Ed
há 10 meses
Para encontrar a área da região definida pela desigualdade \(1 < |x|\), precisamos entender o que essa desigualdade representa. A desigualdade \(1 < |x|\) significa que \(x\) deve ser menor que -1 ou maior que 1. Portanto, a região que satisfaz essa condição é composta por dois intervalos: \(x < -1\) e \(x > 1\). Se considerarmos a área no plano cartesiano, essa região se estende indefinidamente para cima e para baixo, mas em relação ao eixo \(x\), ela é limitada entre as linhas verticais \(x = -1\) e \(x = 1\). A área entre essas duas linhas verticais, em um gráfico, é infinita, pois se estende para cima e para baixo sem limites. Portanto, a área da região definida por \(1 < |x|\) é infinita.