Ed
há 10 meses
Para que a equação quadrática \( kx^2 + 2x + 1 = 0 \) tenha uma raiz dupla, o discriminante deve ser igual a zero. O discriminante \( D \) é dado pela fórmula: \[ D = b^2 - 4ac \] Neste caso, temos: - \( a = k \) - \( b = 2 \) - \( c = 1 \) Substituindo na fórmula do discriminante: \[ D = 2^2 - 4(k)(1) \] \[ D = 4 - 4k \] Para que haja uma raiz dupla, devemos ter: \[ 4 - 4k = 0 \] Resolvendo a equação: \[ 4 = 4k \] \[ k = 1 \] Portanto, o valor de \( k \) que faz com que a equação tenha uma raiz dupla é: B) 1.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material