Buscar

5 Fisiologia do Sistema Cardiovascular

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 66 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 66 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 66 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
O papel da fisiologia cardiovascular no controle da homeostase dinâmica corporal.
PROPÓSITO
Conhecer a organização do sistema cardiovascular e o controle do ritmo cardíaco, bem como a
regulação da hemodinâmica, visando o entendimento do controle do débito cardíaco, retorno
venoso, distribuição do fluxo sanguíneo e controle da pressão arterial em diferentes situações
fisiológicas.
OBJETIVOS
MÓDULO 1
Descrever a organização do sistema cardiovascular
MÓDULO 2
Compreender os mecanismos responsáveis pelo controle do ritmo cardíaco
MÓDULO 3
Reconhecer os fenômenos associados à função miocárdica e seu papel na manutenção do
débito cardíaco e retorno venoso
MÓDULO 4
Comparar as respostas hemodinâmicas relacionadas à redistribuição do fluxo sanguíneo e à
manutenção da pressão arterial
MÓDULO 1
 Descrever a organização do sistema cardiovascular
INTRODUÇÃO
 
Fonte: Shutterstock.com
A partir de agora você vai começar a estudar a organização do sistema cardiovascular. Ele é
dividido em arterial e venoso, por isso é denominado “sistema duplo e fechado”. O órgão
principal, o coração, é reconhecido como uma bomba capaz de impulsionar quantidades
relevantes de sangue para a periferia. Além do coração, o sistema cardiovascular compreende
uma rede de vasos de distribuição de sangue e de coleta de resíduos metabólicos que são as
artérias e veias, respectivamente.
À medida que o sangue flui para as estruturas vasculares distantes do coração, os grandes
vasos se ramificam em uma extensa rede de microvasos, denominados arteríolas e capilares,
responsáveis pela realização das trocas de nutrientes e oxigênio com os tecidos.
Os vasos arteriais e venosos apresentam diversidade estrutural e funcional. Veja o significado
de cada um deles:
Sistema arterial
Pode ser considerado como um sistema de alta resistência e pressão e de baixo volume – por
isso que um sangramento arterial é em forma de jato de sangue de coloração vermelho vivo.
Sistema nervoso
Compreende um sistema de baixa resistência e pressão e de alto volume – por isso, quando
ocorre um sangramento venoso, observamos um comportamento em forma de escorrimento e
cianótico (vermelho escuro).
 
Fonte: Shutterstock.com
ESTRUTURA DO CORAÇÃO
O principal responsável pelo direcionamento de sangue para os tecidos é o coração. Este
órgão pode ser analisado estrutural e funcionalmente através das diferenças em suas câmaras
dos dois lados (direito e esquerdo), organizadas da seguinte maneira (Figura 1):
 
Fonte: Wapcaplet / Stanisław Skowron / CC BY-SA 3.0
 Figura 1: Estrutura do Coração.
Pelo lado direito, o sangue flui através do átrio para o ventrículo direito e daí para os pulmões
(a pequena circulação ou pulmonar).

Em seguida, o sangue agora arterializado retorna ao coração para o átrio esquerdo, deste para
o ventrículo esquerdo, e depois para a circulação sistêmica (a grande circulação ou sistêmica).
No coração de uma pessoa saudável, as características observadas no diâmetro interno da
cavidade, bem como em relação às espessuras de cada câmara do coração, diferem
consideravelmente. Isso se dá pelo fato de existir uma relação muito importante com a função
de cada uma delas, por exemplo, os átrios, durante a contração (também chamada de sístole
atrial), desenvolvem baixas pressões e por este motivo apresentam paredes relativamente
finas.
Já os ventrículos direito e esquerdo, que precisam bombear o sangue através das artérias
pulmonares e aórtica, respectivamente, com pressões relativamente elevadas, apresentam
paredes muito mais espessas quando comparadas aos átrios.
As principais diferenças observadas nas estruturas dos ventrículos direito e esquerdo podem
ser assim resumidas:
O ventrículo esquerdo apresenta a espessura de sua parede maior que aquela do ventrículo
direito e trabalha em uma condição de alta pressão para efetivar o bombeamento de sangue
para a circulação sistêmica.

Já o ventrículo direito apresenta tanto uma dimensão interna quanto a espessura de parede
reduzida, se comparado ao ventrículo esquerdo. Isto ocorre pelo fato de o ventrículo direito não
precisar de pressão tão elevada para bombear o sangue em direção aos pulmões.
Na divisão dos átrios e ventrículos, observamos estruturas fibrocartilaginosas responsáveis por
garantir o fluxo de sangue dos átrios para os ventrículos – são denominadas como valvas
atrioventriculares (Figura 2).
 ATENÇÃO
É possível notar a presença de quatro valvas cardíacas: além das duas atrioventriculares,
existem outras duas responsáveis pela saída de sangue dos ventrículos em direção às artérias
pulmonares e aórtica, respectivamente, essas valvas são denominadas como semilunares
pulmonar e aórtica.
A abertura das valvas atrioventriculares permite que o sangue seja direcionado dos átrios em
direção aos dois ventrículos (mais adiante, no ciclo cardíaco, visualizaremos que isso ocorre
durante a fase de diástole ou relaxamento ventricular). Após o fechamento das valvas
atrioventriculares, o sangue é transportado para as artérias pulmonares (lado direito) e aorta
(lado esquerdo, durante a contração dos dois ventrículos, a sístole ventricular).
 
Fonte: OpenStax College / Anatomy & Physiology, Connexions Web site / CC BY 3.0
 Figura 2: Valvas atrioventriculares (tricúspide e bicúspide) e semilunares (aórtica e
pulmonar).
O correto fechamento destas valvas depende dos músculos papilares, estruturas localizadas
na parede interna dos ventrículos que, por sua vez, são conectadas as essas valvas pelas
cordas tendíneas. Quando ocorre a sístole ventricular, as cordas tendíneas são responsáveis
por realizar a tração dos folhetos dessas valvas, mantendo-as fechadas e impedindo que o
sangue seja direcionado de volta aos átrios, fenômeno denominado regurgitação (Figura 3).
À medida que o sangue é direcionado dos ventrículos para as artérias aorta e pulmonares, ele
passa por valvas com denominação semelhante a estas estruturas, valvas semilunares aórtica
e pulmonar, respectivamente, constituídas cada uma por três folhetos. A organização estrutural
dessas valvas permite que o sangue ejetado pelo ventrículo flua para as artérias
correspondentes, impedindo assim seu retorno durante a fase de relaxamento (diástole)
(AIRES, 2018, p. 381).
 
Fonte: Wapcaplet / Wikimedia Foundation Inc. / CC BY-SA 2.5
 Figura 3: Exemplo de regurgitação da valva mitral ou bicúspide.
Além dos miócitos atriais e ventriculares, o tecido cardíaco é repleto fibroblastos cardíacos,
responsáveis pela produção da matriz extracelular que é composta por colágeno do tipo I e III,
capazes de desempenhar o processo de remodelamento miocárdico (também denominado
como cicatrização do miocárdio durante o infarto, veja a Figura 4).
Devido à presença dessas células, durante o infarto do miocárdio os fibroblastos cardíacos
migram para a região da lesão e promovem a deposição do colágeno (I e III). Como resultado
teremos a cicatrização do coração (área escura na Figura 4, representada pelo número 2).
 
Fonte: JHeuser / Wikimedia commons / CC-BY-SA-3.0
 Figura 4: Exemplo de remodelamento miocárdico.
ESTRUTURA DOS VASOS SANGUÍNEOS
O sistema vascular é formado pelos sistemas arterial e venoso, constituídos por uma rede de
tubos, compreendendo uma extensão total de 50.000 km, que transportam cerca de 10.000
litros de sangue diariamente. Em relação aos seus aspectos estruturais e funcionais, as
artérias e veias apresentam diferenças em seu conteúdo proteico (colágeno e elastina em suas
camadas).
 
Fonte: Shutterstock.com
Essas diferenças impactam na resistência e na capacitância desses vasos.
Em relação às suas estruturas, observam-se três camadas denominadas túnicas diferentes,
modificadas conforme a função do vaso:
A camada mais externa do vaso é chamada de adventícia;
A intermediária é a camada média onde encontra-se o músculo liso;
E a camada mais interna é a íntima, composta pelas células endoteliais.
Quanto à espessura da parededesses vasos, notamos que ela possui relação direta com a
pressão gerada no sistema, que é característico de cada região. Por exemplo, a espessura das
artérias é muito maior do que a espessura das veias. Esta característica está relacionada com
a composição das três camadas em cada artéria ou veia, como se vê na Figura 5.
 
Fonte: Shutterstock.com
 Figura 5: Estrutura anatômica dos vasos sanguíneos.
ASPECTOS MORFOFUNCIONAIS DO SISTEMA
VASCULAR
Basicamente, as artérias e as veias apresentam três camadas, que são expostas na figura 5.
A túnica íntima (mais interna) é constituída por uma camada única de células endoteliais,
recobertas por uma lâmina subendotelial. Na camada subendotelial, além da presença de
fibras colágenas (matriz extracelular), nota-se a presença de células musculares lisas, além de
fibrócitos e macrófagos. É dividida da túnica média por uma estrutura denominada camada
elástica interna. A estrutura da túnica média sofre variação de acordo com sua capacidade
contrátil e elástica; em função disso, os dois principais componentes da túnica média são as
células musculares lisas e as lâminas elásticas presentes entre estas células. Externamente, a
túnica média é cercada por uma lâmina elástica, reconhecida como camada elástica externa,
que a separa da túnica adventícia.
Já a túnica adventícia é constituída predominantemente por tecido conjuntivo frouxo, contendo
grande quantidade de fibrócitos, fibras elásticas e colágeno.
 ATENÇÃO
Quando comparamos as diferenças de fluxo nos sistemas arterial e venoso, notamos que este
parâmetro é drasticamente reduzido nas artérias de pequeno calibre assim como nas
arteríolas. Nas metarteríolas (porções finais das arteríolas), devido ao seu pequeno diâmetro
(cerca de 10 e 40 mm) e pelo fato de serem pouco inervadas, a camada muscular é
incompleta, mas complementada pela presença de um forte esfíncter muscular pré-capilar.
Na rede arterial, os valores pressóricos são maiores que em qualquer outra região do sistema
vascular, no entanto, quando o sangue atinge as arteríolas, ocorre uma queda acentuada na
pressão do sistema. O motivo principal para que ocorra essa grande variação hemodinâmica é
o aumento da resistência ao fluxo criada por esses pequenos vasos.
Desse modo, a partir dos capilares sanguíneos, a pressão e o fluxo sanguíneo serão bastante
reduzidos. Como o sistema arterial é considerado um sistema de alta pressão e baixo fluxo, a
quantidade total de sangue presente neste sistema é cerca de 20%, enquanto nos capilares é
de 5% por causa de seu tamanho reduzido. Nas veias é de cerca de 75%, denotando sua
função como reservatório de volume (Figura 7).
 
Fonte: Shutterstock.com
 Figura 7: Diferenças no calibre dos vasos sanguíneos explicando as variações de
velocidade e pressão do fluxo.
A microcirculação possui vasos terminais, com grande capacidade para realização de trocas de
substâncias, e é constituída por pequenas artérias, arteríolas, capilares e vênulas. Nos
capilares, sua parede é constituída por uma única camada de células endoteliais. Tal fato
favorece o transporte satisfatório de nutrientes e oxigênio dos capilares para os tecidos e
destes para a remoção de metabólitos (Figura 8).
 ATENÇÃO
Independentemente da ausência de células musculares lisas nestes pequenos vasos, as
variações em seus diâmetros são controladas por células que fazem parte de sua estrutura
externa (uma espécie de adventícia) denominadas pericitos. Eles possuem alta habilidade em
controlar o diâmetro dos vasos, atuando no controle do fluxo sanguíneo. Além dos capilares, as
trocas de metabólitos também podem ocorrer através das paredes de pequenas arteríolas,
antes mesmo de o sangue alcançar a região (AIRES, 2018, p. 384).
 
Fonte: Shutterstock.com
 Figura 8: Estrutura dos capilares sanguíneos, representando a microcirculação.
A função principal do sistema venoso é transportar o sangue de todas as veias em direção ao
coração. Neste sentido, o sangue, ao trafegar pelos capilares, será transportado para as
vênulas, seguindo para as veias de pequeno, médio e grande calibre.
Contudo, ao contrário do sistema arterial, o venoso é considerado um sistema de baixa
pressão. Pelo fato de as veias serem maiores em número e tamanho que as artérias, elas
conseguem apresentar maior capacidade de acomodação de sangue, motivo pelo qual são
considerados vasos de capacitância.
Assim, o sistema venoso é responsável em estocar uma proporção muito elevada de sangue
(cerca de 75% do total). Por ser um sistema de baixa pressão e alto volume, o sangue é
impedido de fluir no sentido contrário ao coração pela presença das valvas venosas,
possibilitando o fluxo de sangue pelas veias ocorrer sempre no sentido unidirecional, em
direção ao coração.
Certamente você já ouviu falar em varizes ou veias varicosas, mas o que isso de fato
representa?
 
Fonte: Shutterstock.com
 Figura 9: Desenvolvimento das varizes nas veias.
 
Fonte: Shutterstock.com
 Figura 10: Exemplo de veias varicosas.
As varizes nas veias representam regiões onde as valvas venosas se tornam insuficientes ou
incompetentes, reduzindo o fluxo de sangue nessa região (Figura 9). Isso provoca dilatação
excessiva das veias (Figura 10), o que pode acarretar dores e desconforto local, levando
pacientes ao tratamento com laser, clínico/cirúrgico ou estético (aplicação de espumas).
CIRCULAÇÃO SISTÊMICA
A circulação sistêmica inicia-se no ventrículo esquerdo.
A partir desta câmara, o sangue arterial é direcionado para a artéria aorta e, em seguida, para
todos os tecidos (grande circulação).

À medida que o sangue segue, ele é direcionado para o sistema de artérias que serão
distribuídos para os tecidos (exceto aos pulmões).

As artérias se dividem em numerosas estruturas menores, denominadas arteríolas, cujo calibre
pode ser alterado por diversos mecanismos neurais ou metabólicos. As alterações do calibre
das arteríolas podem regular tanto a pressão como o fluxo ao longo da circulação sistêmica.
Uma vez nos tecidos, as arteríolas se bifurcam em estruturas cada vez menores, denominadas
capilares ou sinusóides. Nesses pequenos vasos, o oxigênio e os nutrientes são transportados
em direção ao espaço extracelular e daí para as células. Ao mesmo tempo, os resíduos
produzidos em função do metabolismo celular, passam das células para o fluido extracelular e,
em seguida, para o sangue. Neste momento, o sangue é coletado por um sistema de muito
baixa pressão, constituídos em sequências pelas vênulas e veias, que transportam o sangue
venoso de volta ao coração.
Esta rede venosa, como mencionado anteriormente, atua de modo a drenar quantidades
satisfatórias de sangue (cerca de 75% do volume sanguíneo total). Todas as veias se unem
para formar as duas veias cavas, denominadas com inferior e superior, as quais direcionam o
sangue para o átrio direito (Figura 11).
 
Fonte: Shutterstock.com
 Figura 11: Esquema de direcionamento do fluxo sanguíneo arterial partindo do coração,
com trocas de oxigênio, nutrientes, remoção dos resíduos pelos capilares e retorno do sangue
venoso de volta para o coração pelas veias.
As artérias sistêmicas apresentam a espessura de suas paredes mais espessas que as artérias
pulmonares. Além disso, as artérias que se encontram localizadas abaixo da linha do coração
têm parede mais espessa que as que se encontram acima. Estas alterações refletem a maior
pressão exercida pelo sangue (pressão hidrostática) suportada pelos vasos das regiões
inferiores do corpo (Figura 11).
CIRCULAÇÃO PULMONAR
A circulação pulmonar se inicia a partir do ventrículo direito. O sangue venoso chega ao átrio
direito e, em seguida, é direcionado para ventrículo no mesmo lado. Posteriormente, o sangue
flui para a artéria pulmonar e para as artérias pulmonares menores, até formar os capilares
pulmonares.
 
Fonte: Shutterstock.com
Nos capilares pulmonares, o CO2 é transportado em direção aos alvéolos para ser eliminado
no arambiente, enquanto o O2 sofre difusão para o sangue, num processo denominado
hematose, responsável por uma nova arterialização do sangue.
A partir deste ponto, o sangue é direcionado para as veias pulmonares com uma maior
quantidade de oxigênio, retornando ao átrio esquerdo e seguindo para o ventrículo esquerdo. A
partir deste ponto, o sangue arterial segue para toda a rede de distribuição de artérias
novamente (Figura 12).
 
Fonte: Shutterstock.com
 Figura 12: Esquema do sistema vascular. No circuito sistêmico, são evidenciados diversos
tipos de comunicação entre os lados arterial (vermelho) e venoso (azul).
O SISTEMA CARDIOVASCULAR
Assista ao vídeo a seguir, que demonstra os aspectos anatômicos do coração (átrios,
ventrículos e valvas), e como ocorre a circulação sistêmica e pulmonar.
Em resumo, podemos dizer que os diferentes segmentos do sistema cardiovascular possuem
características funcionais e estruturais diversas. Estas se adequam às variações de pressão e
volume de sangue conduzido a outras particularidades que são dependentes do funcionamento
eficiente e harmônico do coração.
 ATENÇÃO
Em função disso, torna-se necessário entender como o ritmo cardíaco é regulado para garantir
o fluxo sanguíneo satisfatório aos tecidos, sem que ocorra grandes variações nas faixas de
pressão e volume do sistema, a fim de garantir o controle da homeostase sistêmica.
VERIFICANDO O APRENDIZADO
1. AS ESTRUTURAS DAS CÂMARAS CARDÍACAS (ÁTRIOS E
VENTRÍCULOS) APRESENTAM DIFERENÇAS RELEVANTES EM FUNÇÃO
DOS PADRÕES HEMODINÂMICOS DO SISTEMA CARDIOVASCULAR.
NESTE SENTIDO, ASSINALE A ALTERNATIVA CORRETA:
A) O átrio esquerdo possui uma câmara interna menor que o átrio direito em função do
aumento da pressão no sistema pulmonar comparado ao sistema venoso.
B) As paredes dos átrios apresentam menores espessuras em relação aos ventrículos, pois
sua função depende de menor pressão para o fluxo sanguíneo.
C) O ventrículo esquerdo não possui camadas espessas em suas paredes, pois sua função se
resume à distribuição de sangue para os pulmões.
D) Apesar das diferenças morfofuncionais entre os átrios e ventrículos, estas estruturas não
apresentam diferenças entre seus lados esquerdo e direito.
E) A espessura do ventrículo esquerdo é maior que a do ventrículo direito, em função da menor
pressão oferecida pela circulação sistêmica.
2. AO ANALISAR AS DIFERENÇAS ESTRUTURAIS E FUNCIONAIS DOS
VASOS SANGUÍNEOS, NOTA-SE QUE AS ARTÉRIAS SÃO
CONSIDERADAS VASOS DE RESISTÊNCIA, ENQUANTO AS VEIAS SÃO
CONSIDERADAS VASOS DE CAPACITÂNCIA. NESTE SENTIDO, AS
VARIZES OCORREM ESPECIFICAMENTE NAS VEIAS PORQUE:
A) As varicosidades observadas nas veias ocorrem pelo fato de serem consideradas um
sistema de alta pressão, por isso ocorre o dilatamento excessivo das veias acarretando as
varizes.
B) O volume de sague presente no sistema venoso é baixo. Por este motivo, caso o sistema
sofra uma sobrecarga de volume, irá desencadear a dilatação das veias.
C) As pessoas que possuem varizes não precisam se preocupar com essas alterações das
veias, pois isso se trata apenas de uma preocupação estética.
D) As intervenções cirúrgicas são o único tratamento para as pessoas que possuem varizes.
E) O desenvolvimento das varizes ocorre em função da insuficiência das valvas venosas, pois
quando isto ocorre o fluxo sanguíneo será reduzido, acarretando a dilatação excessiva dessas
veias.
GABARITO
1. As estruturas das câmaras cardíacas (átrios e ventrículos) apresentam diferenças
relevantes em função dos padrões hemodinâmicos do sistema cardiovascular. Neste
sentido, assinale a alternativa correta:
A alternativa "B " está correta.
 
As estruturas das câmaras cardíacas são bem diversas, pois a sua funcionalidade reflete as
suas estruturas. Os átrios distribuem o sangue aos ventrículos, enquanto os ventrículos
distribuem o fluxo sanguíneo à circulação sistêmica. Em termos práticos, esta função depende
de maior pressão para ser efetivada com êxito.
2. Ao analisar as diferenças estruturais e funcionais dos vasos sanguíneos, nota-se que
as artérias são consideradas vasos de resistência, enquanto as veias são consideradas
vasos de capacitância. Neste sentido, as varizes ocorrem especificamente nas veias
porque:
A alternativa "E " está correta.
 
As veias varicosas são resultado da insuficiência das valvas venosas. Este fenômeno faz com
que o sangue venoso fique acomodado na região que está ocorrendo a incompetência dessas
estruturas, levando à dilatação das veias nesta região. As varizes se manifestam com
desconforto na maioria das pessoas, principalmente dor local. Os tratamentos podem ser feitos
a laser, clínico/cirúrgico ou estético (aplicação de espumas).
MÓDULO 2
 Compreender os mecanismos responsáveis pelo controle do ritmo cardíaco
INTRODUÇÃO
O controle do ritmo cardíaco pode ser dividido em duas fases:
A primeira que dá origem aos batimentos por células especializadas na excitação automática
do coração (por isso chamado de automatismo cardíaco), um sistema intrínseco.

A segunda que tem o ritmo cardíaco controlado de maneira extrínseca, inconsciente ou
involuntariamente por um componente eferente visceral chamado sistema nervoso autônomo.
O sistema nervoso autônomo é subdividido em dois componentes, os quais funcionam de
maneira contrabalanceada, ou seja, quando um aumenta o outro diminui, e vice-versa:
O sistema nervoso simpático, responsável pela secreção de noradrenalina e adrenalina.

E o sistema nervoso parassimpático, responsável pela secreção de acetilcolina.
Como esses sistemas funcionam?
Quando você está numa situação de perigo, sua frequência cardíaca, respiratória e pressão
arterial aumentam juntamente com outros fatores, porque o sistema nervoso simpático se torna
predominante (considerado um sistema de fuga ou luta). Em contrapartida, quando você se
livra de uma situação de perigo ocorre o inverso, e estas respostas fisiológicas se reduzem,
isto porque o sistema nervoso parassimpático predomina.
Neste módulo vamos entender como ocorrem o controle intrínseco e extrínseco coração.
AUTOMATISMO CARDÍACO
O tecido cardíaco, além de ser constituído por células especializadas em realizar o trabalho
mecânico do coração (miocárdio), possui um sistema constituído por células nervosas
especializadas no desenvolvimento da autoexcitação do coração. Este sistema também pode
ser denominado como sistema de controle intrínseco da ritmicidade cardíaca ou sistema de
condução do coração.
 
Fonte: Shutterstock.com
Neste sistema, as células que promovem a gênese do impulso nervoso desempenham esse
mecanismo em frequências de disparo diferentes. O nó sinoatrial é a célula que possui maior
frequência intrínseca de disparo espontâneo comparado ao nó atrioventricular e às fibras de
Purkinje (Figura 13, número 1).
A propagação ocorre por este nó a uma velocidade de aproximadamente 0,06 milissegundos
(ms), alcançando o átrio aproximadamente 30 ms após o início desta excitação. À medida que
o impulso nervoso é originado no nó sinoatrial, ele é direcionado para as paredes atriais a uma
velocidade de aproximadamente 0,9 ms, ou seja, leva cerca de 80 a 90 ms para completar sua
ativação.
A trajetória do impulso então alcança outro nó, o atrioventricular (figura 13, número 2).
 
Fonte: J. Heuser / Heart view anterior coronal section.jpg por Patrick J. Lynch (Patrick J. Lynch;
ilustrador; C. Carl Jaffe; MD; cardiologista Yale University Center for Advanced Instructional
Media) / CC-BY-2.5
 Figura 13: Sistema de condução elétrica do coração.
A partir do nó atrioventricular, fibras nervosas atravessam o esqueleto fibroso do coração,
localizado no anel atrioventricular, separado por um envoltório de tecido conjuntivo. Em
seguida, faz conexões com a massa muscular ventricular através das junções comunicantes
(Figura 14).
 
Fonte: Mariana Ruiz LadyofHats / Wikimedia Commons
 Figura 14: Exemplificação das junções comunicantes (em amarelo) inseridas na membranaplasmática (azul).
Sequencialmente, uma vez que o impulso nervoso termine seu tráfego através do nó
atrioventricular, a despolarização pelo sistema de condução agora alcança o feixe de His
(Figura 15, números 3 e 4) e, em seguida, as fibras de Purkinje. Finalmente, toda onda de
despolarização é direcionada pelas células do miocárdio ventricular, completando a ativação
dessas câmaras.
 
Fonte: J. Heuser/ Heart view anterior coronal section.jpg por Patrick J. Lynch (Patrick J. Lynch;
ilustrador; C. Carl Jaffe; MD; cardiologista Yale University Center for Advanced Instructional
Media)/ CC-BY-2.5
 Figura 15: Sistema de condução elétrica do coração. Continuação.
Uma vez nos ventrículos, a onda de ativação percorre inicialmente as células da camada mais
interna dessas câmaras (endocárdio) dos dois ventrículos e, em seguida, os impulsos são
propagados em direção à camada mais externa dos ventrículos (epicárdio) até alcançar à
região póstero-superior do septo interventricular (Figura 15, número 5).
 ATENÇÃO
Observa-se a existência de uma fase em que não há nenhum fluxo de corrente ao longo do
coração. Neste momento os átrios encontram-se repolarizados, ao passo que os ventrículos
estão totalmente despolarizados. Este período silente termina quando se inicia a repolarização
ventricular a partir das regiões com potenciais de ação de menor duração. A repolarização de
uma região acelera a repolarização de localidades vizinhas do mesmo modo que a
despolarização, por meio do fluxo de correntes locais. Assim, pode-se dizer que há uma
propagação da repolarização, a partir da região que primeiro depolariza, em direção às
vizinhas.
A EXCITAÇÃO AUTOMÁTICA DO CORAÇÃO
Assista ao vídeo a seguir, que demonstra como ocorre o processo intrínseco de excitação do
coração, desde o nodo sinusal até as fibras de Purkinje.
POTENCIAL DE AÇÃO CARDÍACO LENTO
Um conjunto de células cardíacas não precisam de estímulo externo (também denominado
extrínseco) para iniciar um potencial de ação. Esta propriedade é conhecida como automatismo
cardíaco (governada pelas células do nó sinoatrial, do nó atrioventricular e as fibras de
Purkinje).
 
Fonte: Shutterstock.com
Nestes tecidos, não se observa um potencial de repouso estável (fixo) como na maioria das
outras células, ao contrário, nota-se uma despolarização lenta seguida do término da fase de
repolarização. Esta despolarização lenta, como ocorre na fase diastólica do potencial
transmembrana, é denominada despolarização diastólica lenta, correspondente à fase 4 dos
potenciais de ação responsáveis pelo automatismo cardíaco (Figura 16).
As correntes iônicas responsáveis pela entrada de íons nas células são denominadas correntes
de influxo. As principais correntes de influxo observadas na despolarização diastólica lenta são:
Corrente marca-passo (também denominada corrente If), sendo esta mediada pelo influxo de
sódio (Na+) no início da Fase 4.
Corrente transiente de cálcio, ou do tipo T (IcaT), responsável pela segunda metade da
despolarização diastólica lenta até o início da Fase 0 (Figura 16).
Ao final da Fase 4, quando o potencial transmembrana atinge o potencial limiar (por volta de
-60mV), inicia-se a Fase 0. Nesta fase, observa-se uma despolarização mais rápida que aquela
da Fase 4.
 ATENÇÃO
Aqui, a principal corrente responsável por esta despolarização mais íngreme é a corrente de
cálcio do tipo L, ICaL, que se caracteriza por uma ativação mais lenta e uma densidade de
corrente bem inferior à de sódio (INa+, como será observado no potencial de ação rápido).
Na Figura 16, podemos observar que essas células não apresentam as Fases 1 e 2, como
ocorre no potencial de ação rápido ventricular. Após a Fase 0, segue-se uma repolarização
contínua, mais lenta no início e mais rápida no final (Fase 3).
Já que não há nenhuma evidência de ocorrência de IK1 nem de Ito nestas células, os canais
de K+, IKr e IKs constituem as principais vias de correntes repolarizantes. Contribuem com
corrente despolarizante durante todo o potencial de ação lento, a ICa,L, além da corrente
carreada pelo trocador Na+/Ca2+.
 
Fonte: Shutterstock.com
 Figura 16: Potencial de ação cardíaco lento responsável pelo mecanismo de autoexcitação
celular nos NSA e NAV.
POTENCIAL DE AÇÃO CARDÍACO RÁPIDO
Os átrios e ventrículos são constituídos por células miocárdicas através das quais a atividade
elétrica se propaga. Imersas nessa massa muscular contrátil (miocárdio), existem estruturas
especializadas na geração e condução da atividade elétrica, formadas por tecido muscular
especializado denominado de sistema de condução.
 
Fonte: Shutterstock.com
No átrio direito, próximo da inserção da veia cava superior, situa-se o nó sinoatrial, que no
coração normal é o local onde ocorre a gênese da atividade elétrica cardíaca. Por isso, o nó
sinoatrial é considerado o marcapasso cardíaco. Também no átrio direito, próximo ao seio
coronariano, na superfície endocárdica da porção inferior do septo interatrial, localiza-se o nó
atrioventricular.
A partir deste, outro tecido especializado em condução é o feixe de His, que parte do nó
atrioventricular e se estende para a musculatura ventricular, subsequentemente dividindo-se e
formando uma extensa rede de condução intraventricular, as fibras de Purkinje.
O potencial de ação rápido cardíaco pode ser dividido em fases que serão descritas a seguir:
 
Fonte: Thoracikey, 2016
 Figura 17: Fases responsáveis pelo potencial de ação cardíaco rápido.
FASE 0
Esta fase está relacionada ao aumento rápido que ocorre durante a despolarização do
potencial de ação rápido. Neste momento a principal corrente despolarizante é a de sódio
dependente de voltagem (INa), como mostra a Figura 16. Isto irá promover a despolarização
adicional, caracterizada por um processo de retroalimentação positiva e resultando em rápido e
intenso influxo de Na+. Por sua enorme densidade, esta corrente é fundamental para a rápida
propagação do potencial de ação (1 a 5 ms), no entanto, cabe ressaltar que as menores
velocidades ocorrem no miocárdio atrial e ventricular; e as maiores, nas fibras de Purkinje,
tecido especializado na condução do potencial de ação.
FASE 1
Nesta rápida e transitória repolarização, após a despolarização inicial, está relacionada à
abertura do canal de K+ (representado pela abreviatura Ito1), que por sua vez é ativado por
despolarização.
FASE 2
Também considerada como a fase de platô, nesta fase ocorre o equilíbrio das correntes
despolarizantes (influxo de Na+ e Ca2+) e das correntes repolarizantes (efluxo de K+ e influxo
de Cl–). Assim, o fluxo efetivo de carga (somatório de cargas que entram e saem da célula)
durante esta fase é muito pequeno, razão pela qual o potencial transmembrana permanece
relativamente estável. As correntes despolarizantes presentes nesta fase incluem a corrente de
ICaL, o componente não inativável ou de inativação lenta de INa, além da corrente de influxo
carreada pelo trocador Na+/Ca2+. Em relação às correntes repolarizantes, a corrente
retificadora de influxo, IK1, que permanece aberto durante o repouso, fecha-se quase
instantaneamente com a despolarização da Fase 0. Assim, durante o platô, ele permanece
fechado, contribuindo para diminuir a corrente de efluxo, mantendo a membrana despolarizada.
FASE 3
A fase de repolarização rápida final ocorre em decorrência de uma predominância de correntes
de efluxo, uma vez que as correntes de influxo presentes durante o platô diminuem
consideravelmente. Nesta fase, a condutância ao K+ depende de canais iônicos diferentes
daqueles que determinam o potencial de repouso. Ela está diretamente associada à ativação
dos canais de K+ dependentes de voltagem, denominados retificadores retardados (IKr, IKs e
IKur), estimulada pela despolarização da Fase 0, que promove um grande efluxo de K+,
acarretando rápida repolarização. Este fenômeno permite a reabertura do canal IK1,
responsável por contribuir para o processo de repolarização.Por todos estes motivos, a Fase 3
é considerada a fase determinante da duração do potencial de ação.
FASE 4
Quanto ao comportamento do potencial de ação, nesta fase há novamente um equilíbrio entre
as correntes de efluxo e influxo, de modo que o saldo é uma corrente efetiva nula, como já
vimos na Fase 2.
CONTROLE EXTRÍNSECO DO RITMO CARDÍACO
O sistema nervoso autônomo é subdividido em dois componentes, o sistema nervoso simpático
e o parassimpático. Ambos apresentam características comuns que estão descritas na Figura
18.
 
Fonte: Shutterstock.com
 Figura 18: Divisões anatômicas do sistema nervoso autonômico (SNA). Sistema nervoso
parassimpático (azul) e simpático (rosa).
Nos dois sistemas, a inervação é realizada por neurônios efetores que se situam antes da
cadeia simpática, os neurônios pré-ganglionares. Estes originam as fibras pós-ganglionares
que estabelecem as sinapses com os órgãos-alvo. Os neurônios pré-ganglionares são ativados
previamente por conexões diretas de neurônios situados no sistema nervoso central.
Durante a ativação das fibras pós-ganglionares, os neurotransmissores são liberados no
interstício até encontrarem seus receptores específicos. No caso dos terminais axônios das
fibras pós-ganglionares simpáticas, o neurotransmissor principal é a noradrenalina (NA),
também chamada de norepinefrina (NE), enquanto nos terminais axônicos das fibras pós-
ganglionares parassimpáticas, o neurotransmissor principal é a acetilcolina.
A regulação autonômica no controle do ritmo cardíaco e dos vasos sanguíneos é de
fundamental importância para a manutenção do sistema cardiovascular, como por exemplo, a
regulação da pressão arterial, da resistência periférica total e da função cardíaca. Durante a
estimulação simpática, ocorre o aumento da frequência cardíaca, da força de contração
(contratilidade) e da pressão arterial.
 
Fonte: Shutterstock.com
Os efeitos do sistema nervoso simpático sobre a musculatura cardíaca são mediados pelos
receptores adrenérgicos do subtipo β1. Já a inervação parassimpática atua diminuindo a
frequência cardíaca, assim como reduz a contratilidade e a pressão arterial através da
interação da acetilcolina com os receptores muscarínicos do tipo 2 (M2).
 ATENÇÃO
No coração, ambos os sistemas simpático e parassimpático têm atividade tônica, isto é, as
fibras pós-ganglionares desses sistemas apresentam potenciais de ação contínuos, com
liberação mantida de seus respectivos neurotransmissores. Assim, podemos dizer que a
frequência cardíaca de um indivíduo a cada instante é o resultado do efeito excitatório
simpático e do efeito inibitório parassimpático.
Além do seu importante papel no controle do ritmo cardíaco, o sistema nervoso autônomo é
bastante eficiente no monitoramento rápido da perfusão sanguínea para os tecidos. Para isto, o
sistema nervoso autônomo recebe informações de sensores localizados nos vasos sanguíneos
(barorreceptores) sobre a quantidade de sangue que o coração está bombeando por minuto
(débito cardíaco).
Considerando o sistema cardiovascular um sistema de tubos fechados, para que o coração
seja capaz de bombear certa quantidade de sangue por minuto ele precisa receber a mesma
quantidade das veias, fenômeno este denominado retorno venoso. Sendo assim, o sistema
nervoso autônomo promove o controle da função miocárdica, visando a manutenção do débito
cardíaco e do retorno venoso para garantir níveis adequados de oxigênio e nutrientes para os
tecidos.
VERIFICANDO O APRENDIZADO
1. O CONTROLE DO RITMO CARDÍACO PODE OCORRER POR DOIS
MECANISMOS: O INTRÍNSECO, RESPONSÁVEL PELO AUTOMATISMO
CARDÍACO; E O EXTRÍNSECO, RESPONSÁVEL POR SUA MODULAÇÃO
ATRAVÉS DAS INFLUÊNCIAS DO SISTEMA NERVOSO AUTONÔMICO.
SOBRE O AUTOMATISMO CARDÍACO, MARQUE A ALTERNATIVA QUE
CORRESPONDE À SEQUÊNCIA CORRETA DA ONDA DE ATIVAÇÃO
ELÉTRICA DO CORAÇÃO, DESDE SUA ORIGEM ATÉ AS ESTRUTURAS
QUE ENCERRAM ESTE ESTÍMULO. 
 
I) NÓ SINOATRIAL 
II) NÓ ATRIOVENTRICULAR 
III) FEIXE DE HIS 
IV) FIBRAS SUBENDOCÁRDICAS
A) III, II, I e IV
B) I, II, III e IV
C) I, III, II e IV
D) IV, III, II e I
E) I, III, IV e II
2. O SISTEMA NERVOSO AUTÔNOMO REGULA OS BATIMENTOS
CARDÍACOS ATRAVÉS DOS RAMOS SIMPÁTICOS E PARASSIMPÁTICOS.
ASSINALE A OPÇÃO QUE MELHOR EXPLICA ESSE PROCESSO:
A) Os efeitos simpáticos são mediados pelos receptores adrenérgicos do subtipo β1. Já a
inervação parassimpática atua através da interação da acetilcolina com os receptores
muscarínicos do tipo 2 (M2).
B) Os efeitos simpáticos são mediados pelos receptores muscarínicos do tipo 2 (M2). Já a
inervação parassimpática atua pelos receptores do subtipo β1.
C) Os efeitos simpáticos são regulados por acetilcolina e os parassimpáticos por norepinefrina.
D) A estimulação simpática reduz os batimentos cardíacos pela estimulação dos receptores β1.
E) A estimulação parassimpática reduz os batimentos cardíacos pela estimulação dos
receptores β1.
GABARITO
1. O controle do ritmo cardíaco pode ocorrer por dois mecanismos: o intrínseco,
responsável pelo automatismo cardíaco; e o extrínseco, responsável por sua modulação
através das influências do sistema nervoso autonômico. Sobre o automatismo cardíaco,
marque a alternativa que corresponde à sequência correta da onda de ativação elétrica
do coração, desde sua origem até as estruturas que encerram este estímulo. 
 
I) Nó sinoatrial 
II) Nó atrioventricular 
III) Feixe de His 
IV) Fibras Subendocárdicas
A alternativa "B " está correta.
 
O controle do ritmo cardíaco pode ocorrer pelos mecanismos intrínsecos (sistema de
condução) e extrínsecos (sistema nervoso autonômico). No sistema de condução, os impulsos
nervosos percorrem o nodo sinoatrial; em seguida o estímulo é deflagrado para o feixe de His
e, por fim, nas fibras endocárdicas de Purkinje.
2. O sistema nervoso autônomo regula os batimentos cardíacos através dos ramos
simpáticos e parassimpáticos. Assinale a opção que melhor explica esse processo:
A alternativa "A " está correta.
 
De modo geral, o sistema nervoso simpático estimula o aumento da contratilidade cardíaca
assim como a velocidade de contração do miocárdio, aumentando a frequência cardíaca. Isto
se dá pela ação da norepinefrina nos receptores β1. O sistema nervoso parassimpático, por
sua vez, desempenha um papel inverso através da interação da acetilcolina com os receptores
muscarínicos do tipo 2 (M2).
MÓDULO 3
 Reconhecer os fenômenos associados à função miocárdica e seu papel na
manutenção do débito cardíaco e retorno venoso
INTRODUÇÃO
A perfusão adequada de sangue para os tecidos se dá pela força de contração que o coração é
capaz de exercer (contratilidade), quer a pessoa esteja em repouso ou desenvolvendo
diferentes atividades diárias. Por isso, o coração é responsável por garantir que a quantidade
de sangue bombeada por minuto no compartimento arterial (débito cardíaco), bem como seu
retorno de volta ao coração pelas veias (retorno venoso) sejam eficientes.
 
Fonte: Shutterstock.com
O débito cardíaco depende da frequência cardíaca e do volume sistólico, e este é determinado
pela contratilidade miocárdica combinada com a magnitude do retorno venoso (pré-carga) e
com a resistência periférica total.
O retorno venoso, também caracterizado como pré-carga, é dependente da magnitude do
volume sanguíneo (volemia), bem como de outros fatores responsáveis pelo direcionamento do
sangue de volta ao coração, entre os quais a capacitância venosa.
 ATENÇÃO
Adicionalmente, levando em consideração que os fatores citados anteriormente possuem
grande impacto no débito cardíaco (normalmente, quanto maior o retorno venoso, maior será o
débito cardíaco) e na resistência periférica total (RPT), a pressão arterial também pode ser
efetivamente influenciada, uma vez que esta representa o produto do débito cardíaco e da
RPT.
MÚSCULO ESTRIADO CARDÍACO
O tecido cardíaco pode ser dividido em três camadas. Na porção externa, encontra-se o
pericárdio, dividido em duas camadas, uma fibrosae outra serosa que garantem a fixação e a
sustentação do coração na parede torácica; na porção média, fica a camada mais espessa,
responsável pela contração do coração, o miocárdio; na porção interna está localizado o
endocárdio (Figura 19).
 
Fonte: OpenStax College / 2004 Heart Wall.jpg / CC-BY-SA-3.0
 Figura 19: As camadas do coração.
O sinal para a contração do miocárdio atrial e ventricular é originado pelas células
autoexcitáveis provenientes do sistema de condução do nó sinoatrial e do atrioventricular,
porém pode ser modulado pelo sistema nervoso autônomo. Visualizando as características
estruturais, o músculo cardíaco é estriado, mas difere bastante do músculo estriado esquelético
não somente em relação à estrutura, como também em sua função.
Listamos as principais diferenças observadas entre os músculos estriados cardíaco e
esquelético (Figura 20):
 
Fonte: Shutterstock.com
 Figura 20: Diferenças entre os tipos de fibras musculares.
1 - As fibras do músculo estriado cardíaco são menores que as do músculo estriado
esquelético;
2 - As células do músculo cardíaco se ramificam com as células vizinhas, e essa conexão é
mantida graças à presença de diversos discos intercalares, denominados também junções
comunicantes;
3 - Essas junções permitem que ocorra o transporte de íons de célula para célula. Por isso,
quando uma célula é estimulada, todas as outras são estimuladas quase que simultaneamente
(motivo pelo qual o coração é considerado um sincício funcional);
4 - O retículo sarcoplasmático do miócito cardíaco é menos desenvolvido se comparado ao
músculo esquelético, fazendo com que o músculo cardíaco dependa do Ca2+ extracelular
durante o fenômeno da contração muscular;
5 - O músculo cardíaco consome cerca de 75% do oxigênio que chega a ele, isto se deve ao
fato do alto número de mitocôndrias no citoplasma (ocupam cerca de 40% do volume celular).
Quando ocorre o aumento da necessidade de oxigênio pelo miocárdio (como durante o
exercício físico), o coração consome quase todo o oxigênio que chega pelas artérias
coronárias. Por este motivo, o aumento do fluxo sanguíneo pelo miocárdio é o principal
mecanismo que garante mais oxigênio para o músculo cardíaco nessas condições.
Quando o fluxo sanguíneo miocárdico reduz devido ao estreitamento de um vaso coronário ou
de algum de seus ramos (Figura 21), como ocorre na doença arterial coronariana, as células
miocárdicas podem ser comprometidas ou até mesmo lesionadas, caracterizando o infarto do
miocárdio.
 
Fonte: Shutterstock.com
 Figura 21: Progressão da doença arterial coronariana.
ACOPLAMENTO EXCITAÇÃO-CONTRAÇÃO NO
CORAÇÃO
No músculo cardíaco, o potencial de ação inicia o acoplamento excitação-contração, e este
potencial é originado pelas células autoexcitáveis (com atividade marca-passo) do coração e se
propaga para as células vizinhas através das junções comunicantes.
 
Fonte: Shutterstock.com
 
Fonte: Shutterstock.com
 Figura 22: Etapas do acoplamento excitação-contração do miocárdio.
Veja, a seguir, as etapas do acoplamento excitação-contração do miocárdio indicadas na figura
22.
NÚMERO 1 / NÚMERO 2
Com o início do potencial de ação (Figura 22, número 1) e seu tráfego pela membrana do
músculo estriado cardíaco, ocorre a abertura dos canais de Ca2+ dependentes de voltagem
tipo L (IcaL) na membrana celular (Figura 22, número 2). O Ca2+ entra nas células através
desses canais, movendo-se a favor do seu gradiente de concentração (a concentração de Ca2+
no meio extracelular é maior que no meio intracelular).
NÚMERO 3
À medida que ocorre a entrada de Ca2+ para o interior da célula, ele promove a abertura dos
canais liberadores de Ca2+ do tipo rianodínico 2 (RyR2), localizados no retículo
sarcoplasmático (Figura 22, número 3).
 
O processo do acoplamento excitação-contração no músculo cardíaco é também chamado de
liberação de Ca2+-induzida pela entrada de Ca2+ através da membrana. Quando os canais
RyR2 se abrem, o Ca2+ estocado é liberado para o citoplasma da célula, neste momento o
Ca2+ irá desempenhar o papel no acoplamento excitação-contração, promovendo a contração
do miocárdio.
NÚMERO 4
A liberação de Ca2+ do retículo sarcoplasmático fornece cerca de 90% do Ca2+ que é
necessário para contração muscular, e os outros 10% entram na célula a partir do líquido
extracelular. O Ca2+ difunde-se pelo citosol para as proteínas contráteis, onde se liga à
troponina C e inicia a interação e o movimento das pontes cruzadas (Figura 22, número 4).
NÚMERO 5
Durante o relaxamento do miocárdio, a maior parte do Ca2+ liberado durante a contração
precisa ser removido do citoplasma para que a interação entre as pontes cruzadas seja
desfeita. A maior parte do Ca2+ é transportada de volta para o retículo sarcoplasmático (cerca
de 70%) com o auxílio de uma bomba, a Ca2+-ATPase do tipo 2 (SERCA2) (Figura 22, número
5). A outra parcela de Ca2+ que foi liberada durante a contração é removida para fora da célula
pelo trocador Na+/Ca2+ (NCX) ou é transportada para o interior das mitocôndrias.
CICLO CARDÍACO
A cada sequência de estímulos no coração inicia-se um novo ciclo cardíaco, que pode ser
compreendido como o período em que ocorre o início de um batimento até o início do próximo.
Embora os períodos em que o ciclo cardíaco ocorre sejam divididos em sístole (contração) e
diástole (relaxamento), notamos que esses períodos podem ser divididos e analisados nas sete
fases que listamos a seguir.
Cabe ressaltar que esta análise é realizada nas câmaras esquerdas do coração.
 
Fonte: DestinyQx / Wikimedia Commons / CC-BY-SA-2.5
 Figura 23: Diagrama ilustrativo das fases do ciclo cardíaco.
CONTRAÇÃO ATRIAL
O ciclo cardíaco inicia-se com a excitação atrial, com o surgimento da onda P no registro
eletrocardiográfico (ECG). A elevação da pressão atrial durante a contração origina a onda a
(Figura 23). Embora os átrios estejam se contraindo neste momento, o enchimento ventricular
ocorre antes desta fase, basta notar a curva de volume ventricular (vermelha) que sofre
pequena elevação com a contração atrial.
 
Outra observação importante é a diminuição progressiva da pressão aórtica durante a diástole
ventricular, isto porque o sangue flui dos grandes vasos arteriais em direção aos tecidos.
 
Mas por que os átrios contribuem pouco para o enchimento ventricular?
 
A explicação está relacionada com o fato de que a maior parte do enchimento ocorre, de modo
passivo, simplesmente pela abertura das valvas atrioventriculares. No entanto, quando a
frequência cardíaca está elevada, o período da fase diastólica reduz bastante. Nestas
condições, a contração atrial passa a exercer um papel importante para o enchimento
ventricular. Agora, observe a curva de volume ventricular (Figura 23, curva vermelha). Note que
nesta fase o volume ventricular atinge seu máximo valor ao final do período diastólico, por isso
é chamado de volume diastólico final.
CONTRAÇÃO VENTRICULAR ISOVOLUMÉTRICA
Após a contração atrial, quando a despolarização alcança as células do ventrículo esquerdo,
note que o complexo QRS é iniciado no ECG, seguido da sístole ventricular. Neste momento,
observamos um rápido aumento da pressão ventricular. Ao mesmo tempo ocorre o fechamento
da valva mitral, acarretando a primeira bulha cardíaca (primeiro ruído no fonocardiograma).
 
A elevação da pressão atrial, representada pela onda c, ocorre em função da interrupção do
fluxo sanguíneo do átrio para o ventrículo esquerdo (Figura 23). Observe que neste momento,
a valva mitral e a aórtica encontram-se fechadas. Sendo assim, a sístole ventricular ocorrerá
sem redução do volume no ventrículo esquerdo (esta fase da sístole é denominada contração
isovolumétrica ventricular).
 
O aumento progressivo da tensão na parede ventricular, em decorrência da fase sistólica,
produz rápido aumento da pressão no interior do ventrículo esquerdo. No momento em que
essa pressão fica mais elevada que a da aorta (pressão arterialdiastólica de 80 mmHg em
função da fase diastólica), a valva semilunar aórtica se abre, iniciando a fase de ejeção
ventricular para a aorta.
EJEÇÃO VENTRICULAR (RÁPIDA E LENTA)
Com a abertura da valva semilunar aórtica, a fase de ejeção ventricular é iniciada. Esta fase
pode ser dividida em um período inicial rápido (com duração de 0,11 s aproximadamente)
seguido de outro mais lento (cerca de 0,13 s). Esta fase é dividida em ejeção ventricular rápida
e lenta.
 
Inicialmente, observamos que ocorre o aumento da pressão ventricular (curva azul) e o declínio
da curva de volume ventricular (curva vermelha). Como a entrada de sangue na aorta ocorre
mais rapidamente do que a passagem deste para as artérias menores, a pressão aórtica, que
antes estava em reduzida (80 mmHg), agora aumenta até atingir um valor máximo (cerca de
120 mmHg), próximo da metade do tempo de ejeção ventricular (Figura 23). Isto ocorre durante
a sístole ventricular, por isso a pressão máxima é referida como pressão arterial sistólica.
 
A partir deste momento, o miocárdio ventricular inicia a fase de repolarização, conforme se
constata pelo início da onda T no ECG.
 
Ao final da sístole, a pressão ventricular encontra-se menor que a pressão aórtica, mas a
ejeção continua, com fluxo menor que na fase inicial. A ejeção é mantida pela alta aceleração
do sangue pela contração ventricular na fase anterior. A partir daí, ocorre uma queda rápida da
pressão ventricular esquerda. Isto resulta no fechamento da valva aórtica, terminando o
período de sístole e a ejeção ventricular. No momento em que ocorre o fechamento da valva
aórtica, note o surgimento da segunda bulha cardíaca no fonocardiograma (Figura 23).
 
Você irá perceber que, mesmo ao final da sístole ventricular, nem todo volume contido no
ventrículo esquerdo é lançado para a aorta, restando um certo volume de sangue no ventrículo
ao final da sístole. Este volume é chamado de volume sistólico final.
 
Durante a sístole em indivíduos normais em repouso, um volume de aproximadamente 80 ml
de sangue é ejetado (volume de ejeção ou volume sistólico) e 35ml permanecem no ventrículo
esquerdo. Dividindo os valores do volume sistólico pelo volume diastólico final, encontramos
um valor equivalente a 0,7 ou 70%, denominado como fração de ejeção.
 
Ao término da fase de contração ventricular, ocorre um aumento na onda de pressão atrial
(curva cinza), denominada v, que representa o acúmulo de sangue nos átrios quando as valvas
atrioventriculares estavam fechadas ao longo de todo o período de contração ventricular
(Figura 23).
 
Fração de ejeção = volume sistólico ÷ volume diastólico final
 
Nota Clínica: A fração de ejeção é uma variável importante para o diagnóstico clínico da
insuficiência cardíaca, uma vez que pacientes com insuficiência cardíaca congestiva
apresenta valores inferiores a 40%.
RELAXAMENTO VENTRICULAR ISOVOLUMÉTRICO
De modo similar ao que ocorre na contração isovolumétrica, nesta fase as valvas
atrioventricular e semilunar encontram-se fechadas. Então, por mais que a pressão
intraventricular esteja sofrendo grande redução, não há variação de volume. A isso
denominamos relaxamento ventricular isovolumétrico, marcando o início da diástole.
 
O valor da pressão ventricular diminui rapidamente devido ao relaxamento e consequente
queda de tensão ativa na parede ventricular. A pressão aórtica varia pouco por causa da
elasticidade de suas paredes, mas depois decresce durante toda a diástole. A pressão atrial se
eleva, pelo retorno venoso e pelo fato de a valva mitral estar fechada, até o momento em que
esta supera a pressão intraventricular.
 
Quando a pressão ventricular (esquerda) fica mais elevada que a pressão intraventricular, a
válvula mitral se abre (a válvula aórtica continua fechada) e termina a fase de relaxamento
ventricular isovolumétrica.
 
Nesta fase, ocorre a segunda bulha cardíaca, cujo som é provocado, em grande parte, pelo
contato do sangue nas valvas semilunares (aórtica), já que o sangue tenta voltar para o
ventrículo esquerdo pela grande redução de pressão nesta câmara.
ENCHIMENTO VENTRICULAR (RÁPIDO E LENTO)
Com a abertura da valva atrioventricular esquerda (bicúspide), o sangue é transportado do átrio
esquerdo em direção ao ventrículo esquerdo e, à medida que a pressão atrial se estabiliza,
ocorre a contração atrial. Por este motivo os átrios contribuem com apenas cerca de 25% do
volume ventricular.
 
O enchimento ventricular ocorre de maneira bem rápida no início, porque o gradiente de
pressão é mais elevado nesta fase inicial, favorecendo a passagem do sangue da cavidade
atrial para a ventricular. O enchimento rápido recebe grande influência da perda de tensão na
parede ventricular no início da diástole, que depende tanto da eficiência do processo de
relaxamento muscular como da complacência da câmara.
 
Assim, esse componente passivo de enchimento ocorre em menor proporção nas câmaras
mais rígidas ou menos complacentes, caracterizando a disfunção diastólica.
 
À medida que o gradiente pressórico através da valva atrioventricular diminui, na fase média da
diástole, a velocidade de enchimento se reduz. Simultaneamente, a pressão aórtica continua
caindo lentamente até atingir um valor mínimo no final da diástole (pressão arterial diastólica).
 
O CICLO CARDÍACO
Assista ao vídeo que demonstra as fases do ciclo cardíaco desde a contração atrial até o
enchimento ventricular lento.
DÉBITO CARDÍACO, RETORNO VENOSO E
REGULAÇÃO DA PRESSÃO ARTERIAL
O débito cardíaco é um parâmetro importante da função ventricular, uma vez que representa a
quantidade de sangue que é ofertado para os tecidos. Pode ser representado como a
quantidade de sangue lançada pelo ventrículo esquerdo durante o período de um minuto.
Pensando nisso, basta pegar os valores referentes ao volume sistólico (quantidade de sangue
ejetada pelo ventrículo em cada contração, que em uma pessoa em repouso é
aproximadamente de 70 a 80 ml de sangue) e multiplicar pela frequência cardíaca, que
representa o número de batimentos cardíacos durante um minuto. Desta forma, o débito
cardíaco pode ser calculado pela seguinte equação:
débito cardíaco = volume sistólico × frequência cardíaca.
Na prática, imagine que em repouso sua frequência cardíaca esteja com um ritmo de 70
batimentos por minuto e seu volume sistólico seja equivalente a 70 ml, assim, seu débito
cardíaco será de 4.900 ml/min ou, aproximadamente, 5 l/min. Por isso assume-se que o débito
cardíaco em repouso de uma pessoa saudável seja equivalente a 5 l/min.
Lembrando o que foi dito na Nota Clínica anterior sobre a fração de ejeção em pacientes
com insuficiência cardíaca congestiva, por que esse diagnóstico padronizado quando a
pessoa possui o valor inferior a 40%?
Diversos estudos demonstraram que abaixo de 40% de fração de ejeção o débito cardíaco em
repouso não consegue manter o valor mínimo de 5 l/min, levando a limitações orgânicas sérias.
Nestas condições, pode-se dizer que a pessoa possui insuficiência cardíaca descompensada.
DETERMINANTES DO DÉBITO CARDÍACO
Considerando que o débito cardíaco representa o produto da frequência cardíaca pelo volume
sistólico, qualquer fator que exerça influência nessas variáveis irá alterá-lo.
Mas não é tão simples assim, porque nem sempre aumentos da frequência cardíaca ou do
volume sistólico irão promover aumentos no débito cardíaco. Isto porque o volume sistólico não
consegue se manter estável quando ocorre um grande aumento da frequência cardíaca.
 EXEMPLO
Durante uma taquicardia (batimentos acima de 100 bpm em repouso), o intervalo entre os dois
batimentos cardíacos diminui, provocando uma redução no tempo de diástole. Assim, você
pode chegar à conclusão de que o tempo de enchimento ventricular diminui e o volume
diastólico final também ser reduz. Por este motivo, a redução do volume diastólico final e do
volume sistólico promoverá redução ou estabilização do débito cardíaco (Figura 24).Fonte: Silvio Rodrigues Marques Neto
 Figura 24: Influências da variação da frequência cardíaca (FC), volume sistólico (VS) no
débito cardíaco (DC) produzidas, por exemplo, pelo aumento gradual da intensidade do esforço
físico (% VO2).
REGULAÇÃO DO VOLUME SISTÓLICO
O volume sistólico possui um papel importante no controle do débito cardíaco e pode sofrer
influência de três fatores:
PRÉ-CARGA (RETORNO VENOSO)
A pré-carga está relacionada ao aumento do retorno venoso que, por sua vez, pode ocorrer em
função de três fatores: bomba muscular (a contração muscular comprime as veias facilitando o
retorno de sangue), bomba respiratória (os movimentos respiratórios aumentam a pressão
intra-abdominal, direcionando o sangue da região abdominal para região torácica) e
venoconstrição (representada pela constrição das veias que direcionam o sangue mais
rapidamente para o coração).
CONTRATILIDADE MIOCÁRDICA (FORÇA DE
CONTRAÇÃO)
O aumento da contratilidade (força de contração) promove um aumento da pressão
intraventricular, e esse mecanismo é responsável pela saída de maior quantidade de sangue
do ventrículo, aumentando o débito cardíaco. O aumento da contratilidade pode ocorrer em
decorrência das adaptações cardíacas promovidas pelos exercícios físicos ou quando o
coração é estimulado pelo sistema nervoso simpático.
PÓS-CARGA (RESISTÊNCIA À EJEÇÃO)
A pós-carga refere-se à força externa que promove resistência à saída de sangue pelo
ventrículo. Sendo assim, quando ocorre o aumento da pós-carga (por exemplo, aumento na
pressão arterial), por mais que a contratilidade aumente, como a força externa é muito elevada,
o débito cardíaco irá reduzir.
 
Nota Clínica: O aumento da pós-carga é um dos fenômenos provocados pela
hipertensão arterial sistêmica. Por este motivo, esta doença pode acarretar o aumento
do risco de infarto do miocárdio e do acidente vascular encefálico, já que o débito
cardíaco se torna reduzido.
Nesses três exemplos, ocorre o aumento do volume diastólico final, ou aumento da pré-carga.
Tal fenômeno aumenta a força elástica do coração, promovendo assim o aumento da força
contrátil e do débito cardíaco.
VERIFICANDO O APRENDIZADO
1. DURANTE O PROCESSO DE CONTRAÇÃO DO MÚSCULO CARDÍACO,
EXISTEM ALGUNS ASPECTOS QUE DIFEREM DO MÚSCULO ESTRIADO
ESQUELÉTICO. NAS ALTERNATIVAS ABAIXO, MARQUE AQUELA QUE
REPRESENTA O PROCESSO DE ACOPLAMENTO EXCITAÇÃO-
CONTRAÇÃO CARDÍACO:
A) Para a interação e o deslizamento entre as pontes cruzadas, é necessário que a célula
possua íons cálcio (Ca2+) e ATP, para que ocorra a interação e o deslizamento dos
miofilamentos (proteínas contráteis).
B) Durante o acoplamento excitação-contração do coração, os íons sódio e ATP são
fundamentais para que ocorra a excitação e a interação entre os miofilamentos.
C) Para que o Ca2+ seja liberado do retículo sarcoplasmático, é necessária a presença de
sódio.
D) Durante a fase diastólica, a maior parte do Ca2+ que foi liberado do retículo sarcoplasmático
sai da célula pelo trocador NCX presente na membrana celular.
E) É fundamental que a célula possua íons de hidrogênio e ATP para que ocorra a interação e
o deslizamento dos miofilamentos.
2. SABEMOS QUE O DÉBITO CARDÍACO, RETORNO VENOSO E
PRESSÃO ARTERIAL SÃO PARÂMETROS IMPORTANTES REFERENTES
À HEMODINÂMICA DO SISTEMA CARDIOVASCULAR. SOBRE ESTAS
VARIÁVEIS PODEMOS AFIRMAR QUE:
A) A pré-carga representa a pressão arterial, pois quando a pressão arterial aumenta, ocorre o
aumento da pré-carga.
B) O aumento da resistência vascular periférica pode ocorrer pela venoconstrição que, por sua
vez, promove a redução do débito cardíaco.
C) A contração muscular é responsável pela compressão das veias, também denominado
como bomba muscular. Este fenômeno é responsável pelo aumento do retorno venoso (pré-
carga) e do débito cardíaco.
D) Quanto maior a pós-carga, maior o retorno venoso e o débito cardíaco.
E) A contratilidade miocárdica reduz a pós-carga, pois seu aumento reduzirá o enchimento dos
ventrículos e, por sua vez, o débito cardíaco.
GABARITO
1. Durante o processo de contração do músculo cardíaco, existem alguns aspectos que
diferem do músculo estriado esquelético. Nas alternativas abaixo, marque aquela que
representa o processo de acoplamento excitação-contração cardíaco:
A alternativa "A " está correta.
 
Durante o acoplamento excitação-contração, o miocárdio ventricular será excitado pelo
automatismo cardíaco e não por um neurônio motor, conforme observado na contração do
músculo esquelético. Além disso, quando a membrana desta célula (miocárdio) é excitada, na
fase 2 do potencial de ação é fundamental a entrada de cálcio na célula (ca2+). Diferentemente
do músculo esquelético, no coração a entrada de ca2+ libera ca2+ do retículo sarcoplasmático
e, com isto, ocorre a interação entre os miofilamentos que acarretará a contração muscular. Por
este motivo, durante o acoplamento excitação-contração, é fundamental que a célula possua
Ca2+ e ATP, para que ocorra a interação e o deslizamento dos miofilamentos (proteínas
contráteis).
2. Sabemos que o débito cardíaco, retorno venoso e pressão arterial são parâmetros
importantes referentes à hemodinâmica do sistema cardiovascular. Sobre estas
variáveis podemos afirmar que:
A alternativa "C " está correta.
 
A pré-carga, contratilidade e pós-carga são parâmetros importantes no controle do débito
cardíaco e do retorno venoso. Sendo assim, a pré-carga representa o aumento do retorno
venoso e pode ser influenciada pela contração do músculo esquelético, também chamado de
bomba muscular. Quando os músculos contraem, promovem a compressão das veias
favorecendo o retorno do sangue de volta para o coração.
MÓDULO 4
 Comparar as respostas hemodinâmicas relacionadas à redistribuição do fluxo
sanguíneo e à manutenção da pressão arterial
INTRODUÇÃO
A redistribuição de sangue para diferentes compartimentos corporais é importante não somente
para a oferta aos tecidos, mas também para a regulação da temperatura corporal denominada
como termorregulação.
A termorregulação é um dos principais exemplos citados nos mecanismos de controle da
homeostase. Veremos que o sistema cardiovascular é um dos mais eficientes na manutenção
da temperatura corporal pelo simples fato de atuar na redistribuição do fluxo sanguíneo para
diferentes compartimentos do corpo.
Quando mensuramos nossa temperatura (próximo de 37°C) com um termômetro, temos uma
estimativa da temperatura interna, pois a temperatura externa normalmente é inferior (Figura
25).
 
Fonte: NASA / PAC / http://coolcosmos.ipac.caltech.edu/image_galleries/ir_zoo/dog.html /
Domínio público
 Figura 25: Imagem de uma termografia mostrando que a temperatura interna é superior à
externa.
REDISTRIBUIÇÃO DO FLUXO SANGUÍNEO
NA MANUTENÇÃO DA TEMPERATURA
CORPORAL
Os mecanismos responsáveis pela perda de calor pelo corpo podem ser classificados em
quatro processos: irradiação, condução, convecção e evaporação. Os três primeiros
mecanismos de perda de calor necessitam de um gradiente de temperatura entre a pele e o
meio ambiente:
Na irradiação, a perda de calor ocorre através da transferência de raios infravermelhos do
corpo em direção ao ambiente. Em repouso, esse mecanismo representa cerca de 60% da
perda de calor corporal.
A condução está relacionada com a transferência de calor do corpo para as moléculas
presentes nos objetos que entram em contato direto com a superfície corporal. Geralmente, o
corpo perde somente pequenas quantidades de calor em decorrência desse processo. Um
exemplo para esse mecanismo é a transferência de calor do corpo para uma cadeira de metal.
Quando uma pessoa permanece sentada, o fenômeno ocorre enquanto a cadeira estiver mais
fria do que a superfície corporal que está em contato.
A convecção é uma forma de transferência de calor pelo contato das partículas de ar e da
água com a superfície corporal. Quando isto ocorre, o calor da superfície corporal se dissipa
para o meio ambiente. Demodo prático, a utilização de um ventilador desloca grandes
quantidades de ar na superfície corporal, acarretando a perda de calor. Deste modo, a
eficiência desse mecanismo depende da velocidade do fluxo de ar em contato com a superfície
corporal. De maneira semelhante, a exposição da pessoa em água fria e em movimento resulta
em uma grande perda de calor, também por convecção. Cabe lembrar que a água possui uma
força convectiva cerca de 25 vezes maior do que a apresentada pelo ar a uma mesma
temperatura.
Durante os períodos de calor ou quando estamos realizando exercícios físicos, a evaporação
é o principal mecanismo de regulação da temperatura, e é neste mecanismo que o sistema
cardiovascular atua. Na evaporação, o calor é transferido do corpo para a água na superfície
da pele em forma de suor. Na medida em que a água acumula calor, ela sofre o processo de
evaporação e é dissipada para o ambiente. Deste modo, durante o exercício ou em dias
quentes, a temperatura corporal aumenta assim como o fluxo sanguíneo cutâneo.
Simultaneamente, as glândulas sudoríparas secretam suor sobre a superfície da pele.
Conforme as partículas de água evaporam, o calor é transferido para o meio ambiente, o que
contribui para a manutenção da temperatura corporal.
A ORGANIZAÇÃO DO MECANISMO DE PERDA
DE CALOR ENVOLVENDO O SISTEMA
CARDIOVASCULAR
Inicialmente, os estímulos referentes às variações de temperatura no meio ambiente são
captados por receptores sensoriais (termorreceptores) localizados na região cutânea (Figura
26).

Em seguida, os estímulos são enviados primeiro para a medula espinhal (coluna dorsal, DH) e,
em seguida, para o núcleo parabraquial (LPB). Observe que os estímulos referentes ao frio são
direcionados para a região externa lateral (LPBel, em azul) e os relacionados ao calor, para a
região direita deste núcleo (LPBd, em vermelho).

Na sequência, esses estímulos são direcionados para a área pré-óptica mediana (MnPO).
Nesta região, neurônios excitatórios (glutamatérgicos, GLU em verde) ou inibitórios
(GABAérgicos, GABA em vermelho) são projetados para a área pré-óptica medial (MPO).
Neste local, encontram-se os centros de integração mais importantes para a regulação da
temperatura, pois regulam a atividade de tecidos que são importantes na promoção da
termogênese (produção de calor), entre eles: o centro cardiovascular, o tecido adiposo
marrom e o músculo esquelético.
MÚSCULO ESQUELÉTICO
O músculo esquelético, especialmente, é recrutado durante o frio e desencadeia o
fenômeno dos tremores.
 ATENÇÃO
Este último, especialmente, é recrutado durante o frio e desencadeia o fenômeno dos tremores.
Como nosso foco está voltado para o centro cardiovascular, veremos o que irá acontecer a
partir daqui. Nesta área, existem núcleos que são excitados com estímulos provenientes do
calor e do frio:
CALOR
Durante o calor (CVC, em vinho), os núcleos são estimulados – mas perceba que esses
núcleos liberam o neurotransmissor inibitório GABA para os núcleos da rafe (rRPa). Neste
sentido, os neurônios inibitórios projetados para os núcleos da rRPa irão inibir neurônios
estimulantes, responsáveis pela liberação de glutamato (GLUT). Os neurônios glutamatérgicos
javascript:void(0)
dessa região (rRPa) se projetam para a cadeia simpática ou intermediolateral, responsáveis
pela regulação da atividade simpática e controle da resposta cardiovascular ao calor. 
 
À medida que os neurônios excitatórios (GLUT) da rafe são inibidos, os neurônios pós-
ganglionares simpáticos irão diminuir a resposta simpática para os vasos na região cutânea,
acarretando a vasodilatação nesta região que ajudará no mecanismo de evaporação e
evitará que ocorra o aumento da temperatura central (hipertermia).

FRIO
Durante o frio, neurônios inibitórios irão se projetar até o centro cardiovascular e, em seguida,
deixarão de inibir os neurônios excitatórios localizados nos núcleos da rRPA. Assim, os
estímulos excitatórios provenientes da rRPA irão aumentar a atividade dos neurônios pós-
ganglionares simpáticos e, como consequência, promoverão vasoconstrição na região
cutânea. 
 
Por este motivo, durante o frio, o fluxo sanguíneo na região cutânea reduz e a pessoa se
apresenta pálida. Isso ocorre para redirecionar o sangue para a região central e conservar o
calor do corpo, evitando assim a hipotermia.
Veja o resumo do mecanismo da perda de calor na imagem a seguir:
 
Fonte: Silvio Rodrigues Marques Neto.
 Figura 26: Mecanismos responsáveis pelo controle da temperatura corporal através do
sistema cardiovascular.
Outros fatores podem interferir no mecanismo de termorregulação. Entre eles, a umidade
relativa do ar e a velocidade do vento. Este último contribui com a perda de calor relacionada à
convecção do ar. A umidade relativa do ar pode ser representada como o percentual de vapor
de água contido no ar.
 EXEMPLO
A umidade relativa do ar de 40% indica que o ambiente contém apenas 40% da umidade que é
capaz de sustentar. Ou ainda, quando a umidade relativa do ar se encontra a 80%, significa
que apenas mais 20% de umidade podem ser absorvidos pelo ar que nos rodeia. A umidade
relativa do ar de 40% com temperatura de 22°C indica risco baixo no índice de estresse
causado pelo calor (baixa sensibilidade térmica), enquanto a umidade relativa de 80% numa
condição térmica de 33°C apresenta alto risco de estresse térmico (alta sensibilidade térmica).
Na primeira condição, não haverá dificuldade em promover a regulação da temperatura
corporal. No entanto, no segundo caso, a pessoa terá mais dificuldade em realizar a
evaporação, uma vez que já existe uma grande quantidade de vapor no ambiente, dificultando
a transferência de calor.
REGULAÇÃO DA PRESSÃO ARTERIAL A
CURTO PRAZO
A regulação da pressão arterial a curto prazo é mediada pelo mecanismo envolvendo os
barorreceptores arteriais, também chamado de mecanismo barorreflexo. Os barorreceptores
são considerados mecanorreceptores localizados no arco aórtico e na bifurcação das artérias
carótidas comuns (Figura 27).
Quando ocorre o aumento do débito cardíaco e da pressão arterial, essas artérias são
excessivamente dilatadas ocasionando deformações. Quanto maior for a deformação do arco
aórtico e das artérias carótidas, maior será a frequência de disparo através desses
mecanorreceptores.
 
Fonte: Shutterstock.com
 Figura 27: Mecanismo de regulação da pressão arterial pelos barorreceptores arteriais.
Quando ocorre a elevação da pressão arterial, os barorreceptores são ativados e enviam
impulsos nervosos para o tronco cerebral, especificamente para o núcleo do trato solitário,
informando sobre a elevação da pressão arterial (deformação das artérias).
Assim, este promove a excitação dos neurônios pré-ganglionares parassimpáticos, localizados
na região do núcleo dorsal motor do nervo vago e núcleo ambíguo. Com isso, ocorre o
aumento do tônus vagal, através da excitação dos neurônios depressores do bulbo
ventrolateral caudal e da inibição da atividade dos neurônios da região bulbar ventrolateral
rostral (redução do tônus simpático).
A resposta efetora desencadeada por estes centros nervosos promove a redução da
frequência cardíaca, do volume sistólico, da resistência periférica e do retorno venoso. Como
consequência, o débito cardíaco reduzirá promovendo a redução da pressão arterial.
Inversamente, durante uma redução da pressão arterial acentuada, observamos respostas de
taquicardia e vasoconstrição reflexas que prontamente a trazem de volta a seus valores basais.
Neste caso, os barorreceptores aórticos e carotídeos são menos ou não são deformados, e a
atividade aferente dos nervos depressores aórtico e sinusal é reduzida ou mesmo suprimida.
 
Fonte: Shutterstock.com
Os neurônios do núcleo do trato solitário deixam de excitar os neurônios pré-ganglionares
parassimpáticos localizados no núcleo dorsal motor do nervo vago e núcleo ambíguo (redução
do tônus vagal).
Não excitando os neurônios depressoresdo bulbo ventrolateral caudal, ocorre a liberação da
atividade dos neurônios do bulbo ventrolateral rostral (aumento simultâneo do tônus simpático),
criando as condições necessárias para que a frequência cardíaca e o volume sistólico se
elevem e haja elevação da resistência periférica por vasoconstrição e do retorno venoso por
venoconstrição. Deste modo, ocorre um aumento do débito cardíaco, o qual traz a pressão
arterial para seus valores basais.
REGULAÇÃO DA PRESSÃO ARTERIAL A
LONGO PRAZO
A longo prazo, existe um sistema importante no mecanismo de regulação da pressão, o
sistema renina-angiotensina-aldosterona. Este sistema é considerado como peptidérgico com
características endócrinas, cujo substrato principal é o angiotensinogênio, uma α-glicoproteína
predominantemente produzida no fígado.
O angiotensinogênio é clivado pela enzima renina, secretada pelas células do aparelho
justaglomerular nas arteríolas aferentes nos rins, as quais convertem o angiotensinogênio à
forma de um decapeptídeo, denominado angiotensina I.
A angiotensina I não possui atividade biológica tão relevante e o seu aumento leva à formação
de um octapeptídeo, denominado de angiotensina II. A reação de conversão da angiotensina I
para angiotensina II é catalisada pela ação da enzima conversora de angiotensina (ECA), que
é expressa em altas concentrações pelo endotélio da circulação pulmonar (Figura 28).
 
Fonte: Shutterstock.com
 Figura 28: Organização do sistema renina-angiotensina-aldosterona e suas influências no
sistema cardiovascular.
A ação da angiotensina II, via receptor AT1-R, está acoplada à proteína Gq qu,e por sua vez,
ativa a fosfolipase C-beta (PLCβ). A PLCβ ativada age sobre o fosfatidilinositol 4,5-bifosfato
(PIP2) transformando-o em dois subprodutos: inositol 1,4,5-trifosfato (IP3) e o diacilglicerol
(DAG).
O IP3 difunde-se rapidamente para o citosol e age em canais de cálcio do retículo
sarcoplasmático, promovendo a liberação de Ca2+ desta organela, que ativa uma proteína
cinase C (PKC). A PKC promove a fosforilação da proteína cinase ativada por mitógeno
(MAPK) que, por sua vez, promove a ativação de outras cinases, tais como: cinase p38, cinase
reguladora de sinal extracelular (ERK), cinase c-jun terminal (JNK), janus cinase e transdutores
de sinal e ativadores de transcrição (JAK/STAT). Todas essas cinases ativam e aumentam a
expressão de fatores de transcrição (ATF2, ATF6, c-Jun, Elk1, GATA4 e MEF2) que participam
da regulação da proliferação e do crescimento celular, desencadeando hipertrofia cardíaca.
 ATENÇÃO
Por isso, a angiotensina II é considerada o principal peptídeo ativo do sistema renina-
angiotensina-aldosterona que, ao agir em receptores específicos na musculatura lisa vascular
(receptores do tipo 1, AT1-R), produz vasoconstrição intensa, aumento da reabsorção de Na+,
resultando no aumento da pressão arterial. Adicionalmente, interage com receptores do córtex
da glândula supra adrenal, estimulando a produção e liberação da aldosterona, que interage
com receptores mineralocorticoides nos túbulos renais estimulando a reabsorção de sódio e a
secreção de potássio. Tal efeito irá promover o aumento do volume sanguíneo (volemia) e o
aumento da pressão arterial.
OS MECANISMOS REGULATÓRIOS DA
PRESSÃO ARTERIAL
Assista ao vídeo que demonstra os mecanismos de regulação de curto e longo prazo da
pressão arterial.
VERIFICANDO O APRENDIZADO
1. O SISTEMA BARORREFLEXO É MUITO IMPORTANTE NO CONTROLE
IMEDIATO DA PRESSÃO ARTERIAL, TAL FATO SE DEVE À:
A) Pressão arterial aumentada, pois o número de impulsos pelos barorreceptores (aórticos e
carotídeos) diminui, fazendo com que os corpos celulares do sistema simpático bulbo ventro-
lateral caudal desempenhem uma resposta efetora ao coração para diminuir a pressão arterial.
B) Ação do núcleo do trato solitário, que aumenta a taxa de impulsos para os núcleos do
sistema parassimpático. Assim, a resposta efetora ao coração diminui a frequência cardíaca,
volume de ejeção, retorno venoso, contratilidade e aumenta a capacitância venosa para
diminuir a pressão arterial.
C) Redução da secreção de renina nos rins e, como consequência final, ocorre aumento da
retenção de sódio e água; e tal mecanismo aumenta a pressão arterial a longo prazo.
D) Elevação da volemia e da osmolaridade plasmática que inibe a secreção do hormônio
antidiurético. Deste modo, ocorrerá diminuição da reabsorção de sódio e água e aumento da
natriurese e diurese para diminuir a pressão arterial.
E) Ativação dos barorreceptores, que promoverá um aumento da resistência vascular periférica
e, por fim, manter a pressão arterial.
2. O SISTEMA RENINA-ANGIOTENSINA-ALDOSTERONA (RAA) É MUITO
ESTUDADO PELOS CARDIOLOGISTAS NA CLÍNICA EM FUNÇÃO DA SUA
PARTICIPAÇÃO NA REGULAÇÃO DA PRESSÃO ARTERIAL. SOBRE ESTE
SISTEMA, PODEMOS AFIRMAR QUE: 
 
I. EM RESPOSTA À QUEDA DA PRESSÃO ARTERIAL NA ARTÉRIA RENAL
(HIPOTENSÃO), OCORRE AUMENTO DA PRODUÇÃO DE RENINA. 
II. A RENINA É CONVERTIDA EM ANGIOTENSINA GRAÇAS À AÇÃO
CATALISADORA DA ENZIMA CONVERSORA DE ANGIOTENSINA (ECA). 
III. A ANGIOTENSINA II É CONSIDERADA UM POTENTE
VASOCONSTRITOR ARTERIAL. 
IV. ESTE SISTEMA ATUA NA REDUÇÃO DA PRESSÃO ARTERIAL
(HIPERTENSÃO). 
 
DE ACORDO COM OS CONHECIMENTOS OBTIDOS NESTE MÓDULO,
MARQUE A OPÇÃO CORRETA:
A) Apenas a I está correta.
B) Apenas a III está correta.
C) As opções II e III estão corretas.
D) As opções I, II e III estão corretas.
E) As opções I e II estão corretas.
GABARITO
1. O sistema barorreflexo é muito importante no controle imediato da pressão arterial, tal
fato se deve à:
A alternativa "B " está correta.
 
O sistema barorreceptor é o sistema mais rápido no controle da pressão arterial. Quando
aumenta a PA, aumenta o número de impulsos pelo núcleo do trato solitário. Como
consequência, os neurônios do sistema nervoso periférico aumentam a frequência de disparos
para os órgãos efetores, visando a redução da pressão arterial e a inibição do sistema nervoso
simpático.
2. O sistema renina-angiotensina-aldosterona (RAA) é muito estudado pelos
cardiologistas na clínica em função da sua participação na regulação da pressão arterial.
Sobre este sistema, podemos afirmar que: 
 
I. Em resposta à queda da pressão arterial na artéria renal (hipotensão), ocorre aumento
da produção de renina. 
II. A renina é convertida em angiotensina graças à ação catalisadora da enzima
conversora de angiotensina (ECA). 
III. A angiotensina II é considerada um potente vasoconstritor arterial. 
IV. Este sistema atua na redução da pressão arterial (hipertensão). 
 
De acordo com os conhecimentos obtidos neste módulo, marque a opção correta:
A alternativa "D " está correta.
 
O sistema renina-angiotensina-aldosterona é um dos principais alvos para o controle da
hipertensão arterial sistêmica, porque quando este sistema é ativado, ocorre o aumento na
liberação de renina. A consequência é o aumento na formação da angiotensina II e, em
seguida, o aumento da pressão arterial. Por isso, o uso de medicamentos bloqueadores deste
sistema ou inibem a produção de angiotensina II, ou inibem a ação deste peptídeo nos
receptores AT1-R, para que não ocorra a vasoconstrição, o aumento da volemia ou o aumento
da produção de aldosterona. Consequentemente, a pressão arterial não aumentará.
CONCLUSÃO
CONSIDERAÇÕES FINAIS
Vimos que o sistema cardiovascular se organiza, a fim de garantir a oferta de oxigênio e
nutrientes para os tecidos através de uma complexa rede de integração de diferentes
estruturas. Deste modo, há necessidade da manutenção de forma equilibrada do controle do
ritmo cardíaco.
Assim como outros órgãos, o coração depende da propagação de potencial de ação. No
entanto, trata-se de uma estrutura capaz de gerar esse estímulo de forma intrínseca, o que lhe
confere uma característica peculiar. Apesar dessa singularidade, fatores extrínsecos
desempenham um papel de controle do ritmo cardíaco: o sistema nervoso autônomo através
da ação dos ramos

Outros materiais