Buscar

Funções Básicas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 94 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 94 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 94 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 1/94
Funções básicas
Profª. Aneuri Souza de Amorim
Descrição
Conceitos iniciais da matemática para a solução de equações de primeiro grau e de segundo grau, bem
como de funções exponenciais e logarítmicas, além de suas representações e interpretações gráficas.
Propósito
A análise e a compreensão de fenômenos e situações do cotidiano na área da saúde demandam a
construção e a interpretação de gráficos por meio da solução de equações de primeiro e segundo grau e das
funções exponenciais e logarítmicas, o que torna esses conhecimentos matemáticos essenciais à sua
atuação profissional.
Preparação
Antes de iniciar este conteúdo, certifique-se de que tem acesso a uma calculadora científica, e tenha em
mãos papel, caneta e régua para a resolução dos exercícios algébricos e confecção de gráficos no plano
cartesiano.
Objetivos
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 2/94
j
Módulo 1
Funções de primeiro grau
Reconhecer as propriedades das funções de primeiro grau.
Módulo 2
Funções de segundo grau
Reconhecer as propriedades das funções de segundo grau.
Módulo 3
Funções exponenciais
Reconhecer as propriedades das funções exponenciais.
Módulo 4
Funções logarítmicas
Reconhecer as propriedades das funções logarítmicas.
Na área de saúde, é comum o uso de variadas funções matemáticas para descrever diversos
comportamentos, como o crescimento linear da resposta de um grupo de pacientes a dado
medicamento, por exemplo.
A compreensão dessas funções matemáticas, suas soluções próprias e as particularidades nas
construções de representações gráficas permitem aos profissionais de saúde representar diferentes
Introdução
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 3/94
1 - Funções de primeiro grau
Ao �nal deste módulo, você reconhecerá as propriedades das funções de
primeiro grau.
Características da função de primeiro grau
A função de primeiro grau é caracterizada por possuir uma relação entre duas variáveis Y e X, que podem
ser representadas no plano cartesiano, sendo Y representado no eixo vertical e X no eixo horizontal. Com
esse tipo de equação, estuda-se a variação de Y quando X varia de forma linear, ou seja, quando X tem
expoente 1. Essa função tem como principal finalidade escrever uma fórmula matemática na qual
consigamos atribuir valores à variável X e obtermos o valor de Y. Sua equação é:
fenômenos e interpretar o comportamento de funções pelo uso de gráficos.
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 4/94
Onde:
X e Y
São as variáveis.
a e b
São os coeficientes.
Para que essa função exista, .
Equações algébricas em situações contextualizadas
com funções de primeiro grau
Existem diferentes aplicações da função de primeiro grau em variadas áreas, inclusive
no nosso dia a dia. Devemos ser capazes de observar se há a possibilidade de
escrever uma fórmula matemática que permita encontrar um valor desejado atribuindo
valores para uma dada variável e realizando operações matemáticas descritas nesse
tipo de função.
Exemplo
A título de exemplo, podemos pensar em uma situação do cotidiano: uma pessoa vai
almoçar em um restaurante que serve comida por quilo O valor do quilograma da
Y = aX + b
a ≠ 0
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 5/94
almoçar em um restaurante que serve comida por quilo. O valor do quilograma da
comida é R$30, porém, para pagamentos no cartão de crédito, o restaurante cobra
uma taxa fixa de R$5.
Analisando essa situação, uma pessoa pode saber quanto gastará assim que souber o
peso total dos alimentos que selecionou, basta transformar essa descrição em uma
equação matemática. Se pensarmos em calcular o valor final a pagar, essa é a variável
que queremos calcular, Y; como a quantidade de comida em quilograma varia de
pessoa para pessoa, essa é a variável X, para a qual serão atribuídos valores diferentes
a fim de calcular o resultado final. Sendo assim, a equação estruturada ficará da
seguinte forma:
Onde:
Y
Representa o que queremos saber, o valor final a pagar.
30
É o valor por cada quilograma selecionado no prato.
X
É o valor em quilograma da quantidade colocada no prato.
Y = 30X + 5
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 6/94
5
É o valor fixo cobrado para pagamento com cartão de crédito.
Dessa forma, podemos prever o gasto para pagamento no cartão de crédito da
quantidade de comida selecionada.
Suponha que uma pessoa colocou no prato 0,3kg e outra 0,5kg, quanto cada uma irá
pagar?

Pessoa 1

Pessoa 2
Assim, conseguimos prever os valores a serem pagos para qualquer peso de comida.
É importante observar que a lei de formação da função de primeiro grau possui
sempre um valor constante (coeficiente b) somado ao produto de uma quantidade fixa
e um valor variável na forma linear (coeficiente a), ou seja, com expoente 1.
Y = 30 ⋅ 0, 3 + 5
Y = 9 + 5 = 14
Y = 30 ⋅ 0, 5 + 5
Y = 15 + 5 = 20
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 7/94
Vamos analisar outra situação para compreender melhor essa lei de formação.
Suponhamos a importação de vacinas feitas pelo Brasil para o tratamento de uma
doença que está atingindo uma grande parcela da população. Essas vacinas serão
transportadas de forma rápida diretamente da China para o Brasil, em voo direto, a um
custo total de US$2 milhões. A negociação foi feita diretamente com o laboratório
produtor e conseguiu-se o preço de US$10 por dose de vacina. Vamos estruturar e
escrever essa lei de formação usando a função de primeiro grau.
Onde:
Y
Representa o custo total que queremos calcular.
X
Representa a quantidade de doses de vacina.
10
É o preço por unidade de vacina.
2.000.000
Y = 10X + 2.000.000
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 8/94
É o valor do transporte do produto.
Dessa forma, pode-se planejar o gasto final da compra de qualquer quantidade de
vacina. Por exemplo, quanto se gastará caso sejam compradas 50 milhões de doses
dessa vacina? Basta resolvermos e calcularmos a equação da seguinte forma:
Imagine uma pesquisa que avalia o crescimento de uma bactéria no corpo humano.
Observou-se que, no primeiro dia de contato com o ser humano, já surgem 1.000
bactérias na pessoa contaminada e que, a cada dia que passa sem tratamento
médico, há um crescimento de 20 bactérias por dia. Vamos estruturar a lei de
formação da situação descrita na forma de uma equação matemática, partindo dos
seguintes dados: uma parte inicial constante de 1.000 bactérias no primeiro dia de
contato com ser humano e uma parte variável de 20 bactérias por dia nos demais dias.
Obtemos a seguinte equação:
Suponha agora que um médico queira saber quantas bactérias tem seu paciente que
teve contato com o microrganismo 15 dias antes da consulta, para assim poder prever
a quantidade de medicação que vai prescrever. Será possível calcular essa quantidade
de bactérias nesse período de tempo da seguinte forma:
Y 1 300 bactérias
Y = 10(50.000.000) + 2.000.000
Y = 500.000.000 + 2.000.000
Y = 502.000.000
Y = 20X + 1.000
Y = 20(15) + 1.000
Y = 300 + 1.000
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 9/94
Y=1.300 bacterias
Resumindo
A função de primeiro grau tem uma parte constante e uma parte variável, descrita por
sua variável com expoente 1, de forma linear.
Equação de primeiro grau
Neste vídeo, o especialista Sandro Davison demonstrará como resolver uma equação de primeiro grau.
Construção do grá�co relacionadoà função
Também chamada de função afim, a função de primeiro grau pode ser descrita
conforme visto anteriormente:
Nesse caso:
• X e Y são as variáveis.
• a e b são os coeficientes.
Para que essa função exista, .
Essa função descreve uma reta em um plano cartesiano bidimensional, com seus
termos identificados da seguinte forma:

Y = aX + b
a ≠ 0
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 10/94
termos identificados da seguinte forma:
Y
São os valores do par ordenado no eixo Y.
X
São os valores do par ordenado no eixo X.
a
É chamado de coeficiente angular da reta.
b
É chamado de coeficiente linear da reta.
Para a construção de um gráfico de uma reta em um plano cartesiano, resolvemos a
equação anterior atribuindo valores a X e obtendo valores correspondentes para Y.
Contudo, antes de iniciarmos a construção da reta, apresentaremos o plano cartesiano
e os pares ordenados, que serão necessários para a representação da reta.
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 11/94
Gráfico: Representação dos eixos cartesianos X e Y e sua divisão em quadrantes. 
Elaborado por Aneuri de Amorim.
O eixo X, também chamado de abscissa, é o eixo horizontal do plano cartesiano; já o
eixo Y, conhecido como ordenada, é o eixo vertical desse plano. Os dois eixos se
cruzam em um único ponto que chamamos de origem dos eixos.
Qualquer ponto a ser representado no plano cartesiano deve possuir um par ordenado
da forma (X, Y), sempre nessa ordem: o primeiro corresponde ao valor do eixo X, o
segundo, ao valor do eixo Y. Então, um ponto qualquer P pode ser identificado e
representado no plano cartesiano, como podemos ver a seguir:
Gráfico: Plano cartesiano em escala com o ponto P (2, 5) representado. 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Nessa imagem, vemos o ponto P (2, 5) representado no plano cartesiano: seu valor no
eixo X é 2 e seu valor no eixo Y é 5. Assim, devemos marcar o ponto de interseção
entre esses dois valores, que corresponde ao ponto P (2, 5).
Para representar a função de primeiro grau no plano, que é uma reta, vamos escolher
valores para X (eixo horizontal do plano) e calcular o valor correspondente de Y (eixo
vertical do plano), obtendo assim alguns pares ordenados. Então, ligaremos os pontos
e traçaremos a reta formada pelos resultados da equação da função de primeiro grau.
A título de exemplo, vamos traçar o gráfico da reta dada por esta função de primeiro
grau:
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 12/94
grau:
Existe ainda uma particularidade: entre dois pontos no plano cartesiano, só é possível
traçarmos uma única reta. Logo, precisamos apenas de dois pares ordenados para
traçarmos a reta. Escolheremos, então, dois valores da variável X para encontrar o
valor correspondente da variável Y e assim obter dois pares ordenados.
Inicialmente, consideraremos X=1, portanto, devemos substituir esse valor na equação
da reta anterior.
Então, quando X for 1, Y vale 5, e assim temos o primeiro par ordenado: (1,5).
Consideraremos agora X=-1.
Então, quando X for –1, Y vale 3, e assim temos o segundo par ordenado: (-1,3)
Podemos resumir os cálculos no seguinte quadro:
X Y
Y = X + 4
Y = (1) + 4
Y = 1 + 4
Y = 5
Y = (−1) + 4
Y = −1 + 4
Y = 3
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 13/94
X Y1 1
-1 3
Elaborado por Aneuri de Amorim.
Finalmente, vamos marcar esses pontos no plano cartesiano e traçar a reta que os
une.
Gráfico: Plano cartesiano em escala com os pontos (1, 5) e (–1, 3) e a reta Y=X+4 representados na imagem. 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Grá�co da função de primeiro grau
Agora, o especialista Sandro Davison demonstrará como construir um gráfico da função de primeiro grau.
Inferências sobre um grá�co e seus coe�cientes
Neste estudo, você aprendeu que a função de primeiro grau é descrita pela equação
geral:

Y = aX + b
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 14/94
Vimos também como se constrói um gráfico atribuindo valores para X e calculando
valores para Y e, além disso, sabemos que o gráfico dessa função no plano cartesiano
sempre será uma reta. Contudo, podemos construir esse gráfico e analisar algumas
características e particularidades a partir da análise dos coeficientes a e b da
equação.
Coe�ciente angular
O coeficiente a é chamado de coeficiente angular da reta, pois representa a sua
inclinação. Temos duas possibilidades:
Gráfico: Reta , representando o coeficiente angular crescente a > 0. 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Coe�ciente angular positivo: a>0
Significa que a inclinação da reta será positiva, isto é, será uma reta crescente e o ângulo com o eixo X
será menor do que 90°.
A reta apresentada a seguir foi construída usando a seguinte equação:
Onde a=2 (a>0).
Y = 2X − 3
Y = 2X − 3
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 15/94
Gráfico: Reta , representando o coeficiente angular crescente a>0. 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Coe�ciente angular negativo: a < 0
Significa que a inclinação da reta será negativa, portanto, uma reta decrescente. Nesse caso, o ângulo
com o eixo X será maior do que 90°.
A reta negativa apresentada adiante foi construída a partir da seguinte equação:
Podemos ver, nessa equação, que a=-2, logo, a <0.
Coe�ciente linear
Já o coeficiente b é chamado de coeficiente linear da reta. Ele representa o ponto em
que a reta irá tocar o eixo Y e sempre será o par ordenado (0, b), obtido ao assumir o
valor X=0 na equação geral da reta:
Nos dois gráficos anteriores, podemos ver que os pontos onde as retas tocam o eixo Y
podem ser obtidos por suas equações.
No primeiro grá�co
A equação da reta é dada por: 
b=-3
Y = −4X + 4
Y = −2X + 2
Y = aX + b
Y = a(0) + b
Y = 0
Y = 2X − 3
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 16/94
b 3
Podemos ver que a reta toca o eixo Y no ponto (0,-3).
No segundo grá�co
A equação da reta é dada por: 
Temos: b=2
Logo, a reta toca o eixo Y no ponto (0,2).
Há ainda outra propriedade que devemos conhecer: a raiz da reta.
A raiz da reta, é o ponto onde a reta toca o eixo X, no qual Y=0.
Observando a equação da reta como exemplo: , para obter sua raiz,
sempre fazemos com que Y=0 e assim teremos:
 
 
 
A raiz dessa equação da reta será X=1, logo, a reta irá tocar o eixo X no ponto (1, 0),
conforme demonstrado no gráfico.
Grafico: Raiz da reta Y=-4X+4. 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Y = −2X + 2
Y = −2X + 2
Y = 0
Y = −2X + 2
4X = 4
X = 22 = 1

25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 17/94
Aplicações da função de primeiro grau
O especialista Sandro Davison mostrará, neste vídeo, como resolver problemas reais usando a função de
primeiro grau.
Demonstração
Como já vimos, para traçarmos uma reta no plano cartesiano são necessários apenas
dois pontos, dois pares ordenados (X, Y). Sendo assim, podemos escolher um ponto
em que a reta toca o eixo Y, dado pelo coeficiente linear da reta e, um ponto em que a
reta toca o eixo X, dado pela raiz da reta.
Utilizaremos, para demonstração, a reta dada pela equação:
Comparando com a equação geral da reta: 
Podemos ver que: a=-1 e b=2
Se a < 0, o coeficiente angular é negativo, logo, a reta é decrescente. Considerando que
b=2, a reta tocará o eixo Y em (0,b)=( 0,2).
Para vermos isso, basta assumir X=0 na equação.
Y=-(0)+2Y=2
Então, já temos um ponto (0, 2) para traçar a reta. Falta o segundo ponto, que é a raiz,
obtida ao considerar Y=0 na equação e calcular o valor de X

Y = −X + 2
Y = aX + b
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 18/94
obtida ao considerar Y 0 na equação e calcular o valor de X.
Resolvendo: X=2
Logo, temos o segundo ponto da reta: (2, 0).
Traçando a reta, teremos a seguinte imagem:
Gráfico da reta Y=-X+2. Estão representados no gráfico o ponto em que a reta toca o eixo Y (coeficiente linear da reta) e o ponto em que toca o
eixo X (raiz da reta). 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Mão na massa
0 = −X + 2
_black
Questão 1
Marque a afirmativa correta relacionada à reta da equação Y=-X+1.
A Representa uma reta crescente pois o coeficiente angular é a=-1.
B Representa uma reta decrescente pois o coeficiente angular é a=-1.
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 19/94
C Representa uma reta crescente pois o coeficiente angular é a=1.
D Representa uma reta decrescente pois o coeficiente angular é a=1.
E Representa uma reta constante pois o coeficiente angular é a=1.
Parabéns! A alternativa B está correta.
A equação geral da reta é $$$Y=a X+b$$$, onde a representa o coeficiente
angular. Quando $$$a>0$$$, a reta é crescente; quando $$$a<0$$$, a reta é
decrescente. Nesse caso, $$$a=-1$$$, logo, $$$a<0$$$, sendo uma reta
decrescente.
Questão 2
Marque a afirmativa correta com relação à equação da reta .Y = 3X + 2
A Essa reta possui coeficiente linear b=3.
B Essa reta possui coeficiente linear b=-3.
C Essa reta não possui coeficiente linear.
D Essa reta possui coeficiente linear b=2.
E Essa reta possui coeficiente linear b= 2
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 20/94
E Essa reta possui coeficiente linear b=-2.
Parabéns! A alternativa D está correta.
A equação geral da reta é $$$Y=aX+b$$$, onde b representa o coeficiente
linear. Logo, por comparação com a equação dada, o coeficiente linear é
$$$b=2$$$.
Questão 3
Sobre a equação , é correto afirmar queY = −X + 2
A representa uma reta crescente e toca o eixo Y no ponto (0,-2).
B representa uma reta decrescente e toca o eixo Y no ponto (2,0).
C representa uma reta crescente e toca o eixo Y no ponto (2,0).
D não representa uma reta.
E representa uma reta decrescente e toca o eixo Y no ponto (0,2).
Parabéns! A alternativa E está correta.
A equação geral da reta é $$$Y=aX+b$$$, onde a representa o coeficiente
angular. Quando $$$a>0$$$, a reta é crescente; quando $$$a<0$$$, a reta é
decrescente. Nesse caso a=-1, logo, $$$a<0$$$, sendo assim uma reta
decrescente O ponto onde a reta toca o eixo Y é dado por (0 b) onde b é oQuestão 4
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 21/94
decrescente. O ponto onde a reta toca o eixo Y é dado por (0, b), onde b é o
coeficiente linear. Nesse caso, essa reta toca o eixo Y em (0, 2).
Ques ão 
Sobre a equação , podemos afirmar que é uma retaY = 2X + 3
A decrescente, pois a=3 (a>0), que toca o eixo Y no ponto (0, 2).
B crescente, pois a=2 (a>0), que toca o eixo Y no ponto (0, 3).
C crescente, pois a=2 (a>0), que toca o eixo Y no ponto (3, 0).
D decrescente, pois a=2 (a>0), que toca o eixo Y no ponto (3, 0).
E crescente, pois a=2 (a>0), que toca o eixo Y no ponto (0, 0).
Parabéns! A alternativa B está correta.
A equação geral da reta é $$$Y=aX+b$$$, onde a representa o coeficiente
angular. Quando $$$a>0$$$, a reta é crescente; quando $$$a<0$$$, a reta é
decrescente. Nesse caso $$$a=2$$$, logo, $$$a>0$$$, sendo assim uma reta
crescente. O ponto onde a reta toca o eixo Y é dada por (0, b), onde b é o
coeficiente linear, então, essa reta toca o eixo Y em (0, 3).
Questão 5
Observando o gráfico a seguir, marque a opção com a resposta correta.
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 22/94
Gráfico Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
A Reta com coeficiente linear 3 e raiz 5.
B Reta com coeficiente linear 5 e raiz 3.
C Reta com coeficiente angular 3 e raiz 5.
D Reta com coeficiente angular 5 e raiz 3.
E Reta com coeficiente linear 3 e coeficiente angular 5.
Parabéns! A alternativa A está correta.
Observando o gráfico, vemos que a reta toca o eixo Y no ponto (0, 3). As retas
de função de primeiro grau tocam o eixo Y no ponto (0, b), logo, o coeficiente
linear é $$$b=3$$$. Essa reta toca o eixo X no ponto (5, 0), e a propriedade diz
que a raiz da reta é obtida quando $$$Y=0$$$, portanto, esse ponto indica que
a raiz da reta é $$$X=5$$$.
Questão 6
Indique o valor da raiz da reta .Y = −2X + 4
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 23/94
Teoria na prática
As funções de primeiro grau têm grande aplicação no nosso dia a dia e em diferentes áreas do
conhecimento. Sempre que observamos um crescimento ou um decrescimento de forma linear entre duas
variáveis, teremos aí representada uma função de primeiro grau.
A X = 0, 5
B X = −2
C X = 2
D X = −0, 5
E X = 4
Parabéns! A alternativa C está correta.
Para encontrar a raiz dessa função, basta considerar $$$Y=0$$$ e substituir
na equação:
$$$ 0=-2 X+4 $$$
Resolvendo:
$$$ \begin{gathered} 2 X=4 \ X=\frac{4}{2} \ X=2 \end{gathered} $$$_black
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 24/94
Suponha a análise da ação de dado medicamento em um grupo grande de pessoas da população. Foi
observado que o número de pessoas curadas (Y) crescia de forma linear de acordo com a quantidade de
medicação dada (X), seguindo a seguinte equação:
Podemos afirmar que se nenhum medicamento ( ) for dado à população
analisada, teremos uma quantidade pequena de pessoas curadas ( ).
Contudo, é possível ver que quanto mais medicação dada, maior será a quantidade de
pessoas curadas.
Pode-se analisar os dados usando os conceitos da equação da reta:
• O coeficiente angular da reta: , logo, a reta é crescente, pois .
• O coeficiente linear da reta: , assim, a reta toca o eixo Y em (0, 100).
• Se nenhum medicamento for dado, 100 pessoas se curam.
Vamos supor que são dados 100 medicamentos ( ):
Quando 100 medicamentos são dados ( ), 600 pessoas são curadas ( ).
O gráfico nos mostra um crescimento linear grande.
Y = 5X + 100
X = 0
Y = 100
a = 5 a > 0
b = 100
X = 100
Y = 5(100) + 100
Y = 500 + 100
Y = 600
X = 100 Y = 600
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 25/94
Gráfico: O crescimento linear da equação da reta . 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Falta pouco para atingir seus objetivos.
Vamos praticar alguns conceitos?
Y = 5X + 100
Questão 1
Dada a função de primeiro grau:
Assinale a opção que apresenta o valor da raiz dessa função.
Y = 4X − 2
A X = 0, 5
B X = 2
C X = −0, 5
D X = −2
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 26/94
E X = 4
Parabéns! A alternativa D está correta.
Para encontrar a raiz dessa função, basta considerar $$$Y=0$$$ e substituir
na equação:
$$$ 0=4 X-2 $$$
Resolvendo:
$$$ \begin{gathered} 4 X=2 \ X= \frac{2}{4} \ X=0,5 \end{gathered} $$$
Questão 2
Qual o ponto onde a reta dada pela equação a seguir toca o eixo Y?
Y = 2X − 2
A (0,0)
B (-2,0)
C (2,0)
D (0,-2)
E (0,2)
Parabéns! A alternativa D está correta
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 27/94
2 - Funções de segundo grau
Ao �nal deste módulo, você reconhecerá as propriedades das funçõesde
segundo grau.
Características da função de segundo grau
A função de segundo grau apresenta uma relação entre duas variáveis, Y e X, que podem ser representadas
no plano cartesiano, sendo Y representado no eixo vertical e X no eixo horizontal. Estuda-se, com esse tipo
de equação, como fica a variação da variável Y quando a variável X varia de forma quadrática, ou seja,
quando X tem expoente 2. Essa função tem como principal finalidade escrever uma fórmula matemática na
qual consigamos atribuir valores à variável X e obtermos o valor de Y. Sua equação é:
Parabéns! A alternativa D está correta.
Todas as retas de função de primeiro grau tocam o eixo Y no ponto (0, b), que
é dado pelo coeficiente linear da reta identificado na equação:
$$$Y=aX+b$$$

25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 28/94
Onde:
X e Y
São as variáveis.
a, b e c
São os coeficientes.
Para que essa função exista, .
Equações algébricas em situações contextualizadas
com funções de segundo grau
Existem diversas aplicações da função de segundo grau em em diferentes áreas,
inclusive no nosso dia a dia. O importante é saber observar, em cada situação, se há a
possibilidade de escrever uma fórmula matemática que permita encontrar um valor
desejado, atribuindo valores para uma dada variável e realizando operações
matemáticas descritas nesse tipo de função.
As aplicações mais conhecidas da função de segundo grau estão na área da física,
com a função horária de movimento retilíneo uniformemente variado, mas existem
outras aplicações nas áreas de negócios e ciências, desde de que se consiga
descrever da seguinte forma:
Y = aX2 + bX + c
a ≠ 0
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 29/94
descrever da seguinte forma:
Comentário
A solução dessa equação, quando representada em um gráfico no plano cartesiano,
apresenta-se como uma parábola. Assim, é muito usada para analisar crescimentos e
decrescimentos de uma variável (X) em função de outra variável (Y).
Considere um exemplo hipotético: um médico pesquisa a absorção em miligramas (Y)
de dado medicamento em função do tempo (X). A equação que descreve essa análise
é dada por:
Vamos analisar o que ocorre na quantidade de medicação absorvida (Y) com o passar do tempo.
Ou seja, meia hora após a ingestão, são absorvidos 0,25mg da medicação.
Y = aX2 + bX + c
Y = X2 + 2X + 1
0,5 hora após a ingestão 
X = 0, 5
Y = (0, 5)2 − 2(0, 5) + 1
Y = 0, 25 − 1 + 1 = 0, 25
1 hora após a ingestão 
X = 1
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 30/94
Conclui-se que 1 hora após a ingestão o organismo não absorve a medicação.
Isso significa que 2 horas após a ingestão o organismo absorve 1mg da
medicação.
Podemos observar que essa função não tem o mesmo comportamento da função
de primeiro grau, pois ela apresenta um valor inicial que diminuiu e depois cresceu
novamente.
Ainda no exemplo da análise de absorção de um medicamento, considere que a
equação que descreve esse processo é:
Essa também é uma função de segundo grau, mas com um sinal negativo no termo 
.
Vamos analisar o comportamento apresentado acerca da quantidade de medicação
absorvida (Y) com o passar do tempo
X = 1
Y = (1)2 − 2(1) + 1
Y = 1 − 2 + 1 = 0
2 horas após a ingestão 
X = 2
Y = (2)2 − 2(2) + 1
Y = 4 − 4 + 1 = 1
Y = −X2 + 2X + 1
x2
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 31/94
absorvida (Y) com o passar do tempo.
Isto é, meia hora após a ingestão, seriam absorvidos 1,75mg da medicação.
Isso significa que 1 hora após a ingestão o organismo absorve 2mg da
medicação.
Conclui-se que 2 horas após a ingestão o organismo absorve 1mg da
medicação
0,5 hora após a ingestão 
X = 0, 5
Y = −(0, 5)2 + 2(0, 5) + 1
Y = −0, 25 + 1 + 1 = 1, 75
1 hora após a ingestão 
X = 1
Y = −(1)2 + 2(1) + 1
Y = −1 + 2 + 1 = 2
2 horas após a ingestão 
X = 2
Y = −(2)2 + 2(2) + 1
Y = −4 + 4 + 1 = 1
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 32/94
medicação.
Podemos observar que há um rápido crescimento da absorção da medicação até 1
hora após a ingestão; após 2 horas, a quantidade absorvida começa a diminuir.
O comportamento apresentado é diverso nas duas situações hipotéticas, e isso ocorre
principalmente em razão do sinal negativo na frente do termo X², que diferencia as
duas funções de segundo grau. Veremos esse aspecto em mais detalhes na
sequência.
Equações de segundo grau
A seguir, o especialista Sandro Davison resolverá equações de segundo grau.
Lógica da construção do grá�co relacionado à função
de segundo grau
Também chamada de função quadrática, a função de segundo grau pode ser descrita
como visto anteriormente:
Onde:
X Y

Y = aX2 + bX + c
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 33/94
X e Y
São as variáveis.
a, b e c
São os coeficientes.
Para que essa função exista, .
Essa função é representada graficamente por uma parábola em um plano cartesiano
bidimensional. Para a construção do gráfico, precisamos saber:
Primeiro
Ponto em que a parábola tocará o eixo Y.
Segundo
Ponto ou pontos em que a parábola tocará o eixo X.
Terceiro
Vértice da parábola, isto é, o ponto em que ela muda de direção.
A parábola tocará o eixo Y no ponto em que X=0. Substituindo na equação, teremos:
a ≠ 0
Y = a(0)2 + b(0) + c
Y c
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 34/94
Portanto, o ponto em que a parábola toca o eixo Y é sempre o par ordenado (0, c).
A parábola pode tocar o eixo X mais de uma vez, diferentemente da reta da função de
primeiro grau. Quando há esse encontro entre parábola e eixo X, chamamos o(s)
ponto(s) de raízes da parábola. Para obter a raiz, consideramos Y=0 e:
Por fim, para a construção do gráfico da parábola, precisaremos do vértice, que é dado
por um ponto com coordenadas (X Y) que são:
Y = c
Substituímos na equação geral da parábola: 0 = aX2 + bX + c
Ou melhor escrevendo: aX2 + bX + c = 0
Essa equação é solucionada pela fórmula de Bhaskara, dada por: X1,2 = −b±
√Δ
2a
Sendo: Δ = b2 − 4ac
 significa que é possível que a parábola tenha duas raízes, devido ao sinal fórmula
de Bhaskara.
X1,2 ±da
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 35/94
por um ponto com coordenadas (X, Y) que são:
Vamos representar graficamente a função de segundo grau dada pela equação:
Observando a equação geral da função de segundo grau: 
podemos identificar os coeficientes a, b e c.
Coeficientes
a 2
X do vértice 
XV =
−b
2a
Y do vértice 
YV =
−Δ
4a
Vértice 
V = ( −b2a ,
−Δ
4a )
Y = 2X2 − X − 1
Y = aX2 + bX + c
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 36/94
Coeficientesb -1
c -1
Elaborado por Thaiane Andrade.
Em seguida, acompanhando o passo a passo é possível:
Primeiro passo
Encontrar o ponto onde a parábola toca eixo Y.
Como vimos, esse ponto (X=0) é dado pelo par ordenado (0,c), logo, a parábola toca o
eixo Y em (0,-1).
Segundo passo
Encontrar as raízes.
As raízes são os pontos onde a parábola toca o eixo X, conforme visto anteriormente.
Para encontrá-las, é necessário resolver a equação pela fórmula de Bhaskara.
X1,2 =
−b±√Δ
2a
Δ = b2 − 4ac
Δ = (−1)2 − 4(2)(−1)
Δ = 1 + 8 = 9
X1,2 =
−(−1)±√9
2(2)
X1,2 =
1±3
4
X1 =
1+3
4 =
4
4 = 1
X 1 3 2 0 5
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 37/94
Então, a parábola tocará o eixo X nos pontos: (1,0) e (-0,5,0)
Terceiro passo
Encontrar o vértice da parábola.
Para chegar ao vértice da parábola,utilizaremos a fórmula dada:
Os pontos encontrados que permitirão desenhar a parábola no plano cartesiano são:
• Ponto em que a parábola tocará o eixo Y: (0,-1).
• Pontos em que a parábola tocará eixo X (raízes da parábola): (1,0) e (-0,5,0).
• Vértice da parábola: (0,25 ,-1,125).
Gráfico: Parábola dada pela equação . 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
X2 =
1−3
4 = −
2
4 = −0, 5
V = ( −b2a ,
−Δ
4a )
V = ( −(−1)2(2) ,
−9
4(2) )
V = ( 14 , −
9
8 )
V = (0, 25, −1, 125)
Y = 2X2 − X − 1

25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 38/94
Grá�co da função do 2º grau
De forma explicativa, o especialista Sandro Davison resolverá passo a passo a construção do gráfico.
Interpretação do grá�co da função de segundo grau —
parábola
Como já mencionado, a função de segundo grau, também conhecida como função
quadrática, é descrita pela equação geral:
Você já entendeu como é construído o gráfico da parábola, característico das funções
de segundo grau, então, vamos analisá-lo a partir de alguns pontos notáveis da
parábola.
As parábolas possuem algumas características particulares que podem ser
observadas mesmo antes de sua representação gráfica final, como as concavidades e
a quantidade de vezes que a parábola pode tocar o eixo X.
A concavidade da parábola pode ser voltada para cima ou para baixo. Quando a
equação de segundo grau tem o coeficiente a positivo, , teremos uma parábola
com concavidade voltada para cima (U). Quando o coeficiente é negativo, ,
teremos uma parábola com concavidade voltada para baixo ( ).

Y = aX2 + bX + c
a > 0
 a ––
a < 0
∩
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 39/94
Gráfico: Parábola de equação com e concavidade para cima. 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Gráfico: Parábola de equação com e concavidade para baixo. 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Outro ponto notável importante a ser analisado na equação da parábola é o número de
encontros com o eixo X que ela fará. Deve-se observar, antes de representar
graficamente, quantas vezes a parábola tocará o eixo X, ou seja, quantas raízes ela
possui. As possibilidades são:
São as parábolas que tocam o eixo X duas vezes nos pontos dados pelos pares
ordenados e , obtidos pela solução da fórmula de Bhaskara. É
possível identificá-las, pois, na resolução da fórmula, possuem o .
Um exemplo de parábola com concavidade para cima:
a > 0
a < 0
Parábola com duas raízes 
(X1, 0) (X2, 0)
Δ > 0
Y = X2 − 4X + 3
a = 1//b = −4//c = 3
Δ = b2 − 4ac
Δ = (−4)2 − 4(1)(3) = 16 − 12 = 4
X1 2 =
−b±√Δ
2 =
−(−4)±√4
2 1 =
4±2
2
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 40/94
Vértice: 
Com esses cálculos, encontramos as raízes (3,0) e (1,0), bem como o vértice
(2,-1). Uma vez que o ponto que toca o eixo Y é determinado por (0, c), temos o
ponto (0,3). Assim, é possível representar a parábola graficamente.
Gráfico: Representação de uma parábola com duas raízes, logo, com . 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
São as parábolas que tocam o eixo X uma única vez no ponto dado pelo par
ordenado , onde , obtido pela solução da fórmula de
Bhaskara. Esse tipo de parábola é caracterizada por possuir em sua
resolução.
Gráfico: Parábola com uma única raiz, isto é, toca o eixo X uma única vez. 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
X1,2 2a 2⋅1 2
X1 =
4+2
2 =
6
2 = 3
V = ( −b2a ,
−Δ
4a )
V = (− −42.1 , −
4
4.1 ) = (
4
2 , −
4
4 ) = (2, −1)
Δ > 0
Parábola com uma raiz 
(X, 0) X = X1 = X2
Δ = 0
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 41/94
São as parábolas que não tocam o eixo , caracterizadas por ter .
Como não há raiz quadrada de números negativos, não temos solução da
fórmula de Bhaskara no conjunto dos números reais, logo, não tem raiz.
Gráfico: Parábola que não tem raiz, não toca o eixo X, logo ∆ < 0. 
Extraído de Shutterstock.com.
Análise do grá�co da função de segundo
grau
Neste vídeo, o especialista Sandro Davison ensinará a analisar o gráfico da função de segundo grau.
Demonstração
Parábola sem raiz 
X Δ < 0

25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 42/94
Para exemplificar, veremos a construção do gráfico de uma parábola que não toca o
eixo X, isto é, que não tem nenhuma raiz. Entretanto, a parábola existe e pode ser
representada graficamente.
Considere a seguinte função de segundo grau:
Coeficientes
a 1
b -2
c 1
Elaborado por Thaiane Andrade.
Em seguida, acompanhando o passo a passo é possível:
Primeiro passo
Encontrar o ponto em que a parábola toca o eixo Y.
Essa etapa é simples, pois sabemos que esse ponto é definido por (0,c), logo, é (0,2).
Segundo passo
Encontrar as raízes
Y = X2 − 2X + 2
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 43/94
Encontrar as raízes.
Vamos solucionar a fórmula de Bhaskara: 
Sendo:
Como não existe raiz quadrada de número negativo no conjunto dos números reais,
não solucionamos a fórmula de Bhaskara. Assim, compreende-se que essa parábola
não tem raízes.
Terceiro passo
Encontrar o vértice.
Para isso, utilizaremos a fórmula:
Quarto passo
Traçar a parábola.
A parábola será construída com base nos pontos que encontramos:
• Ponto em que toca o eixo Y: (0, 2).
Vé ti (1 1)
X1,2 =
−b±√Δ
2a
Δ = b2 − 4ac
Δ = (−2)2 − 4(1)(2) = 4 − 8 = −4
Δ = −4
X1,2 =
−(−2)±√−4
2⋅1
V = ( −b2a , −
Δ
4a )
V = ( −(−2)2⋅1 , −
−4
4 )
V = ( 22 ,
4
4 ) = (1, 1)
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 44/94
• Vértice: (1, 1).
Gráfico da parábola , que não toca o eixo pois não tem raízes. 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Mão na massa
Y = X2 − 2X + 2 X
_black
Questão 1
Marque a afirmativa correta relacionada à concavidade da parábola 
.Y = 2X2 − 2X + 1
A Representa uma parábola com concavidade para cima, pois .a = −2
B Representa uma parábola com concavidade para cima, pois .a = 2
C Representa uma parábola com concavidade para cima, pois .a = 1
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 45/94
D Representa uma parábola com concavidade para cima, pois .a = −1
E Representa uma parábola sem concavidade, pois .a = 2
Parabéns! A alternativa B está correta.
A equação geral da parábola é $$$ Y=aX^{2} + bX +c $$$. Na função da
questão, o coeficiente $$$ a=2>0 $$$, logo, representa uma parábola com
concavidade para cima.
Questão 2
Marque a afirmativa correta relacionada à concavidade da parábola 
.Y = −2X2 + 2X − 1
A Essa parábola tem concavidade para baixo, pois .a = −2
B Essa parábola tem concavidade para cima, pois .a = 2
C Essa parábola tem concavidade para cima, pois .a = 1
D Essa parábola tem concavidade para baixo, pois .a = −1
E Essa parábola não tem concavidade, pois .a = 2
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 46/94
Parabéns! A alternativa A está correta.
A equação geral da parábola é $$$ Y=aX^{2} + bX +c $$$. Na função da
questão, o coeficiente $$$ a=-2<0 $$$, logo, representa uma parábola com
concavidade para baixo.
Questão 3
Analisando a equação da parábola a seguir, diga em que ponto a figura irá tocar o eixo
Y: Y = 2X2 + X − 1
A A parábola toca o eixo Y no ponto (-1,0).
B A parábola toca o eixo Y no ponto (0,2).
C A parábola toca o eixo Y no ponto (0,1).
D A parábola não toca o eixo Y.
E A parábola toca o eixo Y no ponto (0,-1).
Parabéns!A alternativa E está correta.
A equação geral da parábola é $$$ Y=aX^{2} + bX +c $$$. Na função
apresentada, o coeficiente $$$ c=-1 $$$. Ciente de que o ponto em que a
parábola toca o eixo Y é representado por (0, c), esse ponto seria (0,-1).
Questão 4
Quando solucionamos a equação de uma parábola e
encontramos um valor de o que isso representa?
Y = aX2 + bX + c
Δ < 0
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 47/94
encontramos um valor de , o que isso representa?Δ < 0
A
Representa uma parábola que não tem raiz, logo, não existe a
parábola.
B
Representa uma parábola que não tem raiz, logo, toca o eixo X duas
vezes.
C
Representa uma parábola que tem duas raízes, logo, toca o eixo X
duas vezes.
D
Representa uma parábola que não tem raiz, logo, toca o eixo X uma
vez.
E Representa uma parábola que não tem raiz, logo, não toca o eixo X.
Parabéns! A alternativa D está correta.
Conforme já apresentado, uma equação de segundo grau é solucionada
mediante aplicação da fórmula de Bhaskara:
$$$ \begin{gathered} X_{1,2}=\frac{-b \pm \sqrt{\Delta}}{2 a} \ \Delta=b^{2}-4
a c\end{gathered}$$$
Quando encontramos $$$ \Delta < 0 $$$, significa que não há solução da
equação no conjunto dos números reais, logo, não há raízes.
Questão 5
Dada a equação de segundo grau , qual o valor de e o que ele
representa?
Y = X2 − 4X + 3 Δ
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 48/94
representa?
A
, o que representa que a parábola toca o eixo X em dois
pontos.
Δ = 4
B
, o que representa que a parábola toca o eixo X em dois
pontos.
Δ = −4
C , o que representa que a parábola não toca o eixo X.Δ = −4
D , o que representa que a parábola toca o eixo X em um ponto.Δ = 0
E , o que representa que a parábola toca o eixo X em um ponto.Δ = 0
Parabéns! A alternativa A está correta.
Na solução da fórmula de Bhaskara, temos o cálculo do $$$ \Delta=b^{2}-4 a c
$$$.
$$$ \Delta=(-4)^{2}-4(1)(3)=16-12=4 $$$
Quando encontramos $$$ \Delta>0 $$$, significa que a parábola tem duas
raízes, isto é, toca o eixo $$$ \mathrm{X} $$$ duas vezes.
Questão 6
Quando solucionamos a equação de uma parábola ,
encontramos um valor de , o que isso significa?
Y = aX2 + bX + c
Δ = 0
A Significa que a parábola não tem raiz logo não existe a parábola
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 49/94
Teoria na prática
Voltando à análise inicial desse módulo, apresentamos uma situação hipotética, na qual era pesquisada a
quantidade de incorporação de um medicamento ao longo do tempo, dada pela equação:
A Significa que a parábola não tem raiz, logo, não existe a parábola.
B Significa que a parábola não tem raiz, logo, toca o eixo X duas vezes.
C
Significa que a parábola tem duas raízes, logo, toca o eixo X duas
vezes.
D Significa que a parábola tem uma raiz, logo, toca o eixo X uma vez.
E Significa que a parábola não tem raiz, logo, não toca o eixo X.
Parabéns! A alternativa D está correta.
Conforme já apresentado, uma equação de segundo grau é solucionada por
meio da fórmula de Bhaskara:
$$$\begin{gathered} X_{1,2}=\frac{-b \pm \sqrt{\Delta}}{2 a} \ \Delta=b^{2}-4 a
c \end{gathered} $$$
Quando encontramos $$$ \Delta=0 $$$, significa que há uma solução da
equação, logo, há uma raiz. Portanto, a parábola toca o eixo X uma única vez._black
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 50/94
Com os conhecimentos acumulados até aqui, podemos traçar o gráfico e analisá-lo.
Os coeficientes são:
Coeficientes
1
-2
1
Elaborado por Thaiane Andrade.
Usando a fórmula de Bhaskara:
Como , só temos uma raiz . Portanto, a parábola toca o eixo X no ponto .
Sabemos que a parábola sempre toca o eixo Y no ponto (0, c), logo, temos o ponto (0, 1).
O vértice da parábola será calculado com base na fórmula já apresentada:
Y = X2 − 2X + 1
a
b
c
X1,2 =
−b ± √Δ
2a
Δ = b2 − 4ac
Δ = (−2)2 − 4(1)(1) = 4 − 4 = 0
X1,2 =
−(−2) ± √0
2 ⋅ 1
=
2 ± 0
2
=
2
2
= 1
Δ = 0 X1 = X2 = 1 (1, 0)
V = ( −b
2a
, −
Δ
4a
)
( −(−2)
2.1
, −
0
4.1
) = ( 2
2
, 0) = (1, 0)
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 51/94
Podemos verificar que o vértice coincide com a raiz.
Com esses pontos, o gráfico já pode ser formado:
Gráfico: Parábola , com concavidade para cima e tocando o eixo X em um único ponto. 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Saiba mais
Analisando esse gráfico, o eixo Y representa a absorção em mg do medicamento, já o
eixo X, o tempo em horas de absorção. É possível observar que há uma grande
absorção assim que a medicação é administrada, visível pelo ponto em que a parábola
toca o eixo Y. Vemos também que a absorção é nula após 1 hora da administração do
medicamento, indicada pelo ponto onde a parábola toca o eixo X. A sequência da
parábola demonstra que a absorção vai aumentando com o passar do tempo.
Falta pouco para atingir seus objetivos.
Vamos praticar alguns conceitos?
Y = X2 − 2X + 1
Questão 1
Considere a seguinte função de segundo grau:
Marque a opção que apresenta o ponto em que a parábola toca o eixo Y.
Y = 3X2 − 2X + 1
A (0,1).
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 52/94
B (1,0).
C (0,3).
D (0,-2).
E (-2,0).
Parabéns! A alternativa A está correta.
Para encontrar o ponto em que a parábola toca o eixo Y, consideramos X=0,
logo, a equação fica:
$$$Y=3(0)^{2}-2(0)+1$$$
$$$Y=1$$$
Ficamos, então, com o ponto (0, 1).
Questão 2
Marque a opção correta com relação à parábola da seguinte equação:
Y = −2X2 + 3X − 1
A É uma parábola com a concavidade para baixo, pois .a = −1
B É uma parábola com a concavidade para baixo, pois .a = 3
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 53/94
p p p
C É uma parábola com a concavidade para cima, pois .a = −1
D É uma parábola com a concavidade para baixo, pois .a = −2
E É uma parábola com a concavidade para baixo, pois .a = −3
Parabéns! A alternativa D está correta.
A equação geral da função de segundo grau é:
$$$Y=a X^{2}+b X+c$$$
Por comparação, vemos que $$$a=-2$$$. Como o valor de $$$a<0$$$, a
parábola tem concavidade para baixo.

25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 54/94
3 - Funções exponenciais
Ao �nal deste módulo, você reconhecerá as propriedades das funções
exponenciais.
Características da função exponencial
A função exponencial representa uma relação entre duas variáveis Y e X, que podem ser representadas no
plano cartesiano, sendo Y representado no eixo vertical e X no eixo horizontal. Esse tipo de equação é
utilizado para estudar a variação de Y quando X varia de forma exponencial, ou seja, quando X é o expoente.
A principal finalidade dessa equação é escrever uma fórmula matemática na qual consigamos atribuir
valores à variável X e obtermos o valor de Y. Sua equação é:
Onde:
a
É chamado de base.
Y = aX
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 55/94
x
É chamado de expoente.
Para que essa função exista, e .
Exemplo
Veja alguns exemplos:
A função exponencial tem uma característica diferente das funções de primeiro e de segundo grau: a
variável X está no expoente de uma base. Sendo assim, para que a função exista no conjunto dos números
reais, a base a deve seguir duas condições: e . Vamos analisá-las:
Se a base a fosse igual a 0, teríamos uma indeterminação:
Essa indeterminação matemática é resolvida fazendo com que a função
exponencial só seja definida quando .
a > 0 a ≠ 1
Y = 3x
Y = (0, 4)X
Y = (√5)X
a > 0 a ≠ 1
a = 0 
X = 0
Y = axY = 0∘
a ≠ 0
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 56/94
Se a base a fosse igual a 1, teríamos uma constante, e não uma função:
Como o número 1 elevado a qualquer expoente resulta em 1, teríamos uma
função constante: , e não uma função com as características
da função exponencial. Logo, 
Se a base fosse menor que 0, teríamos um resultado não pertencente ao
conjunto dos números reais. Por exemplo:
Suponhamos:
Como não há raiz quadrada de número negativo no conjunto dos números
reais, 0
Portanto, para que a função exponencial exista, a base deve ser positiva e
diferente de 1:
Grá�cos de funções exponenciais
a = 1 
Y = aX
Y = 1X = 1
f(x) = 1x = 1
a ≠ 1
a < 0 
Y = aX
a = −3 e X = 12
Y = (−3)
1
2 = √(−3)
a⟩
a > 0 e a ≠ 1
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 57/94
Os gráficos das funções exponenciais nunca tocam o eixo X, pois esse tipo de função não possui raiz. Desse
modo, a construção do gráfico se baseia em atribuir valores para a variável X e calcular o valor
correspondente da variável Y.
As funções exponenciais são categorizadas segundo o valor de sua base, lembrando que há duas condições
para tais valores — ser positiva e diferente de 1.
Função exponencial crescente
Sempre que o valor de , a função exponencial é definida como crescente. Para exemplificar,
representaremos graficamente a seguinte função:
Vamos escolher valores de X e calcular o valor de Y:
Ao calcularmos com os números inteiros subsequentes, obtemos os valores a seguir:
X Y
-3 0,125
-2 0,25
-1 0,5
0 1
1 2
a > 1
Y = 2X
X = −3
Y = 2−3 = 0, 125
X = −2
Y = 2−2 = 0, 25
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 58/94
X Y2 4
3 8
Elaborado por Thaiane Andrade.
Podemos perceber que a função exponencial sempre toca o eixo Y no ponto (0, 1) quando temos X=0, Y=1,
pois qualquer número elevado a zero é igual a 1.
Gráfico: Função exponencial crescente . 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Ainda, é possível observar por que essa é uma função crescente: conforme o valor de X aumenta, o valor de
Y também cresce. O crescimento inicial é pequeno, mas depois vai aumentando consideravelmente. Essa é
uma característica das funções exponenciais com base .
Função exponencial decrescente
Sempre que o valor de 0 < a>1, a função é classificada como decrescente. Quando a base é maior do que
zero e menor do que 1, seu valor é um número fracionário.
A título de exemplo, representaremos graficamente esta função:
Vamos escolher valores de X e calcular o valor de Y:
Y = 2X
a > 1
Y = ( 1
2
)
x
= (0, 5)X
X = −3
Y = ( 1
2
)
x
= (0, 5)X
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 59/94
Ao calcularmos com os números inteiros subsequentes, obtemos os valores a seguir:
X Y
-3 8
-2 4
-1 2
0 1
1 0,5
2 0,25
Elaborado por Thaiane Andrade.
Conforme já observado, a função exponencial sempre toca o eixo Y no ponto (0,1).
Gráfico: Função exponencial decrescente . 
Extraído de Shutterstock.com, adaptado por Aneuri de Amorim e Thiago Lopes.
Assim, é possível observar por que essa é uma função decrescente: à medida que o valor de X aumenta, o
valor de Y decresce. Os valores iniciais são grandes, depois diminuem bastante. Essa é uma característica
das funções exponenciais com base 01.
( )
Y = ( 1
2
)
x
= (0, 5)X
Y = ( 1
2
)
x
= (0, 5)X
Y = (0, 5)X
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 60/94
Grá�co exponencial
Com a ajuda do especialista Sandro Davison, você aprenderá a construir um gráfico crescente e outro
decrescente.
Problemas com funções exponenciais
As funções exponenciais são muito usadas na área da saúde, pois diversos
comportamentos analisados podem ser explicados e estudados por esse tipo de
relação entre variáveis.
Suponhamos que um pesquisador esteja analisando o crescimento de uma bactéria
em uma cultura. Ele observa que a função do crescimento do número de bactérias (Y)
com o passar do tempo (X) é dada pela equação:
Onde X representa o tempo em horas e Y representa o número de bactérias na placa.
Conforme já demonstrado, essa função tem a base 2, que é maior do que 1 ($ a >1 $),
e sempre que isso ocorre temos uma função exponencial crescente. A partir da
equação, podemos prever o número de bactérias que estarão presentes na placa em
qualquer valor de tempo, lembrando que no tempo inicial, X=0, teremos como
resultado Y=1, isto é, uma bactéria na placa. Veja a resolução da equação:

Y = 2X/24
X = 0
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 61/94
Analisaremos agora duas situações considerando diferentes períodos de tempo:
1º caso: X=192 horas
2º caso: X=384 horas
Atenção
Podemos perceber que o crescimento do número de bactérias é muito maior
conforme o tempo passa. Esse tipo de equação, chamada de função resposta, tem
como característica um crescimento muito acentuado.
Gráfico: Crescimento e o decrescimento da covid-19 como funções exponenciais. 
Extraído de Shutterstock.com.
Ao final de 2019, uma pandemia da doença covid-19 surgiu, causada por um novo
coronavírus. No mundo todo, seu comportamento foi semelhante a um crescimento
exponencial e depois de implementadas algumas medidas como distanciamento
X = 0
Y = 20/24 = 20 = 1
Y = 2192/24 = 28 = 256

Y = 2384/24 = 216 = 65.536
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 62/94
exponencial, e depois de implementadas algumas medidas como distanciamento
social, uso de máscaras e vacinação em massa, iniciou-se uma diminuição também
exponencial. Esse comportamento pode ser exemplificado no gráfico.
Análise do grá�co exponencial
Neste vídeo, o especialista Sandro Davison analisa um gráfico exponencial.
Demonstração
Vamos supor que um país esteja fazendo tudo que é possível, com medidas bastante
rígidas, para controlar a covid-19 e diminuir o número de casos graves em seu sistema
de hospitalização. A partir da análise dos dados, delineou-se uma previsão,
representada pela função exponencial a seguir:
Como vemos, a base dessa função é do tipo , , logo, é uma
função exponencial decrescente. Sendo X o tempo em meses e Y o número de
internações, usaremos essa equação para calcular a diminuição do número de
internações prevista com o passar do tempo em meses.

1º caso: X= 1 mês

Y = 1.000.000(0, 25)X
0 < a < 1 a = 0, 25
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 63/94

2º caso: X=2 meses

3º caso: X= 4 meses
 aproximadamente

4º caso: X= 6 meses
 aproximadamente
Ao observar esses cálculos, vemos que o tempo está aumentando um pouco,
entretanto, o número de casos diminui muito mais rapidamente, o que é uma
característica das funções exponenciais decrescentes.
Mão na massa
Y = 1.000.000(0, 25)1 = 1.000.000(0, 25) = 250.000
Y = 1.000.000(0, 25)2 = 1.000.000(0, 0625) = 62.500
Y = 1.000.000(0, 25)4 = 1.000.000(0, 003906) = 3.906
Y = 1.000.000(0, 25)6 = 1.000.000(0, 000244) = 244
_black
Questão 1
Assinale a afirmativa correta sobre função exponencial .Y = 3x
A É uma função exponencial crescente, pois a base é .a < 0
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 64/94
B É uma função exponencial crescente, pois a base .a = 3 > 1
C É uma função exponencial decrescente, pois a base .a = 3 > 1
D É uma função exponencial crescente, pois a base .a = X
E É uma função exponencial crescente, pois a base é .a > 0
Parabéns! A alternativa B está correta.
Considerando a equação geral da função exponencial, $$$Y =a^{x}$$$,sempre que a base, representada por $$$a$$$, é maior do que 1, teremos uma
função exponencial crescente. Nesse caso, $$$a=3$$$.
Questão 2
Marque a afirmativa que caracteriza corretamente esta função exponencial: 
Y = (0, 2)x
A
Função exponencial decrescente, pois a base é , logo, 
.
a = 0, 2
0 < a < 1
B Função exponencial crescente, pois a base é , logo, .a = 0, 2 a > 0
C Função exponencial decrescente, pois a base .a = X
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 65/94
D Função exponencial crescente, pois a base .a = X
E Função exponencial constante, pois .0 < a < 1
Parabéns! A alternativa A está correta.
Considerando a equação geral da função exponencial, $$$Y =a^{x}$$$,
sempre que a base, representada por $$$a$$$, é menor que 1 e maior que
zero ($$$ 0 < a < 1 $$$), teremos uma função exponencial decrescente. Nesse
caso, $$$ a = 0,2 $$$.
Questão 3
Assinale a afirmativa correta relacionada ao ponto da função exponencial que
toca o eixo X.
Y = 4x
A O ponto (0, 1) toca o eixo X.
B O ponto (0, 0) toca o eixo X.
C O ponto (4, 0) toca o eixo X.
D O ponto (0, 4) toca o eixo X.
E
As funções exponenciais não tocam o eixo X, pois esse tipo de
função não tem raiz
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 66/94
função não tem raiz.
Parabéns! A alternativa E está correta.
As funções exponenciais não possuem raízes, o que significa que não temos
um valor de X possível que corresponda a $$$Y=0$$$. Logo, ela não toca o
eixo X.
Questão 4
Marque a afirmativa correta quanto ao ponto da função exponencial que toca
o eixo Y.
Y = 4x
A O ponto (0, 4) toca o eixo Y.
B O ponto (0, 0) toca o eixo Y.
C O ponto (4, 0) toca o eixo Y.
D O ponto (0, 1) toca o eixo Y.
E
As funções exponenciais não tocam o eixo Y, pois esse tipo de
função não tem raiz.
Parabéns! A alternativa D está correta.
Todas as funções exponenciais do tipo $$$Y=a^{X}$$$ tocam o eixo Y no
ponto (0 1) Cientes de que todo número elevado a zero é igual a 1 ao assumir
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 67/94
ponto (0,1). Cientes de que todo número elevado a zero é igual a 1, ao assumir
$$$X=0$$$, teremos:
$$$ Y=a^{0}=1 $$$
Questão 5
Considere a equação do . Qual o valor de Y para X=4?Y = 3x
A Y=81
B Y=12
C Y=4/3
D Y=3/4
E Y=1/12
Parabéns! A alternativa A está correta.
Para resolver, basta solucionar a equação: $$$Y=3^{4}= 81$$$.
Questão 6
Considere a equação do . Qual o valor de Y quando X=2 e X=4,
respectivamente?
Y = (0, 5)x
A Y=0,0625 e Y=0,25.
B Y=1 e Y=2.
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 68/94
Teoria na prática
Ao observar o gráfico de uma função exponencial, podemos fazer algumas análises com base na forma dos
gráficos, identificando se o que está representado é um comportamento crescente ou decrescente.
A pandemia mundial de covid-19 tem provocado análises de crescimentos e decrescimentos exponenciais
de número de infectados, número de internados ou número de mortos em função do tempo.
Utilizaremos o gráfico a seguir para uma análise desses comportamentos:
C Y=2 e Y=1.
D Y=0,25 e Y=0,0625.
E Y=0,5 e Y=0,25.
Parabéns! A alternativa D está correta.
Para chegar à resposta, é necessário solucionar a equação.
$$$ \begin{gathered} Y=(0,5)^{X} \ X=2 \ Y=(0,5)^{2}=0,25 \ X=4 \ Y=
(0,5)^{4}=0,0625 \end{gathered} $$$_black
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 69/94
Gráfico: Crescimento e o decrescimento da covid-19 como funções exponenciais. 
Extraído de Shutterstock.com.
Nesse gráfico, o eixo vertical representa o número de pessoas infectadas pelo vírus e o eixo horizontal
indica o tempo em meses. Conhecendo o comportamento das funções exponenciais, podemos observar
que no ano de 2020 há um crescimento exponencial do mês 1 até o mês 12, seguindo o comportamento de
uma função exponencial de base . Então, por efeito de alguma ação, o número de casos começa a
diminuir de forma acentuada, seguindo as características de uma função exponencial com base ,
como vimos em alguns exemplos numéricos ao longo desse estudo.
Falta pouco para atingir seus objetivos.
Vamos praticar alguns conceitos?
a > 1
0 < a < 1
Questão 1
Considere a seguinte função exponencial: .
Assinale a opção que indica corretamente onde a função toca o eixo Y.
Y = 6X
A A função toca o eixo Y em (0,1).
B A função toca o eixo Y em (1,0).
C A função toca o eixo Y em (0,3).
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 70/94
D A função toca o eixo Y em (0,20).
E A função toca o eixo Y em (20,0).
Parabéns! A alternativa A está correta.
Todas as funções exponenciais do tipo $$$Y=a^{X}$$$ tocam o eixo Y no
ponto (0,1). Podemos comprovar essa propriedade ao efetuar os cálculos,
assumindo $$$X=0$$$. Logo, temos a equação:
$$$Y=6^{0}=1$$$
$$$ Y=1 $$$
Chegamos, então, com o ponto (0,1).
Questão 2
Marque a opção que indica o valor de Y para nesta equação: .X = −2 Y = (0, 5)X
A Y=0,5
B Y=-1
C Y=-0,25
D Y=4
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 71/94
4 - Funções logarítmicas
Ao �nal deste módulo, você reconhecerá as propriedades das funções
logarítmicas.
Logaritmo
E Y=-2
Parabéns! A alternativa D está correta.
Basta substituir o valor de X na equação e resolver:
$$$ Y=(0,5)^{-2}=4 $$$

25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 72/94
oga o
Sejam a e b números reais positivos e , chamamos logaritmo de a na base b ao expoente X tal que:
Então:
Onde:
a
É chamado de logaritmando.
b
É a base.
Função logarítmica
A fim de demonstrar a forma como é calculada a função logarítmica, utilizaremos este
exemplo:
Em que se lê “logaritmo de 32 na base 2 é igual a X”
b ≠ 1
bx = a
logb(a) = X
log2(32) = X
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 73/94
Em que se lê logaritmo de 32 na base 2 é igual a X .
O que queremos calcular é o valor de X e, para isso, usamos a função exponencial,
transformando esse cálculo de forma a encontrar o valor de X que torne a seguinte
equação verdadeira: 
Para solucionar esse tipo de equação, devemos encontrar o valor correspondente de
32 na base 2, que podemos fatorar, encontrando:
Após a fatoração:
2x − 32
Temos que:
32 = 25
Logo:
log2 32 = X
2X = 32
2X = 25
Como as bases são iguais (2), a única solução possível é quando os expoentes são iguais:
X = 5
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 74/94
A função logarítmica possui algumas propriedades que auxiliam bastante na
interpretação e na solução de equações baseadas neste tipo de função. Vamos ver
essas propriedades a seguir.
Segundo essa propriedade, logaritmo de base e logaritmando iguais será igual
a 1. Ao transformarmos essa função logarítmica conforme a solução
apresentada anteriormente, obtemos:
Isso é possível, pois qualquer número elevado ao expoente 1 é igual a esse
mesmo número.
Essa propriedade determina que todo logaritmo com expoente zero terá como
logaritmando o número 1.
Solucionando:
Então:
log2 32 = 5
loga a = 1 
a1 = a
loga 1 = 0 
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 75/94
O que é uma verdade, todo número elevado a zero é igual a 1.
Essa propriedade indica que, quando temos o logaritmo de uma potência cuja
base é igual à base do logaritmo, o expoente da potência será o resultado do
logaritmo.
Temos ainda:

Logaritmo da potência

Logaritmo do produto

Logaritmo do quocientea0 = 1
loga a
m = m 
loga b
m = m ⋅ loga b
loga(b ⋅ c) = loga b + loga c
loga
b
c
= loga b − loga c
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 76/94
Atenção!
Quando a base do logaritmo é 10, ela não deve ser indicada: .
Logaritmo
Você sabe como calcular uma função logarítmica? É exatamente isso que aprenderemos no vídeo a seguir.
Grá�cos de funções logarítmicas
Para traçarmos um gráfico de uma função logarítmica, devemos selecionar valores de
X e calcular o valor de Y associado, resolvendo a função logarítmica na base desejada,
da seguinte forma:
Vamos atribuir valores para a variável X e, sabendo o valor da base a — base 2 ou base
10, por exemplo —, obtemos o valor de Y correspondente.
A fim de exemplificar a construção de um gráfico que represente a função logarítmica,
usaremos um exemplo numérico. Então, analisaremos algumas particularidades de
seus gráficos.
Considere a seguinte função logarítmica:
log10 a = loga

Y = loga X
Y = log2 X
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 77/94
A base do logaritmo selecionado é 2. Utilizando uma calculadora científica, vamos
calcular o logaritmo com diversos valores para X, conforme apresentado no quadro a
seguir:
X Y
0,125 -3
0,25 -2
0,5 -1
1 0
2 1
4 2
8 3
Elaborado por Aneuri de Amorim.
Ao representar os pares ordenados (X, Y) no plano cartesiano, desenha-se o seguinte
gráfico:
Gráfico da função . 
Elaborado por Aneuri de Amorim.
A função logarítmica tem algumas características que podemos ver no gráfico
anterior
log2 X
log2 0, 125 =
log2 0, 25 =
log2 0, 5 =
log2 1 =
log2 2 =
log2 4 =
log2 8 =
Y = log2 X
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 78/94
anterior.
Esse tipo de função nunca toca o eixo Y, isto é, não há a possibilidade de um par
ordenado (0, Y), pois o X nunca assumirá o valor de zero. Não é possível, por exemplo, 
. Em síntese, não existe logaritmo de zero em nenhuma base.
Podemos perceber outra característica importante no gráfico dessa função: ela toca o
eixo X (raiz da função) no ponto (1, 0). Como vimos anteriormente em uma das
propriedades, logaritmo de 1 em qualquer base é igual a zero. Logo, ao assumirmos
X=1, teremos:
Portanto, independentemente da base selecionada, toda função logarítmica tem
como raiz (1, 0) e tocará o eixo X nesse ponto.
X=1 e Y=0 t
Ainda, pode-se destacar que, quando a base é maior do que 1, a função é crescente.
Nesse caso, os valores assumidos por X maiores que 1 têm logaritmos positivos; já os
valores de X entre 0 e 1 tem logaritmos negativos.
Quando a base é menor do que 1, os números maiores que 1 têm logaritmos negativos
e aqueles entre 0 e 1 têm logaritmos positivos. Nos casos em que a base do logaritmo
é um valor entre 0 e 1, a função é decrescente, como representaremos a seguir.
Considere a seguinte função:
Ao atribuir os valores de X e calcular o Y usando uma calculadora científica, obtemos
estes resultados:
Y = log2 0
Y = loga
1 = 0
Y = log0,5 X
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 79/94
estes resultados:
X Y
0,125 3
0,25 2
0,5 1
1 0
2 -1
4 -2
8 -3
Elaborado por Aneuri de Amorim.
É possível, então, construir o gráfico.
Gráfico da função . 
Elaborado por Aneuri de Amorim.
Como a base dessa função logarítmica vale 0,5, logo, está entre 0 e 1, seu gráfico
mostra que é uma função decrescente.
Y = log0,5 X
log0,5 0, 125 =
log0,5 0, 25 =
log0,5 0, 5 =
log0,5 1 =
log0,5 2 =
log0,5 4 =
log0,5 8 =
Y = log0,5 X

25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 80/94
O grá�co logarítmico
Neste vídeo, o especialista Sandro Davison demonstrará como construir o gráfico da função logarítmica.
Problemas com funções logarítmicas
As funções logarítmicas e suas propriedades podem ser aplicadas em funções
exponenciais para analisarmos o comportamento ou calcularmos a variável X que se
encontra no expoente.
Utilizaremos como exemplo a função exponencial, conhecida anteriormente, que
descreve o crescimento do número de bactérias (Y) com o passar do tempo (X), dada
pela equação:
Onde X representa o tempo em horas e Y representa o número de bactérias na placa.
Anteriormente, atribuímos valores de tempo a X para encontrarmos a quantidade de
bactérias que estaria presente na placa analisada. Aplicando a função logarítmica,
podemos definir valores para a quantidade de bactérias e calcular, então, o tempo
necessário para chegar a esse número.
Matematicamente, aplicamos uma função logarítmica aos dois lados do sinal de igual.
Y = 2X/24
Nesse exemplo, utilizaremos a base 2:
log2(Y ) = log2(2
X/24)
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 81/94
Dessa forma, é possível calcularmos quanto tempo será necessário para obter uma
certa quantidade de bactérias.
Agora, vamos analisar quanto tempo é necessário para termos as seguintes
quantidades de bactérias (Y):
1º Caso
 bactérias
2º Caso
Há uma propriedade que podemos aplicar:
loga a
m = m
Então:
log2(Y) =
X
24
Para deixarmos o X como variável, resolvemos:
X = 24 log2(Y )
Y = 256
X = 24 log2(256) = 24(8) = 192
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 82/94
 bactérias
3º Caso
 bactérias
Problemas com funções logarítmicas
Neste momento, o especialista Sandro Davison nos ajudará a resolver um problema real usando a função
logarítmica.
Demonstração
Nesta demonstração, utilizaremos algumas propriedades da função logarítmica para
exercitar os trabalhos algébricos desse tipo de função.
Sabendo que e , vamos calcular o valor de:
X = 20.000
X = 24 log2(20.000) = 24(14, 2877) = 343
X = 200.000
X = 24 log2(200.000) = 24(17, 6096) = 422

log10 2 = 0, 301 log10 3 = 0, 477
log10 64
log10 12
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 83/94
O intuito aqui é usar as propriedades para melhorar o raciocínio lógico, logo, não
utilizaremos a calculadora científica.
Podemos resolver usando apenas os valores fornecidos de e . Veja
como:
Devemos fatorar o 64 e expressá-lo como um valor exponencial de base 2,
obtendo:
E passamos a ter:
Usando uma das propriedade do logaritmo de uma exponencial, teremos:
Substituindo o valor dado para :
Reescrevendo a , temos:
Usando a propriedade do logaritmo do produto, teremos:
log10 2 log10 3
log10 64 
64 = 26
log10 64 = log10 2
6
log10 2
6 = 6 log10 2
log10 2 = 0, 301
log10 64 = 6(0, 301) = 1, 806
log10 12 
log10 12
log10 12 = log10(2 ⋅ 2 ⋅ 3)
log10(2 ⋅ 2 ⋅ 3) = log10 2 + log10 2 + log10 3
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 84/94
Substituindo os valores dados:
Mão na massa
log10 12 = 0, 301 + 0, 301 + 0, 477
log10 12 = 1, 079
_black
Questão 1
Assinale a afirmativa correta com relação à função logarítmica a seguir: .Y = log10 X
A Representa uma função crescente, pois a base é .a < 0
B Representa uma função crescente, pois a base .a = 10 > 1
C Representa uma função decrescente, pois a base .a = 10 > 1
D
Representa uma função crescente, pois esse tipo de função sempre é
crescente.
E
Representa uma função decrescente, pois esse tipo de função
sempre é decrescente.
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 85/94
Parabéns! A alternativa B está correta.
Considerando a equação geral da função logarítmica, $$$Y=\log _{a} X$$$, a
base da função apresentada é $$$a=10$$$. Sempre que a base é maior do
que 1, teremos uma função logarítmica crescente.
Questão 2
Marque a afirmativa correta acerca da funçãologarítmica a seguir: ;Y = log0,5 X
A Representa uma função decrescente, pois a base é .0 < a < 1
B Representa uma função crescente, pois a base é .0 < a < 1
C Representa uma função decrescente, pois a base a é positiva.
D Representa uma função decrescente pois a base a é negativa.
E
Representa uma função crescente pois esse tipo de função sempre é
crescente.
Parabéns! A alternativa A está correta.
Considerando a equação geral da função logarítmica, $$$Y=\log _{a} X$$$,
sempre que a base for $$$ 0 < a < 1 $$$, teremos uma função logarítmica
decrescente.
Questão 3
Assinale a afirmativa que apresenta o cálculo correto do seguinte logaritmo: 
.log2 8 = X
A X=4
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 86/94
A X=4.
B X=8.
C , logo, X=2.22 = 8
D , logo, X=8.22 = 8
E , logo, X=3.22 = 23
Parabéns! A alternativa E está correta.
A solução desse logaritmo é dada por:
$$$ 2^{x}=8 $$$
Devemos fatorar 8 para representá-lo com uma base 2. Assim, podemos
escrever:
$$$ 2^{x}=8=2^{3} $$$
Como as bases são iguais, os expoentes também são iguais, logo:
$$$ \log _{2} 8=3 $$$
Questão 4
Assinale a afirmativa que indica o ponto em que a função a seguir toca o eixo X.
Y = log2 X
A A função toca o eixo Y no ponto (2 0)
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 87/94
A A função toca o eixo Y no ponto (2, 0).
B A função toca o eixo X no ponto (0, 0).
C A função toca o eixo X no ponto (0, 1).
D A função toca o eixo X no ponto (1, 0).
E Esse tipo de função não toca o eixo X.
Parabéns! A alternativa D está correta.
Todas as funções logarítmicas tocam o eixo X no ponto (1, 0).
Questão 5
Considere a função:
Marque a opção que indica o ponto em que ela toca o eixo Y.
Y = log2 X
A Essa função não toca o eixo Y.
B Essa função não toca o eixo X.
C Essa função toca o eixo Y em (0,1).
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 88/94
C ssa u ção toca o e o e (0, ).
D Essa função toca o eixo Y em (1,0).
E Essa função toca o eixo Y em (0,2).
Parabéns! A alternativa A está correta.
As funções logarítmicas não tocam o eixo Y.
Questão 6
Marque a alternativa que indica a aplicação adequada de uma propriedade para
solucionar a equação a seguir: log10 2
6
A .log10 2
6 = 6 − log10 2
B .log10 2
6 = 2 log10 6
C .log10 2
6 = log10 2 − log10 6
D .log10 2
6 = 6 log10 2
E .log10 2
6 = log10 2 + log10 6
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 89/94
Teoria na prática
Anteriormente, exemplificamos o uso da função exponencial em uma análise da
diminuição dos casos graves de covid-19 com o passar do tempo. Foi utilizada a
função a seguir:
No exemplo, escolhemos um valor de X que representa o tempo em meses e
calculamos o número de casos graves, expresso pela variável Y.
Com a aplicação da função logarítmica, é possível definirmos o número de casos (Y) e
calcularmos quanto tempo (X) levará para alcançar esse valor. Para isso, devemos
aplicar a função logarítmica aos dois lados do sinal de igual da equação anterior.
Utilizaremos o logaritmo de base 2, mas poderia ser qualquer base.
Aplicamos, então, a propriedade do logaritmo do produto. Observe:
Calculando o logaritmo e aplicando a propriedade do logaritmo do expoente, teremos:
Parabéns! A alternativa D está correta.
A propriedade a ser usada é:
$$$ \log _{\mathrm{a}} b^{m}=m \log _{\mathrm{a}} b $$$_black
Y = 1.000.000(0, 25)x
log2(Y ) = log2 (1.000.000 ⋅ (0, 25)
X)
log2(Y) = log2(1.000.000) + log2(0, 25)
X
log2(Y) = 20 + X log2(0, 25)
log2(Y) = 20 − 2X
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 90/94
1º Caso
 casos
Considerando o resultado, este seria o nosso ponto de partida: um milhão de casos de
covid-19 no momento do início do estudo.
2º Caso
 casos
Com o cálculo, concluímos que levará 1 mês para chegar a 250 mil casos.
3º Caso
 casos
Por meio da função logarítmica, constata-se que serão necessários 4 meses para
chegar a 10 mil casos de covid-19.
g2( )
2X = 20 − log2(Y)
X =
20 − log2(Y)
2
Y = 1.000.000
X = 20−log2(1.000.000)2 =
20−20
2 = 0
Y = 250.000
X =
20−log2(250.000)
2 =
20−18
2 =
2
2 = 1
Y = 10.000
X =
20−log2(1.000.000)
2 =
20−20
2 = 0
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 91/94
Falta pouco para atingir seus objetivos.
Vamos praticar alguns conceitos?
Questão 1
Considere esta função logarítmica: .
Qual o valor de Y para X=2?
Y = log2 X
A Y=1
B Y=2
C Y=0
D Y=-1
E Y=-2
Parabéns! A alternativa A está correta.
A solução da função é dada por:
$$$2^{y}=2$$$
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 92/94
Como as bases são iguais, os expoentes têm que ser iguais, logo:
$$$Y=1$$$
Questão 2
Considere as duas funções logarítmicas:
• 1ª função: 
• 2ª função: 
É correto afirmar que
Y = log2 X
Y = log0,5 X
A
a primeira é uma função constante e a segunda é uma função
decrescente.
B as duas funções são decrescentes.
C as duas funções são crescentes.
D
a primeira é uma função crescente e a segunda é uma função
decrescente.
E
a primeira é uma função decrescente e a segunda é uma função
crescente.
Parabéns! A alternativa D está correta.
Toda função logarítmica com base $$$ a >1 $$$ é crescente, enquanto toda
função logarítmica com base $$$ 0 < a > 1 $$$ é decrescente
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 93/94
Considerações �nais
Neste conteúdo, você teve acesso a conhecimentos de matemática e agora está mais preparado e dotado
dos recursos necessários para avançar na sua profissão. Foram apresentados conceitos e aplicações de
diferentes funções matemáticas: função de primeiro grau, de segundo grau, exponencial e logarítmica.
Essas funções são muito utilizadas no dia a dia, bem como na descrição de situações, estudos e análises na
área da saúde, conforme as características dessas funções e dos dados analisados. Neste estudo, você
observou esse uso em crescimentos lineares e exponenciais de bactérias em uma amostra, por exemplo.
Portanto, todos os conceitos aqui apresentados são de grande utilidade para a sua formação profissional.
Podcast
Neste podcast, o especialista Sandro Davison falará sobra as funções e sobre como aplicá-las no dia a dia
do profissional de saúde.
função logarítmica com base $$$ 0 < a > 1 $$$ é decrescente.


Referências
25/02/22, 10:16 Funções básicas
https://stecine.azureedge.net/repositorio/00212sa/03104/index.html#imprimir 94/94
MAIO, W. de (coord.); BARBONI, A.; PAULETTE, W. Fundamentos da matemática: cálculo e análise. Rio de
Janeiro: LTC, 2007.
GUIMARÃES, L. G. S. et al. Bases matemáticas para engenharia. Rio de Janeiro: SESES, 2015.
REGRA DE TRÊS. Matemática Didática. Consultado na internet em: 18 ago. 2021.
Explore +
No portal Educa+ Brasil, você pode ler mais sobre as funções logarítmica e exponencial.
 Baixar conteúdo
javascript:CriaPDF()

Continue navegando