que a inicial 1). (Caso contrário, proponha outra substituição em 2).
7) Não se esqueça que a resposta para
∫
f(x)dx é uma função de variável x. Então uma
vez que você terminou seus cálculos na nova variável, você devera substituir-la pela
relação que tem com a variável inicial x.
Observação 1.2.
a) Em geral, se a substituição é boa, você pode não precisar de 3). Calcular o
diferencial de u = u(x), para obter du = u′(x)dx, logo substitua a variável u =
u(x) na nova integral. Você deveria ter certeza que a variável x desapareceu
da integral original.
b) Uma boa substituição, às vezes é difícil de achar no início. Então recomendamos
não perder muito tempo no passo 2). Depois de alguma prática, você pode
começar a ter um bom palpite para a melhor substituição.
Exemplo 1.32.
Calcular I =
∫
x(x2 + 5)75dx
Solução.
Está claro que, se nós desenvolvermos o (x2 + 5)75 mediante a fórmula de binômio,
acharemos uma função polinomial fácil de integrar. Mas está claro que isto levará muito
tempo com possibilidade de cometer erros de cálculo.
Consideremos a substituição u = x2 + 5 (a razão é a presença de x na integral).
Então temos du = 2xdx e I =
∫
x(x2 + 5)75dx =
∫
u75
2
du; podemos conferir que a
nova integral é mais fácil de calcular, consequentemente I =
∫
u75
2
du =
u76
152
+ C não
completa a resposta desde que, a integral indefinida não é uma função de x é de variável
u = u(x).
Então, temos que substituir u através de u(x) ; onde
I =
∫
x(x2 + 5)75dx =
1
125
(x2 + 5)76 + C
O método de “integração por substituição”, também conhecida como o método da
“integração por mudança de variável ”, tem seu princípio fundamental na derivação da
função composta.
Cálculo Integral e Funções de Várias Variáveis 21
Dada a função f : A ⊆ R −→ R, queremos calcular
∫
f(x)dx.
Propriedade 1.4.
Suponhamos que escrevemos x = h(t) onde h : B ⊆ R −→ A é uma função com
derivada h′(t) ̸= 0 ∀ t ∈ B. Se a função g(t) = f(h(t)).h′(t) ∀ t ∈ B admite uma
primitiva G em B, isto é G′(t) = g(t) = f(h(t)).h′(t) então:∫
f(x)dx =
∫
f(h(t))h′(t)dt =
∫
g(t)dt = G(t) + C = G(h−1(x)) + C (1.2)
Demonstração.
Para mostrar, é necessário que as derivadas respeito da variável x, na igualdade (1.2)
sejam idênticas.
Com efeito, temos que:
d
dx
( ∫
f(x)dx
)
= f(x)
Por outro lado, como h′(t) ̸= 0 ∀ t ∈ B então h(t) > 0 ou h(t) < 0 logo h(t) é
estritamente crescente ou decrescente em B assim h(t) admite função inversa t = h−1(x)
onde h−1 : A −→ B e dt
dx
=
1
dx
dt
.
Pela regra da cadeia
dy
dx
=
dy
dt
· dt
dx
portanto, na parte da direta da igualdade (1.2)
segue que:
d
dx
[
∫
f(h(t))h′(t)dt] =
d
dt
[
∫
f(h(t))h′(t)dt] · dt
dx
=
= f(h(t)) · h′(t) · dt
dx
= f(h(t)) · h′(t) · 1
dx
dt
=
= f(h(t)) · h′(t) · 1
h′(t)
= f(h(t)) = f(x)
As outras igualdades são evidentes.
Observação 1.3.
a) Resumindo, se na integral
∫
f(x)dx substituímos x = h(t) e como dx = h′(t)dt,
verifica-se
∫
f(x)dx =
∫
f(h(t))h′(t)dt.
b) Aqui entendemos que a função h(t) satisfaz as condições indicadas anterior-
mente e, depois da integração, a variável t será substituída por sua expressão
na variável original x, considerando que, x = h(t).
22 Pinedo. Christian & Castillo. Milagros
c) A eleição da função x = h(t) deve ser feita de modo que seja possível calcular
a integral indefinida em função da variável t.
d) Existem alguns casos onde é preferível utilizar a substituição t = g(x) e dt =
g′(x)dx como mostra o seguinte exemplo:
Exemplo 1.33.
Calcular I =
∫
5(x5 + 2)3x4dx
Solução.
Considere t = (x5 + 2), então dt = 5x4dx, logo
I =
∫
5(x4 + 2)3x4dx =
∫
t3.dt =
1
4
t4 + C =
1
4
(x5 + 2)4 + C
.
Portanto, I =
∫
5(x4 + 2)3x4dx =
1
4
(x5 + 2)4 + C.
Exemplo 1.34.
Calcular I =
∫
x
√
2x+ 2dx
Solução.
Considere u = 2x+ 2, então du = 2dx, e x =
u− 2
2
logo:
I =
∫
x
√
2x+ 2dx =
∫
[
u− 2
2
]
√
u
du
2
=
1
4
∫
[
√
u3 − 2
√
u]du =
I =
1
4
[
2
5
√
u5 − 4
3
√
u3
]
+ C
Substituindo u =2x+ 2, temos I =
1
4
[
2
5
√
(2x+ 2)5 +
4
3
√
(2x+ 2)3
]
+ C.
Portanto, I =
∫
x
√
2x+ 2dx =
1
10
√
(2x+ 2)5 +
1
3
√
(2x+ 2)3 + C.
Exemplo 1.35.
Considere-se a ̸= 0, calcular I =
∫
cos(ax+ b)dx
Solução.
I =
∫
cos(ax+ b)dx =
1
a
sen (ax+ b) + C.
Exemplo 1.36.
Calcular I =
∫
(2x+ 1)20dx
Solução.
Cálculo Integral e Funções de Várias Variáveis 23
I =
∫
(2x+ 1)20dx =
1
42
(2x+ 1)21 + C.
Observação 1.4.
a) Considere a ̸= 0, ao determinar a integral
∫
f(ax + b)dx podemos omitir a
substituição u = ax+ b; é suficiente considerar dx =
1
a
d(ax+ b) e deste modo
obter a integral
∫
f(ax + b)dx =
1
a
F (ax + b) + C onde F é a primitiva de
f(x).
b) Em geral, se temos que integrar o produto de duas funções, a qual uma delas
é uma certa função g(x) e a outra é a derivada de g(x) (com precisão até o
fator constante), então é conveniente efetuar a substituição g(x) = u.
Exemplo 1.37.
Calcular I =
∫
arcsen
√
x√
x− x2
dx
Solução.
I =
∫
arcsen
√
x√
x− x2
dx =
∫
arcsen
√
x
√
x ·
√
1− x
dx
Seja a substituição u = arcsen
√
x, então du =
1√
1− (
√
x)2
· dx
2
√
x
Logo, I =
∫
arcsen
√
x√
x− x2
dx =
∫
arcsen
√
x
√
x ·
√
1− x
dx =
I =
∫
2arcsen
√
x√
1− x · 2
√
x
dx = 2
∫
u.du = u2 + C = (arcsen
√
x)2 + C
Portanto, I =
∫
arcsen
√
x√
x− x2
dx = (arcsen
√
x)2 + C.
Exemplo 1.38.
Calcular I =
∫
[sen (e−x) + ex · cos(e−x)]dx
Solução.
Considere u = ex · cos(e−x), então du = [ex · cos(e−x) + (ex)sen (e−x) · (e−x)]dx =
[sen (e−x) + ex · cos(e−x)]dx, logo na integral original temos que
I =
∫
[sen (e−x) + ex · cos(e−x)]dx =
∫
du = u+ C = ex · cos(e−x) + C
24 Pinedo. Christian & Castillo. Milagros
Portanto, I =
∫
[sen (e−x) + ex · cos(e−x)]dx = ex · cos(e−x) + C.
Exemplo 1.39.
Calcular I =
∫
senhx · coshx
(1 + senh2x)3
dx
Solução.
Considere u = (1 + senh2x), então du = 2senhx · coshx · dx; logo:
I =
∫
senhx · coshx
(1 + senh2x)3
dx =
1
2
∫
2senhx · coshx
(1 + senh2x)3
dx =
=
1
2
∫
du
u3
= − 1
4
u−2 + C = − 1
4(1 + senh2x)2
+ C
Portanto, I =
∫
senhx · coshx
(1 + senh2x)3
dx = − 1
4(1 + senh2x)2
+ C.
Exemplo 1.40.
Calcular I =
∫
sen 3
√
x
3
√
x2
dx
Solução.
Considere u = 3
√
x, isto é u3 = x então 3u2du = dx logo,
I =
∫
sen 3
√
x
3
√
x2
dx =
∫
3u2 · sen u
u2
du = − cosu+ C = − 3 cos 3
√
x+ C
Exemplo 1.41.
Calcular a integral: I =
∫
e2x√
1 + ex
dx.
Solução.
Suponhamos u = ex ⇒ du = exdx, logo na integral:
I =
∫
e2x√
1 + ex
dx =
∫
u√
1 + u
du =
∫
(1 + u)− 1√
1 + u
du =
I =
∫ √
1 + u du−
∫
du√
1 + u
= I1 − I2
Calculando cada uma destas últimas integrais:
I1 =
∫ √
1 + u du =
2
3
(
√
1 + u)3 =
2
3
(
√
1 + ex)3
I2 =
∫
du√
1 + u
= 2
√
1 + u = 2
√
1 + ex
Portanto, I =
∫
e2x√
1 + ex
dx =
2
3
(
√
1 + ex)3 − 2
√
1 + ex + C.
Cálculo Integral e Funções de Várias Variáveis 25
Exemplo 1.42.
Calcular I =
∫ √2 +√2 +√2 + 2 cos(5√x+ 1)
√
x
dx
Solução.
Sabe-se que cos2 θ =
1 + cos 2θ
2
logo, 2 cos2 θ = 1 + cos 2θ. Observe que:
√
2 +
√
2 +
√
2 + 2 cos(5
√
x+ 1) =
√
2 +
√
2 +
√
2[1 + cos(5
√
x+ 1)] =
=
√√√√√2 +
√√√√2 +√4 cos2 [(5√x+ 1)
2
]
=
√
2 +
√
2 + 2 cos(
5
√
x+ 1
2
) =
=
√
2 +
√
2[1 + cos(
5
√
x+ 1
2
)] =
√√√√2 +√4 cos2 [5√x+ 1
4
]
=
=
√
2 + 2 cos(
5
√
x+ 1
4
) =
√
2[1 + cos(
5
√
x+ 1
4
)] =
=
√
4 cos2
[
5
√
x+ 1
8
]
= 2 cos(
5
√
x+ 1
8
)
Seja u =
5
√
x+ 1
8
então, du =
5 · dx
16
√
x
, assim na integral original temos:
I =
∫ √2 +√2 +√2 + 2 cos(5√x+ 1)
√
x
dx =
32
5
∫
cosu · du = 32
5
sen u+ C
Portanto, I =
∫ √2 +√2 +√2 + 2 cos(5√x+ 1)
√
x
dx =
32
5
sen
[
5
√
x+ 1
8
]
+ C.
Exemplo 1.43.
Em março de 1987, a população mundial atingiu 5.000.000.000 pessoas, e estava cres-
cendo à taxa de 380.000 pessoas por dia. Assumindo taxas de natalidade e mortalidade
constantes, para quando se deve esperar uma população mundial de 10.000.000.000?
Solução.
Consideremos 1987 como o início da observação, logo o tempo t = 0 (em anos) cor-
responde a 1987, sendo a função população P (t) em função do tempo, temos então que
P (0) = 5× 109 habitantes.
26 Pinedo. Christian & Castillo. Milagros
Seja k a constante de proporcionalidade para o crescimento populacional, então no
instante t, temos
dP
dt
= k · P de onde
1
P
· dP = k · dt
∫
1
P
· dP =
∫
k · dt ⇒ LnP = kt+ C1
P (t) = Cekt, C = eC1
como P (0) = 5× 109 ⇒ 5× 109 = Cek·0 ⇒ P (t) = 5× 109ekt.
Assim,
dP
dt
(t) = k · P (t) ⇒ dP
dt
(t) = k · 5× 109ekt.
Quando t = 0 temos P (0) = 380.000× 365 = 38× 104 × 365, logo
38× 104 × 365 = k · 5× 109ek·0 ⇒ k = 38× 10
4 × 365
5× 109
=
38× 73
105
= 0, 02774
de onde k = 0, 02774
Assim, temos que P (t) = 5× 109e0,02774t
Queremos saber qual o valor de t quando P (t) = 10.000.000.000 = 1010, isto é
1010 = 5× 109e0,02774t ⇒ 2 = e0,02774t ⇒ 0, 02774t = Ln2 ⇒ t = 24, 98
A população atingirá 1010 habitantes em 2012.
Cálculo Integral e Funções de Várias Variáveis 27
Exercícios 1-2
1. Mediante diferenciação, determine se as seguintes igualdades são verdadeiras:
1.
∫
(
√
x+ 5)dx =
2
3
√
x3 + 5x+ C 2.
∫
senhx.dx
(1 + coshx)4
= − 1
3(1 + cosh x)3
3.
∫
e
√
x · 3e
√
x
dx√
x
=
2(3e
√
x
)
Ln3
+ C 4.
∫
cos(7x+ 4)dx =
1
7
sen (7x+ 4) + C
5.
∫
e2x−5dx =
1
2
e2x−5 + C 6.
∫
18dx
9x2 − x4
= − 2
x
+
2
3
Ln[
x+ 3
x− 3
] + C
7.
∫
4xex · dx = (4e)
x
1 + Ln4
+ C 8.
∫
7x2 + 16
x4 + 4x2
dx =
3
2
arctan[
x
2
]− 4
x
+ C
9.
∫
dx
1 + cos 10x
=
tan 5x
10
+ C 10.
∫
dx
cos2(1− 4x)
= − 1
4
tan(1− 4x) + C
11.
∫
dx
xLn2x
= − 1
Lnx
+ C 12.
∫ 5√x2 − 2x+ 1
1− x
dx = − 5
2
5
√
(x− 1)2 + C
13.
∫
[Lnx+ 1].ex.Lnxdx = xx + C 14.
∫
2x · 3x+1
5x+2
dx =
3
25
(
6
5
)x(
1
Ln6− Ln5
) + C
15.
∫
sen x · etan2 x
cos3 x
dx =
1
2
etan
2 x + C 16.
∫ √
x(x+ 1)dx =
2
√
x5
5
+
2
√
x3
3
+ C
17.
∫
7dx√
5− x2
= 7arcsen[
x√
5
] + C 18.
∫
3dx
x2 + 4x− 5
=
1
2
Ln[
x− 1
x+ 5
] + C
19.
∫
dx
1 + sen x
= tan x− sec+C 20.
∫
xdx
x2(x2 − 8)
= Ln
16
√
x2 − 8
x2
+ C
21.
∫
x2x(1 + Lnx)dx =
x2x
2
+ C 22.
∫
cos3 x.dx
1− sen x
= sen x+
sen 2x
2
+ C
23.
∫
dx
sen 2x( 3
√
cotx− 1
=
−3 3
√
(cotx− 1)2
2
+ C
24.
∫
4 · dx√
−4x2 − 20x− 9
= 2arcsen[
2x+ 5
4
] + C
25.
∫ √
−4x2 − 12x− 5 · dx = 1
4
[(2x+3)
√
−4x2 − 12x− 5+4arcsen(2x+ 3
2
)]+C
26.
∫
dx√
(1 + x2)Ln(x+
√
1 + x2)
= 2
√
Ln(x+
√
1 + x2) + C
27.
∫
earctanx + xLn(x2 + 1) + 1
1 + x2
· dx = earctanx + 1
4
Ln2(x2 + 1) + arctan x + C
28 Pinedo. Christian & Castillo. Milagros
28.
∫ √
2 + x2 −
√
2− x2√
4− x4
· dx = arcsen( x√
2
)− arcsenh( x√
2
) + C
29.
∫
dx√
x− 1 +
√
x+ 1
=
1
3
[(
√
(x+ 1)3 −
√
(x− 1)3] + C
2. Calcular as seguintes integrais utilizando regras principais e fórmulas de integração.
1.
∫
sen 2x · dx 2.
∫
sec2(ax+ b)dx 3.
∫
tan
√
x√
x
dx
4.
∫
senh2x · dx 5.
∫
dx
coshx
6.
∫
tanhx · dx
7.
∫
dx
sen x
a
8.
∫
dx
sen (ax+ b)
9.
∫
xsen (1− x2)dx
10.
∫
tanx · dx 11.
∫
dx
sen x cos x
12.
∫
cot(
x
a− b
)dx
13.
∫
sen 36x · cos 6x · dx 14.
∫
sen 2x · cos 6x · dx 15.
∫ √
tanx
cos2 x
dx
16.
∫
sen 3x · dx
3 + cos 3x
17.
∫
1 + sen 3x
cos2 3x
dx 18.
∫
csc2 3x
b− a · cot 3x
dx
19.
∫
x
5
√
5− x2dx 20.
∫
x3 · dx
x8 + 5
21.
∫
3−
√
2 + 3x2
2 + 3x2
dx
22.
∫ √
a− bxdx 23.
∫
x2
x2 + 2
dx 24.
∫
x2 + 1
x− 1
dx
25.
∫
2x+ 3
2x+ 1
dx 26.
∫
x2 − 5x+ 6
x2 + 4
dx 27.
∫
dx√
7− 5x2
28.
∫
dx
7x2 − 8
29.
∫
x
(x+ 1)2
dx 30.
∫
3− 2x
5x2 + 7
dx
3. Determine o valor das seguintes integrais mediante mudança da variável apropriada:
1.
∫
sen ax · sen bx · dx 2.
∫
cos ax · cos bx · dx 3.
∫
sen ax · cos bx · dx
4.
∫
sen 3x · cos x · dx 5.
∫
x
ax+ b
dx 6.
∫
x
√
1 + x2dx
7.
∫
x2
x3 − a
dx 8.
∫
sen x
cos2 x
dx 9.
∫
x(a+ bx2)3dx
10.
∫
tanx
cos2 x
dx 11.
∫
(Lnx)p
x
dx 12.
∫
ex
1 + e2x
dx
13.
∫
ex
1 + ex
dx 14.
∫
cosx · dx
a+ bsen x
15.
∫
arcsenx√
1− x2
dx
16.
∫
(3x− 1)dx
3x2 − 2x+ 5
17.
∫
dx
x(1 + Lnx)3
18.
∫
cos x
1 + sen 2x
dx
Cálculo Integral e Funções de Várias Variáveis 29
19.
∫
dx
x
√
1− Ln2x
20.
∫
dx√
x cos2(
√
x)
21.
∫
sen 2x
1 + cos2 x
dx
22.
∫
cos(Lnx)x
dx 23.
∫
cos x ·
√
1 + sen x · dx 24.
∫
sen x · cos x
1 + cos2 x
dx
25.
∫
cotx · dx 26.
∫
(3x2 − 6x)3(x− 1)dx 27.
∫
x · e1+x2dx
28.
∫
dx√
1 + x
29.
∫
sen x+ cos x
3 + sen 2x
dx 30.
∫
dx√
1− x2
31.
∫ √
x · dx√
a3 − x3
32.
∫
dx
(x+ 1)
√
x
33.
∫
x2√
1 + x6
· dx
34.
∫ √
a− x√
x
dx 35.
∫
x2 · dx
a6 − x6
4. Calcular as integrais dos seguintes exercícios:
1.
∫
x3
a2 − x2
dx 2.
∫
dx√
7 + 8x2
dx 3.
∫
dx
(a+ b)− (a− b)x2
0 < b < a
4.
∫
2x− 5
3x2 − 2
dx 5
∫
3x+ 1√
5x2 + 1
dx 6.
∫
x
x2 − 5
dx
7.
∫
ax+ b
a2x2 + b2
dx 8.
∫
x2
1 + x6
dx 9.
∫ √
arcsenx
1− x2
· dx
10.
∫
x
√
e
x2
dx 11.
∫
a · e−mxdx 12.
∫
(et − e−t)dt
13.
∫
(ax − bx)2
ax · bx
dx 14.
∫
x · e(x2+1)dx 15.
∫
x−
√
arctan 2x
1 + 4x2
dx
16.
∫
ex
ex − 1
dx 17.
∫
ax · dx
1 + a2x
18.
∫
3
√
( a
√
ex + 1) · a
√
exdx
19.
∫
et
1− e2t
dt 20.
∫
cos(
x√
5
)dx 21.
∫
(cos
√
x)√
x
dx
5. Resolver as seguintes integrais:
1.
∫
x− arctan 2x
1 + 4x2
dx 2.
∫
Ln(Lnx)
x · Lnx
dx 3.
∫
dx
2x + 3
4.
∫
dx√
ex − 1
5.
∫
sen x · cosx · dx√
2− sen 4x
6.
∫
dx
4 + 5sen 2x
7.
∫
dx
4 + 5 cos2 x
8.
∫
dx
ex + 4
9.
∫
Ln3x · dx
x · Ln5x
10.
∫ √
Ln(x+
√
x2 + 1)
1 + x2
dx 11.
∫ √
1 + sen xdx 12.
∫ √
1 + cos xdx
30 Pinedo. Christian & Castillo. Milagros
13.
∫
dx
e−x + ex
14.
∫
dx√√
x+ 1
15.
∫
arctan
√
x√
x+ 2x2 + x3
dx
16.
∫
(x− 2)dx
x
√
x− 1 ·
√
x2 − x+ 1
17.
∫
sen 8x · dx
9 + sen 44x
18.
∫
csc3 x · dx
19.
∫
(2ex + e−x)dx
3ex − 4e−x
20.
∫
Lnx · dx
x3(Lnx− 1)3
21.
∫
x · dx
(x− 1)5e4x
22.
∫
(1 + tanx)dx
sen 2x
23.
∫
sec3 x · dx 24.
∫
x5 · dx
x3 − 8
25.
∫
cos2 x(tan2 x+ 1)
(sen x+ cos x)2
dx 26.
∫
ex
√
ex + 2 · dx
6 + ex
27.
∫
dx
eLn(2x)
√
Lnx+
√
Lnx+
√
Lnx+ . . .+∞ − x
28.
∫
x2sen x−1(sen x+ x · cos x · Lnx)dx
29.
∫
(cos 6x+ 6 cos 4x+ 15 cos 2x+ 10)dx
cos 5x+ 5 cos 3x+ 10 cos x
6. Uma função contínua de variável real cumpre as seguintes condições : f(1) = 0 e
f ′(x) =
x+ | 1− x |
x2 + 1
. Achar f(x).
7. Ache uma equação da curva que contém o ponto (2, 3) e tem declividade m =
7x2 + 3x− 5 em todo ponto (x, y).
8. Determine a equação da curva y = f(x) cuja tangente no ponto (0, 2) é horizontal
e tenha como ponto inflexão (−1, 2
3
) e satisfaz y′′′ = 4 .
9. Determine uma função y = f(x) que cumpra
dy
dx
=
x+ 6x2
√
y
e passe pelo ponto
(2, 4).
Cálculo Integral e Funções de Várias Variáveis 31
1.3.2 Método de integração por partes
Um estudante muitas vezes se engana, pensa que a solução da integral
∫
f(x) ·g(x)dx
é da forma
∫
f(x)dx ·
∫
g(x)dx; isto é, pensa que
∫
f(x) ·g(x)dx =
∫
f(x)dx ·
∫
g(x)dx.
Para se convencer que isto está errado, por um instante suponha que f(x) = x e
g(x) = 1 e você obterá um absurdo.
Uma resposta parcial para este problema é determinada pelo que é chamado de “inte-
gração por partes”. Para entender esta técnica, lembre a fórmula de derivação:
d(u(x) · v(x))
dx
=
du(x)
dx
· v(x) + u(x) · dv(x)
dx
aplicando diferenciais resulta: u(x) · v(x) =
∫
u′(x) · v(x)dx+
∫
u(x) · v′(x)dx
Então se uma das duas integrais
∫
u′(x)v(x)dx ou
∫
u(x)v′(x)dx é fácil calcular,
podemos usar este resultado para adquirir a outra. Esta é a ideia principal de “integração
por partes”. Intuitivamente explicarei esta técnica.
1) Escreva a integral a calcular: I =
∫
f(x)·g(x)dx onde você identifica as duas funções
f(x) e g(x). Note que somente uma função estará determinada (por exemplo
suponha f(x)), então fixe a segunda a ser determinada (neste caso sería g(x)).
2) Introduza as funções intermediárias u(x) e v(x) na forma u = f(x) e dv = g(x)dx.
Então precisamos da derivada de f(x) e de integrar g(x)dx para obter: du = f ′(x)dx
e v =
∫
g(x)dx . Note que neste passo, você tem a escolha se diferenciar f(x) ou
g(x).
3) Use a fórmula
∫
u(x)v′(x)dx = u(x) · v(x) −
∫
v(x)u′(x)dx
4) Temos que calcular a nova integral
∫
v(x)u′(x)dx
O primeiro problema que a pessoa enfrenta lidando com esta técnica é a escolha a ser
utilizada no passo 2); não há nenhuma regra geral para seguir; na verdade é uma questão
de experiência. Observe o seguinte exemplo:
Exemplo 1.44.
Calcular I =
∫
Lnx · dx
Solução.
Podemos supor u = Lnx e dv = dx, então du =
1
x
dx e v =
∫
1 · dx = x, logo
I =
∫
Lnx · dx = x · Lnx−
∫
1
x
dx = x · Lnx− x+ C.
32 Pinedo. Christian & Castillo. Milagros
Portanto, I =
∫
Lnx · dx = x · Lnx− x+ C. �
Formalmente; sejam u e v duas funções de variável x definidas e deriváveis num
intervalo da reta R, pela regra do diferencial de um produto temos: d(u·v) = u·dv+v ·du
logo, u · dv = u · v − v · du; integrando esta última expressão resulta:∫
u(x) · dv(x) = u(x) · v(x) −
∫
v(x) · du(x)
Esta fórmula é conhecida como “fórmula de integração por partes”. Na prática, esta
fórmula é bastante útil e consiste em expressar o elemento de integração como o produto
de dois fatores; de uma função u = u(x) e do diferencial de uma função v = v(x) denotado
por dv, de modo que determina-se a função v do diferencial dv, e o cálculo da nova integral∫
v · du constituem em conjunto um problema simples que o cálculo da integral
∫
u · dv;
esta fórmula pode ser utilizada mais de uma vez na solução de uma integral.
Para decompor o elemento de integração dado em dois fatores u e dv, normal-
mente trabalhamos com nossa função u = u(x) como aquela que simplifica-se com a
derivação; por exemplo, nas integrais que aparecem alguma destas funções xn (n ∈
N), Lnx, arcsenx, arcsenhx; etc., considera-as como u(x). Isto não é regra geral, na
prática a habilidade e a experiência de quem calcula é a melhor ferramenta.
Observação 1.5.
• Quando determinamos a função v do diferencial dv, não é necessário consi-
derar a constante de integração C, se em vez da função v considera-se v +C
onde C é constante, então:∫
u · dv = u · (v + C) −
∫
(v + C) · du = u · v −
∫
v · du
Logo, não é necessário considerar essa constante C.
Exemplo 1.45.
Calcular I =
∫
(x2 + 3x− 1)e2xdx
Solução.
Seja u = x2 + 3x− 1 e dv = e2xdx, então du = (2x+ 3)dx e v = e2x, logo
I =
∫
(x2 + 3x− 1)e2xdx = (x2 + 3x− 1)e2x − 1
2
∫
e2x(2x+ 3)dx (1.3)
Considere-se em (1.3) a integral J =
∫
e2x(2x + 3)dx, u = 2x + 3 e dv = e2xdx,
Cálculo Integral e Funções de Várias Variáveis 33
então du = 2dx e v = 1
2
e2x, assim, J =
1
2
e2x(2x + 3) −
∫
e2xdx =
1
2
e2x(2x + 3) =
1
2
e2x(2x+ 3)− 1
2
e2x =
1
2
e2x(2x+ 2) = e2x(x+ 1).
Em (1.3) temos I =
1
2
(x2 + 3x− 1)e2x − 1
2
e2x(x+ 1) + C.
Portanto, I =
∫
(x2 + 3x− 1)e2xdx = 1
2
e2x(x2 + 2x+ 1) + C.
Exemplo 1.46.
Calcular I =
∫
x · Lnx · dx
Solução.
Considere-se u = Lnx e dv = x.dx; então du =
1
x
dx e v =
x2
2
; logo I =
x2
2
Lnx −∫
1
x
· x
2
2
· dx = x
2
2
Lnx− 1
2
∫
x · dx = 1
2
[x2Lnx− x
2
2
] + C.
Portanto, I =
1
2
[x2Lnx− x
2
2
] + C.
Exemplo 1.47.
Calcular I =
∫
x2 · ex · dx
Solução.
Seja u = x2 e dv = ex · dx; então du = 2xdx e v = ex; logo I =
∫
x2 · ex · dx =
x2 · ex − 2
∫
x · ex · dx. Conseguimos diminuir o grau do polinômio de x em uma unidade.
Para calcular J =
∫
x·ex·dx aplicamos, mais uma vez integração por partes. Considere-se
u = x e dv = exdx, então du = dx e v = ex; logo J = x · ex −
∫
ex · dx = x · ex − ex.
Portanto, temos I =
∫
x2 · ex · dx = ex[x2 − 2x+ 2] + C.
Observação 1.6.
Suponha que temos uma integral da forma
∫
u · dv.
a) Para as integrais do tipo
∫
P (x)eaxdx,
∫
P (x)sen ax · dx,
∫
P (x) cos ax · dx
onde P (x) é um polinômio, recomenda-se considerar u = P (x) e dv = ?
como uma das expressões eaxdx, sen (ax)dx ou cos(ax)dx respectivamente.
b) Para as integrais do tipo
∫
P (x)Lnx · dx,
∫
P (x)arcsen(ax) ·
dx,
∫
P (x) arccos(ax) · dx recomenda-se considerar a função u como
uma das funções Lnx, arcsenx ou arccosx e dv = P (x)dx.
34 Pinedo. Christian & Castillo. Milagros
Exemplo 1.48.
Calcular I =
∫
x · sen 2x · dx
Solução.
Seja u = x e dv = sen 2x · dx então du = dx e v =
∫
sen 2x · dx =
∫
1− cos 2x
2
dx =
x
2
− sen 2x
4
; logo I =
∫
x · sen 2x · dx = x[x
2
− sen 2x
4
] − [
∫
x
2
− sen 2x
4
dx] =
x
4
[2x −
sen 2x]− x
2
4
− cos 2x8
=
1
8
[2x2 − x · sen 2x+ cos 2x] + C.
Portanto, I =
∫
x · sen 2x · dx = 1
8
[2x2 − x · sen 2x+ cos 2x] + C.
Exemplo 1.49.
Calcular I =
∫
x · sen x · dx
Solução.
Se u = x e dv = senx · dx, então du = dx e v = − cosx; logo I =
∫
x · sen x · dx =
−x · cos x+
∫
cosx · dx := −x · cos x+ sen x+ C.
Portanto, I =
∫
x · sen x · dx = − x · cos x+ sen x+ C.
Suponha a solução de outro modo, se escolhemos u = sen x e dv = x · dx então
du = cos x · dx e v = 1
2
x2 e
I =
∫
x · sen x · dx = 1
2
x2sen x− 1
2
∫
x2 cos x · dx
de onde teríamos a resolver uma integral mais complexa que a inicial, pois o grau de x
haveria sido aumentado em uma unidade.
Exemplo 1.50.
Calcular I =
∫
exsen x · dx
Solução.
Considere-se u = ex e dv = sen x · dx; então du = exdx e v = − cosx; logo
I =
∫
exsen x · dx = − ex cos x−
∫
ex(− cos x)dx = ex +
∫
ex · cosx · dx (1.4)
Observe em (1.4) que, J =
∫
exsen x · dx também é uma integral por partes; seja
u = ex e dv = cosx · dx, então u = ex e v = sen x. Assim a integral J =
∫
ex cosx · dx =
exsen x−
∫
exsen x · dx = exsen x− I
Cálculo Integral e Funções de Várias Variáveis 35
Em (1.4) temos que I =
∫
exsen x · dx = − ex cos x+ J = − ex cosx+ exsen x− I,
logo 2I = ex(senx− cosx).
Portanto, I =
∫
exsen x · dx = 1
2
ex(sen x− cos x) + C.
Exemplo 1.51.
Discuta a aplicação da fórmula de integração por partes na solução da seguinte integral:
Seja I =
∫
1
x
· dx, considere u = 1
x
e dv = dx, logo du = − 1
x2
dx e v = x, assim
I =
∫
1
x
· dx = 1
x
· x −
∫
x · (− 1
x2
) · dx = 1 +
∫
1
x
· dx = 1 + I
então I = 1 + I.
Portanto, 0 = 1 !
Exemplo 1.52.
Deduzir a fórmula de recorrência para a integral In =
∫
dx
(x2 + a2)n
Solução.
Observe que: In =
∫
dx
(x2 + a2)n
=
1
a2
∫
(a2 + x2 − x2)dx
(x2 + a2)n
=
=
1
a2
∫
dx
(x2 + a2)n−1
− 1
a2
∫
x2 · dx
(x2 + a2)n
=
1
a2
In−1 −
1
a2
J
isto é:
In =
∫
dx
(x2 + a2)n
=
1
a2
In−1 −
1
a2
J (1.5)
onde J =
∫
x2 · dx
(x2 + a2)n
=
∫
x · x · dx
(x2 + a2)n
Seja u = x e dv =
x · dx
(x2 + a2)n
então du = dx e v = − 1
2(n− 1)(x2 + a2)n−1
logo
J = − x
2(n− 1)(x2 + a2)n−1
+
1
2(n− 1)
∫
dx
(x2 + a2)n−1
Em (1.5), In =
1
a2
In−1 −
1
a2
[
− x
2(n− 1)(x2 + a2)n−1
+
1
2(n− 1)
∫
dx
(x2 + a2)n−1
]
=
In =
1
a2
In−1 −
1
a2
[− x
2(n− 1)(x2 + a2)n−1
+
1
2(n− 1)
In−1] =
=
x
2a2(n− 1)(x2 + a2)n−1
+
2n− 3
a2(2n− 2)
In−1
36 Pinedo. Christian & Castillo. Milagros
Portanto, In =
x
2a2(n− 1)(x2 + a2)n−1
+
2n− 3
a2(2n− 2)
In−1
Quando n = 2 obtemos a integral I2 por meio de funções elementares. Quando n = 3
conseguimos a integral I3 que depende da integral já calculada I2. Em geral, podemos
calcular In para qualquer n ∈ N.
Exemplo 1.53.
Suponha que a integral
∫
e2x cos 2x · dx = 1
4
e2x(cos 2x+ sen 2x).
Determine a integral I =
∫
e2x cos2 x · dx.
Solução.
Considere-se a integral J =
∫
e2xsen 2x · dx, então temos que:
I + J =
∫
e2x cos2 x · dx+
∫
e2xsen 2x · dx =
I + J =
∫
e2x · dx = 1
2
e2x. (1.6)
Por outro lado, pelas condições do problema temos que:
I − J =
∫
e2x cos2 x · dx−
∫
e2xsen 2x · dx =
∫
e2x cos 2x · dx =
I − J = 1
4
e2x(cos 2x+ sen 2x) (1.7)
De (1.6)) e (1.7) segue que
I =
∫
e2x cos2 x · dx = 1
8
e2x(2 + cos 2x+ sen 2x)
Exemplo 1.54.
Determine se a seguinte igualdade é verdadeira:∫
dx√
2x+ 1−
√
x
= 2(
√
2x+ 1 +
√
x)− 2[arctan
√
2x+ 1 + arctan
√
x] + C
Solução.
Não entanto estamos aprendendo a integrar, o melhor método é derivar a parta à
direita da igualdade. Sendo a derivada de uma soma de funções igual à soma de suas
Cálculo Integral e Funções de Várias Variáveis 37
derivadas:
f1(x) =
√
2x+ 1 +
√
x ⇒ f ′1(x) =
2
2
√
2x+ 1
+
1
2
√
x
=
2
√
x+
√
2x+ 1
2
√
x
√
2x+ 1
f2(x) = arctan
√
2x+ 1 ⇒ f ′2(x) =
1
(
√
2x+ 1)2 + 1
· 2
2
√
2x+ 1
=
=
1
2(x+ 1)
√
2x+ 1
f3(x) = arctan
√
x ⇒ f ′3(x) =
1
(
√
x)2 + 1
· 1
2
√
x
=
1
2(x+ 1)
√
x
Logo, se
F (x) = 2(
√
2x+ 1 +
√
x)− 2[arctan
√
2x+ 1 + arctan
√
x] + C
sua derivada é:
F ′(x) = 2(
2
√
x+
√
2x+ 1
2
√
x
√
2x+ 1
)− 2
[
1
2(x+ 1)
√
2x+ 1
+
1
2(x+ 1)
√
x
]
Assim, F ′(x) =
2
√
x+
√
2x+ 1
√
x
√
2x+ 1
− 1
(x+ 1)
[√
x+
√
2x+ 1
√
x
√
2x+ 1
]
⇒
F ′(x) =
1
√
x
√
2x+ 1(
√
x−
√
2x+ 1)
[
(2
√
x+
√
2x+ 1)(
√
x−
√
2x+ 1) + 1
]
F ′(x) =
√
x+
√
2x+ 1
√
x
√
2x+ 1
[
1− 1
x+ 1
]
=
√
x+
√
2x+ 1
√
x
√
2x+ 1
· x
x+ 1
De onde:
F ′(x) =
1√
2x+ 1−
√
x
Portanto, a igualdade∫
dx√
2x+ 1−
√
x
= 2(
√
2x+ 1 +
√
x)− 2[arctan
√
2x+ 1 + arctan
√
x] + C
é verdadeira.
Exemplo 1.55.
Suponha n ̸= 1 , deduzir a fórmula de recorrência para a integral
In =
∫
(a+ bxp)n · dx
38 Pinedo. Christian & Castillo. Milagros
logo mostre que satisfaz
(np+ 1)In = x(a+ bx
p)n + anp · In−1
Solução.
Sejam u = (a+ bxp)n e dv = dx, então
du = nbpxp−1(a+ bxp)n−1dx, v = x
logo integrando por partes
In = x(a+bx
p)n−
∫
[nbpxp(a+bxp)n−1]dx = x(a+bxp)n−np
∫
[(a+bxp−a)(a+bxp)n−1]dx
In = x(a+ bx
p)n − np
∫
(a+ bxp)ndx+ npa
∫
(a+ bxp)n−1dx
Assim, a fórmula de recorrência procurada é
In = x(a+ bx
p)n − np
∫
(a+ bxp)ndx+ npaIn−1
Por outro lado, da fórmula de recorrência segue
(1 + np)In = x(a+ bx
p)n + npaIn−1
Portanto, (1 + np)In = x(a+ bxp)n + anp · In−1.
Cálculo Integral e Funções de Várias Variáveis 39
Exercícios 1-3
1. Mediante integração por partes, resolver as seguintes integrais indefinidas:
1.
∫
Lnx · dx 2.
∫
x2Lnx · dx 3.
∫
xpLnx · dx
4.
∫
Lnx
x3
dx 5.
∫
Ln(Lnx)
x
dx 6.
∫
Ln(x+
√
1 + x2)dx
7.
∫
x · Ln(x− 1
x+ 1
)dx 8.
∫
e−x cos2 x · dx 9.
∫
x · cosx
sen 2x
dx
10.
∫
x · sen x · dx 11.
∫
x · cos x · dx 12.
∫
sen (Lnx)dx
13.
∫
x · eaxdx 14.
∫
x · 2−xdx 15.
∫
x · sen x · cos x · dx
16.
∫
arcsenx · dx 17.
∫
arctanx · dx 18.
∫
coshx · senhx · dx
19.
∫
arcsenhx · dx 20.
∫
x2 arctanx · dx 21.
∫
x · arctanx · dx
22.
∫
e
√
xdx 23.
∫
x(arctanx)2dx 24.
∫
(x2 − 2x+ 5) · e−xdx
25.
∫ √
a2 − x2dx 26.
∫
arcsenx
x2
dx 27.
∫
cosx · Ln(1 + cos x) · dx
28.
∫
x · dx
cos2 x
29.
∫
x · tan2 x · dx 30.
∫
(x3 + 5x2 − 2)e2xdx
31.
∫ √
x2 + a2 · dx 32.
∫ √
x2 − a2dx 33.
∫ √
x2 + 2x+ 5 · dx
34.
∫ √
x(3x− 2)dx 35.
∫
x · sen (ax) · dx 36
∫
x2Ln(x6 − 1)dx
37.
∫
x2 · e2x · dx 38.
∫
x · cosh(x
2
) · dx 39.
∫
ex · cos2 x · dx
40.
∫
3x · cos x · dx 41.
∫
x2 · e−xdx 42.
∫
eax cos bx · dx
43.
∫
e2xsen 2x · dx 44.
∫
earcsenx · dx 45.
∫
senhx · cos x · dx
46.
∫
x2 · e3x · dx 47.
∫
x3 · e−
x
3 · dx 48.
∫
Lnx√
x
· dx
49.
∫
ex · sen x · dx 50.
∫
x · arcsenx · dx 51.
∫
(x2 + 5x+ 6) cos 2x · dx
52.
∫
(arcsenx)2dx 53.
∫
arcsen
√
x√
1− x
· dx 54.
∫
Ln2x · dx
40 Pinedo. Christian & Castillo. Milagros
55.
∫
x3 · e−x2 · dx 56.
∫
Ln2x
x2
· dx 57.
∫
(x2 − 2x+ 3)Lnx · dx
58.
∫
sen 2x
ex
· dx 59.
∫
x · arctanx · dx 60.
∫
x2 · dx√
9− x2
61.
∫
x · dx
sen 2x
62.
∫
x2 · arctan 3x · dx
2. Se P (x) é um polinômio em x, e P ′, P”, P”′, . . . indicam as derivadas, mostre que:
1.
∫
P (x)eaxdx =
eax
a
(1− P
′
a
+
P ′′
a2
− P
′′′
a3
+ . . .)
2.
∫
P (x) cos(ax)dx =
sen (ax)
a
(1− P
′′
a2
+
P (4)
a4
− P
(6)
a6
+ . . .) +
+
cos(ax)
a
(
P ′
a
− P
′′′
a3
+
P (5)
a5
− . . .)
3. Suponha m ̸= 1 e n ̸= 1 deduzir a fórmula de recorrência para cada uma das
integrais:
1. In =
∫
xn · eax · dx satisfaz In =
1
a
· xn · eax − n
a
· In−1.
2. In =
∫
(Lnx)n · dx satisfaz In = x · (Lnx)n − n · In−1.
3. Imn =
∫
xm · (Lnx)n · dx satisfaz Imn =
xm+1
1 +m
· (Lnx)n − n
m+ 1
· Im−1n
4. In =
∫
ex
xn
· dx satisfaz In = −
ex
(n− 1)xn−1
+
1
n− 1
· In−1
4. Determine
∫
sen 4x · dx de dois modos diferentes: primeiro, utilizando a fórmula de
redução e logo utilizando a fórmula do sen 2x.
5. Combinem-se as duas soluções do exercício anterior para obter uma identidade im-
pressionante.
6. Expressar
∫
Ln(Lnx) · dx em função de,
∫
dx
Ln
(as duas integrais não são
possíveis de expressar como combinação de funções elementares)
7. Mostre que a fórmula
∫
2g(x)f ′(x)− f(x)g′(x)
2[
√
g(x)]3
dx =
f(x)√
g(x)
+ C é válida.
Cálculo Integral e Funções de Várias Variáveis 41
1.3.3 Integração de funções trigonométricase hiperbólicas
Mostramos no “Cálculo Diferencial em R” que as seguintes identidades são verdadeiras:
1) cos2 x+ sen 2x = 1 2) cosh2 x− senh2x = 1
3) sec2 x− tan2 x = 1 4) sech2x+ tanh2 x = 1
5) csc2 x− cot2 x = 1 6) coth2 x− csch2x = 1
7) sen 2x =
1− cos 2x
2
8) senh2x =
cosh 2x− 1
2
9) cos2 x =
1 + cos 2x
2
10) coshx =
cosh 2x+ 1
2
Apresentamos integrais e diversos tipos que envolvem funções trigonométricas e hiper-
bólicas.
1.3.3.1 Integrais do tipo:
∫
sen mx cosn x dx e
∫
senhmx coshn x dx
Aqui consideramos os seguintes casos para m e n inteiros:
Caso 1. a) Se m é ímpar positivo, então escreva sen m−1x em função de cos x e considere
a substituição cos x = t. De modo análogo para o caso da função hiperbólica;
utilizando a identidade sen 2x = 1− cos2 x (ou cosh2 x+ 1 = senh2x).
b) Se n é ímpar positivo, então escreva cosn−1 x em função de sen x e considere
a substituição sen x = t . De modo análogo para o caso da função hiperbólica;
utilizando a identidade cos2 x = 1− sen 2x (ou senh2x = cosh2 x+ 1).
Caso 2. Quando ambos os expoentes m e n são pares não negativos, recomenda-se usar
umas das identidades: sen 2x =
1− cos 2x
2
(ou senh2x =
cosh 2x− 1
2
) ou cos2 x =
cos 2x+ 1
2
(ou cosh2 x =
cosh2x+ 1
2
) . Se m+ n = −2k onde k ∈ N é conveniente
usar t = tanx ou t = cotx
Caso 3. Em geral se m e n são inteiros, calculamos a integral com ajuda das fórmulas
de recorrência, as que se deduzem mediante integração por partes.
42 Pinedo. Christian & Castillo. Milagros
Observação 1.7.
Temos a seguinte fórmula de recorrência:
I2k+1 =
∫
dx
cos2k+1 x
=
∫
sen 2x+ cos2 x
cos2k+1 x
dx =
∫
sen 2x
cos2k+1 x
dx+
+
∫
dx
cos2k−1 x
dx =
∫
sen x · sen x
cos2k+1 x
· dx + I2k−1.
Suponhamos que, u = sen x e dv =
sen x
cos2k+1 x
dx , então du = cos x.dx e v =
1
2k. cos2k x
e mediante a integração por partes obtemos:
I2k+1 =
sen x
2k. cos2k x
− 1
2k
∫
dx
cos2k−1 x
dx + I2k−1 =
sen x
2k. cos2k x
+ (1− 1
2k
)I2k−1
Exemplo 1.56.
Calcular as integrais:
a) I =
∫
sen 3x · cos4 x · dx b) J =
∫
senh5x ·
√
coshxdx
Solução. a)
Temos que I =
∫
sen 3x·cos4 x·dx =
∫
sen 2x·cos4 x·sen x·dx, sendo sen 2x = 1−cos2 x
então I =
∫
(1 − cos2 x) cos4 x · sen x · dx como cos x = t e d(cosx) = − dt; na integral
original I =
∫
(t6 − t4)dt = 1
7
t7 − 1
5
t5 + C.
Portanto I =
∫
sen 3x · cos4 x · dx = 1
7
cos7 x− 1
5
cos5 x+ C.
Solução. b)
Seja coshx = t, então dt = senhx.dx, logo temos
J =
∫
senh5x ·
√
coshx · dx =
∫
senh4x
√
coshx · senhx · dx =
=
∫
(t2 − 1)2
√
t · dt =
∫
(
√
t9 − 2
√
t5 +
√
t)dt =
2
11
√
t11 − 4
7
√
t7 +
2
3
√
t3 + C
Portanto, J =
2
11
√
cosh11 x− 4
7
√
cosh7 x+
2
3
√
cosh3 x+ C.
Exemplo 1.57.
Calcular as integrais:
a) I =
∫
sen 2x · cos4 x · dx b) J =
∫
senh4x · dx
Cálculo Integral e Funções de Várias Variáveis 43
Solução. a)
Temos que a integral I =
∫
sen 2x · cos4 x · dx =
∫
[
1− cos 2x
2
][
1 + cos 2x
2
]2 · dx,
efetuando operações resulta I =
1
8
∫
(1 + cos 2x− cos2 2x− cos3 2x)dx .
A integral
∫
cos2 2x · dx = 1
2
∫
(1 + cos 4x)dx =
1
2
x+
1
8
sen 4x.
Por outro lado, a integral∫
cos3 2x ·dx =
∫
cos2 2x ·cos 2x ·dx =
∫
(1− sen 22x) ·cos 2x ·dx = 1
2
sen 2x− 1
6
sen 32x
Assim, I =
1
8
[x+
1
8
sen 2x− 1
2
x− 1
8
sen 4x− 1
2
sen 2x+
1
6
sen 32x].
Portanto, I =
∫
sen 2x · cos4 x · dx = 1
16
[x− 1
4
sen 4x+
1
3
sen 32x] + C
Observe que esta integral podemos resolver mediante a identidade 2sen x. cosx =
sen 2x.
I =
∫
sen 2x · cos4 x · dx = 1
4
∫
sen 22x · cos2 x · dx =
=
1
8
∫
sen 22x · (1 + cos 2x)dx = 1
8
∫
sen 22x · dx + 1
48
sen 32x
A integral
1
8
∫
sen 22x · dx = 1
16
∫
(1− cos 4x)dx = 1
16
[x− sen 4x
4
].
Portanto, I =
1
16
[
x− sen 4x
4
+
sen 32x
3
]
+ C.
Solução. b)
Mediante a identidade recomendada, temos que:
J =
∫
senh4x · dx =
∫
(
cosh 2x− 1
2
)2dx =
1
4
∫
(cosh2 x− 2 cosh 2x+ 1)dx =
=
1
4
∫
(
cosh 4x+ 1
2
− 2 cosh 2x+ 1)dx =
=
1
8
∫
(cosh 4x− 4 cosh 2x+ 3)dx = 1
8
[
senh4x
4
− 2senh2x+ 3x] + C
Portanto, J =
1
32
[senh4x− 8senh2x+ 12x] + C.
Exemplo 1.58.
Calcular as integrais:
a) I =
∫ 3√sen x
3
√
cos13 x
· dx b) J =
∫ dx
cos3 x
Solução. a)
44 Pinedo. Christian & Castillo. Milagros
Observe que
1
3
− 13
3
= −4, para o cálculo da integral a transformamos em função da
tangente.
Logo I =
∫
3
√
sen x
3
√
cos13 x
· dx =
∫
3
√
tanx · dx
cos4 x
=
=
∫
3
√
tanx(1 + tan2 x) sec2 x · dx = 3
4
3
√
tan4 x+
3
10
3
√
tan10 x+ C
Solução. b)
Mediante a fórmula da Observação (1.7), temos que k = 1; logo
J =
∫
dx
cos3 x
= I3 =
sen x
2 cos2 x
+
1
2
∫
dx
cos x
=
sen x
2 cos2 x
+
1
2
Ln(tanx+ sec x) + C
Portanto, J =
sen x
2 cos2 x
+
1
2
Ln(tanx+ sec x) + C.
1.3.3.2 Integrais do tipo:
∫
tanm x secn x.dx e
∫
cotm x cscn x.dx
Também estes métodos são válidos para as integrais do tipo∫
tanhm x.sechnx.dx ou
∫
cothm x.cschnx.dx
Quando m é ímpar e n par, ambos positivos devemos utilizamos uma das seguintes
identidades: sec2 x − tan2 x = 1 ou sech2x + tanh2 x = 1 ou csc2 x − cot2 x = 1 ou
coth2 x− csch2x = 1.
Caso 1. Se m é ímpar positivo, na integral, isole o fator tanx. sec x.dx ou cotx. cscx.dx
ou tanh x.sechx.dx ou cothx.cschx.dx, e. O resto dos fatores expressar em função
de secx ou csc x, ou sechx, ou cschx respectivamente.
Caso 2. Se n é um inteiro par positivo, na integral, isole o fator sec2 x ou csc2 x ou sech2x
ou csch2x, e o resto dos fatores escreva em função de tanx ou cotx ou tanhx ou
coth x respectivamente.
Caso 3. Para os casos m e n negativos é melhor trabalhar com senos e cossenos.
Exemplo 1.59.
Calcular as integrais:
a) I =
∫
tan3 x
sec4 x
· dx b) J =
∫
tanh3 x ·
√
sechx · dx
Solução. a)
Cálculo Integral e Funções de Várias Variáveis 45
Observe que:
I =
∫
tan3 x
sec4 x
· dx =
∫
tan2 x
sec5 x
· tanx · sec ·dx =
∫
(sec2 x− 1)
sec5 x
· tanx · sec x · dx
a mudança sec x = t permite escrever secx · tanx · dx = dt.
Logo I =
∫
(t2 − 1)
t5
dt = −1
2
t−2 +
1
4
t−4 + C = −1
2
sec−2 x+
1
4
sec−4 x+ C.
Portanto I =
1
4
cos2 x(cos2 x− 2) + C
Solução. b)
Pelo Caso 1., temos que J =
∫
tanh3 x ·
√
sechx ·dx =
∫
tanh3 x√
sechx
· tanhx · sechx ·dx =∫
(1− sech2x)√
sechx
· tanhx · sechx · dx.
Fazendo t = sechx resulta dt = −sechx · tanhx · dx. Logo J = −
∫
(
√
t−1 −
√
t3)dt =
−[2
√
t− 2
5
√
t5] + C =
2
5
[
√
sech5x− 5
√
sechx] + C =
2
5
√
sechx[sechx− 5] + C
Portanto, J =
2
5
√
sechx [sechx− 5] + C.
Exemplo 1.60.
Calcular as integrais:
a) I =
∫
csch6x · dx b) J =
∫
sec4 x ·
√
tan3 x · dx
Solução. a)
Seja cothx = t, então dt = −csch2x · dx e, a integral
I =
∫
csch6x · dx =
∫
csch4x · csch2 · dx =
∫
(coth2 x− 1)2 · csch2x · dx =
=
∫
(coth4 x− 2 coth2 x+ 1) · csch2x · dx = −
∫
(t4 − 2t2 + 1)dt =
− [1
5
coth5 x− coth3 x+ coth x] + C
Portanto, I = −1
5
coth5 x+ coth3 x− coth x+ C.
Solução. b)
J =
∫
sec4 x ·
√
tan3 x · dx =
∫
sec2 x ·
√
tan3 x · sec2 x · dx =
46 Pinedo. Christian & Castillo. Milagros
=
∫
(1 + tan2 x) ·
√
tan3 x · sec2 x · dx
considere t = tan x, então dt = sec2 x · dx, logo J =
∫
(
√
t3+
√
t7)dt =
2
5
√
t5+
2
9
√
t9+C.
Portanto, J =
2
5
√
tan5 x+
2
9
√
tan9 x+ C.
1.3.3.3 Integrais do tipo:
∫
sec2n+1 x dx e
∫
csc2n+1 x dx
Estas integrais de potências positivas ímpares da secante e cossecante, determinamos
mediante as fórmulas recorrentes:∫
sec2n+1 x · dx = sen x
2n · cos2n x
+ (1− 1
2n
)
∫
sec2n−1 x · dx
∫
csc2n+1 x · dx = − cosx
2n · sen 2nx
+ (1− 1
2n
)
∫
csc2n−1 x · dx
Exemplo 1.61.
Calcular a integral: I =
∫
csc5 x · dx
Solução.
Observe que se 2n+ 1 = 5, logo n = 2, então
I =
∫
csc5 x · dx =
∫
csc2(2)+1 x · dx = − cos x
2(2) · sen 2(2)x
+ (1− 1
2(2)
)
∫
csc2(2)−1 x · dx
isto é
I = − cos x
4sen 4x
+
3
4
∫
csc3 x · dx
Aplicando novamente a fórmula à integral J =
∫
csc3 x · dx observe que aqui n = 1 e
temos:
J = − cos x
2sen 2x
+ (1− 1
2
)
∫
cscx · dx = − cos x
2sen 2x
+
1
2
Ln[tan(
x
2
)]
Assim, I = − cos x
4sen 4x
+
3
4
[
− cos x
2sen 2x
+
1
2
Ln[tan(
x
2
)]
]
Portanto,

Continue navegando