Ed
há 11 meses
Para resolver a questão, precisamos usar a identidade da tangente para ângulos. A fórmula que podemos usar é: \[ \tan(360^\circ - \theta) = \tan(-\theta) = -\tan(\theta) \] Neste caso, temos: \[ \tan(360^\circ - 30^\circ) = \tan(-30^\circ) = -\tan(30^\circ) \] Sabemos que: \[ \tan(30^\circ) = \frac{1}{\sqrt{3}} \] Portanto: \[ \tan(-30^\circ) = -\frac{1}{\sqrt{3}} \] Assim, o valor de \( \tan(360^\circ - 30^\circ) \) é: \[ -\frac{1}{\sqrt{3}} \] A alternativa correta é: c) \( -\frac{1}{\sqrt{3}} \).
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material