Ed
há 3 meses
Para resolver a questão, vamos usar a segunda lei de Newton, que relaciona força, massa e aceleração. A fórmula é: \[ F = m \cdot a \] Onde: - \( F \) é a força média, - \( m \) é a massa do carrinho, - \( a \) é a aceleração. Primeiro, precisamos calcular a aceleração do carrinho. Sabemos que a velocidade final (\( v_f \)) é 8 m/s, a velocidade inicial (\( v_i \)) é 0 m/s (pois o carrinho está em repouso) e o tempo (\( t \)) é 0,2 s. A aceleração (\( a \)) pode ser calculada pela fórmula: \[ a = \frac{v_f - v_i}{t} \] Substituindo os valores: \[ a = \frac{8 \, \text{m/s} - 0 \, \text{m/s}}{0,2 \, \text{s}} = \frac{8 \, \text{m/s}}{0,2 \, \text{s}} = 40 \, \text{m/s}^2 \] Agora, precisamos converter a massa do carrinho de gramas para quilogramas, pois a unidade padrão de massa no Sistema Internacional é o quilograma: \[ m = 300 \, \text{g} = 0,3 \, \text{kg} \] Agora podemos calcular a força média: \[ F = m \cdot a = 0,3 \, \text{kg} \cdot 40 \, \text{m/s}^2 = 12 \, \text{N} \] Portanto, o módulo da força média (F) aplicada pelo ar expelido pelo tubo sobre o carrinho é igual a 12 N. A alternativa correta é: c) 12 N.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Ed
ano passado
Para determinar o módulo da força média aplicada pelo ar expelido pelo tubo sobre o carrinho, podemos utilizar a Segunda Lei de Newton, que relaciona a força resultante aplicada a um corpo com sua aceleração: F = m * a Onde: F = força resultante aplicada (que queremos encontrar) m = massa do carrinho (300 g = 0,3 kg) a = aceleração do carrinho Sabemos que a aceleração pode ser calculada pela equação da cinemática: v = a * t Onde: v = velocidade final do carrinho (8 m/s) t = tempo necessário para comprimir o fole (0,2 s) Assim, a aceleração do carrinho é: a = v / t a = 8 / 0,2 a = 40 m/s² Agora, podemos calcular a força resultante aplicada: F = m * a F = 0,3 * 40 F = 12 N Portanto, o módulo da força média aplicada pelo ar expelido pelo tubo sobre o carrinho é de 12 N, o que corresponde à alternativa c) 12 N.
Mais perguntas desse material