Buscar

Analise matemática

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 17 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 17 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 17 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Questão 1/5 - Análise Matemática
“Em vários problemas da Matemática e das duas aplicações busca-se uma função que cumpra certas condições dadas. É frequente, nestes casos, obter-se uma sequência de funções cada uma das quais cumpre as condições exigidas apenas aproximadamente, porém com aproximações cada vez melhores.” 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
LIMA, E.L. Análise Real. 4. ed. Rio de Janeiro: IMPA, 1999. p. 151.
De acordo com os conteúdos do livro-base Análise Matemática, assinale a alternativa correta.
Nota: 20.0
	
	A
	Na convergência simples o valor de NN encontrado não depende de nenhum valor atribuído.
	
	B
	A sequência de Cauchy está relacionada é um exemplo de convergência simples.
	
	C
	Na convergência uniforme o valor de N a ser encontrado deve depender apenas do valor de ε.
Você acertou!
Consequência da definição da convergência uniforme em contraposição à convergência simples onde NN depende dos valores dados para εε e xx. (livro-base p.167-168)
	
	D
	Geometricamente qualquer sequência de funções fnfn converge de forma simples para outras funções sendo dependente de εε e xx.
	
	E
	Seja (fn)(fn) uma sequência de funções com fn:[a,b]→Rfn:[a,b]→R que converge uniformemente para uma função f:[a,b]→Rf:[a,b]→R. Se cada função fnfn é integrável então ff não tem primitiva.
Questão 2/5 - Análise Matemática
Considere o seguinte trecho de texto a seguir:
“Diz-se que a∈Ra∈R é um ponto de acumulação do conjunto X⊂RX⊂R quando toda vizinhança VV de aa contém algum ponto de XX diferente do próprio aa.”
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p. 52. 
De acordo com os conteúdos do livro-base Análise Matemática , assinale a alternativa correta.
Nota: 20.0
	
	A
	Dado um conjunto X⊂RX⊂R, um ponto x∈Xx∈X é um ponto interior de XX quanto existe ε>0ε>0 tal que o intervalo (x−ε,x+ε)(x−ε,x+ε) sempre tem pontos interiores e exteriores a XX.
	
	B
	Se X=(a,b)={x∈R:aX=(a,b)={x∈R:a, então XX é um conjunto aberto.
Você acertou!
De fato, demonstramos que XX é aberto demonstrando que X0=(a,b)=XX0=(a,b)=X, ou seja, o conjunto XX será aberto quando todos os seus pontos forem interiores a ele. (Livro base-p.87)
	
	C
	Um conjunto XX será fechado se o seu complementar Xc=R−XXc=R−X também for fechado.
	
	D
	Uma vizinhança V(x)V(x) de um ponto x∈Xx∈X é qualquer número que está na fronteira de XX.
	
	E
	Um ponto xx é chamado de ponto de acumulação de um conjunto X⊂RX⊂R quando qualquer vizinhança V(x)V(x) contém somente pontos interiores de XX.
Questão 3/5 - Análise Matemática
Leia o seguinte fragmento de texto: 
“Historicamente os inteiros negativos não foram os primeiros números a surgir dos naturais – as frações positivas vieram antes. Nem foram introduzidos de maneira estruturada e com bom acabamento matemático. Muito pelo contrário. Simplesmente surgiram”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: DOMINGUES, H. H.; IEZZI, G. Álgebra Moderna, 4. ed. reform. São Paulo: Atual, 2003. p. 29.
De acordo com os conteúdos do livro-base Análise Matemática a respeito dos números racionais, assinale a alternativa correta.
Nota: 20.0
	
	A
	O conjunto dos números racionais, com as operações de adição e multiplicação usuais, é um corpo ordenado completo.
	
	B
	Existe uma bijeção entre o conjunto Nn= {1,2,...,n}  e o conjunto Q para algum nϵNnϵN.
	
	C
	Os cortes de Dedekind são subconjuntos do conjunto de números racionais.
Você acertou!
	
	D
	O conjunto dos números racionais não é enumerável.
	
	E
	O número que satisfaz a equação  X2 = 2 é racional.
Questão 4/5 - Análise Matemática
“O conceito de relação de equivalência é relevante para todos os ramos da Matemática. Em linhas gerais, tal conceito surge como uma forma de generalizar a relação de igualdade, no sentido de que, elementos de um dado conjunto, mesmo distintos, cumprem papel equivalente”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: VIEIRA, V. L. Álgebra Abstrata para Licenciatura. Campina Grande: EDUEPB, 2013. p. 18. 
Considere o conjunto A={1,2,3,4}A={1,2,3,4}
De acordo com os conteúdos do livro-base Análise Matemática referentes à relações entre conjunto assinale a única alternativa que contém uma relação de equivalência do conjunto dado:
 
Nota: 20.0
	
	A
	R={(1,2),(2,1),(1,1),(2,2),(3,3),(4,4)}.R={(1,2),(2,1),(1,1),(2,2),(3,3),(4,4)}.
Você acertou!
Essa relação é reflexiva, pois (x,x)∈R,∀x∈A(x,x)∈R,∀x∈A. É simétrica pois para cada par (x,y)(x,y) que pertence à RR o seu simétrico (y,x)(y,x) também pertence à RR. E essa relação é transitiva pois se os pares (x,y)(x,y) e (y,z)(y,z), então, o par (x,z)(x,z) também pertence à RR (livro-base, capítulo 1).
	
	B
	R={(2,3),(4,1),(1,1),(2,2),(3,3),(4,4)}R={(2,3),(4,1),(1,1),(2,2),(3,3),(4,4)}
	
	C
	R={(2,1),(3,1)}R={(2,1),(3,1)}
	
	D
	R={(2,1),(2,3),(2,4),(1,1),(2,2),(3,3),(4,4)}R={(2,1),(2,3),(2,4),(1,1),(2,2),(3,3),(4,4)}
	
	E
	R={(1,2),(1,3),(1,4),(1,1),(2,2),(3,3),(4,4)}R={(1,2),(1,3),(1,4),(1,1),(2,2),(3,3),(4,4)}
Questão 5/5 - Análise Matemática
Considere o seguinte trecho de texto a seguir:
“A soma de uma série é o limite da sequência de somas parciais. Deste modo, quando escrevemos ∑∞n=1an=s∑n=1∞an=s, queremos dizer que, somando um número suficientes de termos da série, podemos chegar tão perto quanto quisermos do número ss. Observe que ∑∞n=1an=limn→∞∑ni=1ai∑n=1∞an=limn→∞∑i=1nai”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: 
STEWART, J. Cálculo. 6. ed. São Paulo: Cengage Learning , v. 2. 2011. p. 653.
De acordo com os conteúdos do livro-base Análise Matemática referentes à séries numéricas, assinale a alternativa que contém apenas séries convergentes.
Nota: 20.0
	
	A
	∑∞n=11n∑n=1∞1n, ∑∞n=11n2∑n=1∞1n2, ∑∞n=1n∑n=1∞n
	
	B
	
∑∞n=11n2∑n=1∞1n2, ∑∞n=12n+1∑n=1∞2n+1, ∑∞n=11n∑n=1∞1n
	
	C
	∑∞n=11n2∑n=1∞1n2, ∑∞n=112n+1∑n=1∞12n+1, ∑∞n=1(−1)nn∑n=1∞(−1)nn
Você acertou!
A série ∑∞n=11n2∑n=1∞1n2  é uma p-série com p=2>1p=2>1, logo, é convergente. A série ∑∞n=112n+1∑n=1∞12n+1 é uma série geométrica com |p|=12<1|p|=12<1, logo, converge. A série ∑∞n=1(−1)nn∑n=1∞(−1)nn converge pelo teste de Leibniz. (livro-base, capítulo 2).
	
	D
	∑∞n=11n∑n=1∞1n, ∑∞n=11n2∑n=1∞1n2, ∑∞n=11n3∑n=1∞1n3
	
	E
	∑∞n=1n3∑n=1∞n3, ∑∞n=1n2∑n=1∞n2, ∑∞n=1n
Questão 1/5 - Análise Matemática
O primeiro fato a destacar sobre uma série de potências ∑∞nan(x−x0)n∑n∞an(x−x0)n é que o conjunto de valores de xx para os quais ela converge é um intervalo de centro x0x0. Esse intervalo  pode ser limitado (aberto, fechado ou semi-aberto), igual a RR  ou até mesmo reduzir-se a um único ponto.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: LIMA, E.L. Análise Real . 4. ed. Rio de Janeiro: IMPA, 1999. p.159.
Considere a expansão da série de potências ex=∑∞n=0xnn!=1+x1!+x22!+x33!+⋯(x∈R)ex=∑n=0∞xnn!=1+x1!+x22!+x33!+⋯(x∈R)
Assinale a alternativa que contém os valores para x=1.
Nota: 20.0
	
	A
	e=∑∞n=01n!=1−11+12−16+⋯e=∑n=0∞1n!=1−11+12−16+⋯
	
	B
	e=∑∞n=01n!=1+11+12+16+⋯e=∑n=0∞1n!=1+11+12+16+⋯
Você acertou!
A alternativa correta é a letra b. Substituindo os valores de n no somatório temos: e=∑∞n=01n!=1+11!+122!+133!+⋯⇒e=∑∞n=01n!=1+11+12+16+⋯e=∑n=0∞1n!=1+11!+122!+133!+⋯⇒e=∑n=0∞1n!=1+11+12+16+⋯(livro-base p. 185).
	
	C
	e=∑∞n=01n!=1+13+15+⋯e=∑n=0∞1n!=1+13+15+⋯
	
	D
	e=∑∞n=01n!=1−13+15−⋯e=∑n=0∞1n!=1−13+15−⋯
	
	E
	e=∑∞n=02nn!=1+23+34+⋯e=∑n=0∞2nn!=1+23+34+⋯
Questão 2/5 - Análise Matemática
Consideremos a função f:R→Rf:R→R dada por f(x)={x2+1, x≤12x, x>1f(x)={x2+1, x≤12x, x>1.
Com base nos conteúdos do livro-base Análise Matemática a respeito de funções contínuas e deriváveis, é correto afirmar que:
 
Nota: 20.0
	
	A
	Em x=1x=1, ff é contínua, mas não é derivável.
	
	B
	Em x=1x=1, ff é derivável, mas não é contínua.
	
	C
	Em x=1x=1, ff possui limites laterais, mas são diferentes.
	
	D
	Em x=1x=1, ff é contínua e é derivável.Você acertou!
Temos que limx→1+f(x)=limx→1+2x=2⋅1=2=f(1)limx→1+f(x)=limx→1+2x=2⋅1=2=f(1) e limx→1−f(x)=limx→1−(x2+1)=1+1=2=f(1)limx→1−f(x)=limx→1−(x2+1)=1+1=2=f(1). Portanto, ff é contínua em x=1x=1. Além disso, temos que limx→1+f(x)−f(1)x−1=limx→1+f(x)=2x−2x−1=2limx→1+f(x)−f(1)x−1=limx→1+f(x)=2x−2x−1=2 e limx→1−f(x)−f(1)x−1=limx→1−f(x)=(x2+1)−2x−1=limx→1−(x+1)=2limx→1−f(x)−f(1)x−1=limx→1−f(x)=(x2+1)−2x−1=limx→1−(x+1)=2 Logo, ff é derivável em x=1x=1 e f′(1)=2f′(1)=2 (livro-base, Capítulo 4).
	
	E
	Em x=1x=1, ff não é contínua nem é derivável.
 
Questão 3/5 - Análise Matemática
Observe o gráfico de uma função f(x)=(1+1x)xf(x)=(1+1x)x representado na figura a seguir.
 
 
 
 
 
Com base no gráfico da função f(x)=(1+1x)xf(x)=(1+1x)x  e nos conteúdos estudados no livro-base Análise Matemática, analise as afirmativas a seguir.
I. limx→∞f(x)=∞limx→∞f(x)=∞ e limx→−∞f(x)=−∞limx→−∞f(x)=−∞
II. limx→∞f(x)=elimx→∞f(x)=e e limx→−∞f(x)=−∞limx→−∞f(x)=−∞
III. limx→0+f(x)=1limx→0+f(x)=1 e limx→0−f(x)=∞limx→0−f(x)=∞
IV. limx→0+f(x)=−∞limx→0+f(x)=−∞ e limx→0−f(x)=∞limx→0−f(x)=∞
V. limx→0+f(x)=1limx→0+f(x)=1 e limx→∞f(x)=elimx→∞f(x)=e
São corretas apenas as afirmativas:
Nota: 20.0
	
	A
	III e V
Você acertou!
A afirmativa I está incorreta porque limx→∞f(x)=elimx→∞f(x)=e e limx→−∞f(x)=elimx→−∞f(x)=e. A afirmativa II está incorreta porque limx→−∞f(x)=elimx→−∞f(x)=e. A afirmativa III está correta. A afirmativa IV está incorreta porque limx→0+f(x)=1limx→0+f(x)=1. A afirmativa V está correta (livro-base, Capítulo 3).
	
	B
	I e III
	
	C
	I e IV
	
	D
	II e V
	
	E
	II, III e V
Questão 4/5 - Análise Matemática
“Se alguém me perguntasse o que é que todo estudante de Ensino Médio deveria saber de matemática, sem sombra de dúvida, o tema Indução figuraria na minha lista.
É com o conceito de Indução que se estabelece o primeiro contato com a noção de infinito em Matemática, e por isso ele é muito importante; porém, é, ao mesmo tempo, sutil e delicado”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: HEFEZ, A. Indução Matemática. Programa da Iniciação Científica OBMEP, v. 4. 2009. p. iii. 
Tendo em vista a citação dada e de acordo com os conteúdos do livro-base sobre o Princípio da Indução Finita, analise as seguintes asserções: 
I. A soma dos nn primeiros números ímpares é n2, n≥1n2, n≥1.
 
PORQUE
 
II. Dados os números ímpares: 1,3,5,7,9,11,⋯2n−1 (n natural n>0)1,3,5,7,9,11,⋯2n−1 (n natural n>0), 
se tivermos dois ímpares n=2n=2 a soma será S=1+3=4=22S=1+3=4=22 e se tivermos
55 números ímpares a soma será S=1+3+5+7+9=25=52S=1+3+5+7+9=25=52 
 
A respeito dessas asserções, assinale a alternativa correta:
Nota: 20.0
	
	A
	As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da primeira.
	
	B
	As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa  correta da primeira.
Você acertou!
Apesar das duas afirmações serem verdadeiras, a segunda não é uma justificativa da primeira porque não prova que a proposição seja verdadeira para todo n>2n>2. Ela mostra apenas dois casos particulares. Para justificar a veracidade da primeira afirmação pode-se usar o Princípio da Indução Finita (livro-base, capítulo 1).
	
	C
	A asserção I é uma proposição verdadeira , e a II é uma proposição falsa.
	
	D
	A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
	
	E
	As asserções I e II são proposições falsas.
Questão 5/5 - Análise Matemática
Leia o excerto de texto a seguir. 
“Para que tenha sentido determinar o limite ou indagar sobre a continuidade de uma função, e o domínio e o contradomínio da mesma devem possuir um certo tipo de estrutura, tornando-se o que se chama um ‘espaço topológico’. Em outras palavras, espaços topológicos são conjuntos equipados com estruturas tais que entre eles tem sentido falar em limites e continuidades de funções”.
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: Lima, E. L. Curso de Análise. v. 1. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada,  2013. p. 161. 
Conforme os conteúdos do livro-base Análise Matemática com respeito à conceitos topológicos, enumere, na ordem sequencial, as definições – em linguagem não formal – que se relacionam a cada um dos elementos a seguir:
 
1. Conjunto aberto
2. Ponto interior
3. Conjunto fechado
4. Ponto de acumulação
5. Conjunto compacto
6. Ponto aderente
 
( ) É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele.
( ) É todo conjunto que é simultaneamente fechado e limitado.
( ) É um conjunto tal que todos os pontos aderentes pertencem à ele.
( ) É um ponto que possui uma vizinhança inteiramente contida no conjunto.
( ) É um ponto que é limite de uma sequencia de elementos do conjunto.
( ) É um conjunto onde todos os seus pontos são interiores.
 
Agora marque a sequência correta:
 
Nota: 20.0
	
	A
	6 – 5 – 3 – 4 – 2 – 1
	
	B
	4 – 1 – 5 – 6 – 2 – 3
	
	C
	2 – 5 – 1 – 6 – 4 – 3
	
	D
	6 – 3 – 1 – 2 – 4 – 5
	
	E
	4 – 5 – 3 – 2 – 6 – 1
Você acertou!
A sequência correta é 4 – 5 – 3 – 2 – 6 – 1. Segundo o livro-base: “1. Conjunto aberto – É um conjunto onde todos os seus pontos são interiores. 2. Ponto interior – É um ponto que possui uma vizinhança inteiramente contida no conjunto. 3. Conjunto fechado – É um conjunto tal que todos os pontos aderentes pertencem à ele. 4. Ponto de acumulação – É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele. 5. Conjunto compacto – É todo conjunto que é simultaneamente fechado e limitado. 6. Ponto aderente – É um ponto que é limite de uma sequencia de elementos do conjunto” (livro-base, Capítulo 3).
https://pt.scribd.com/document/332464939/ESTATISTICA-APLICADA

Continue navegando