Buscar

algebra linear e vetorial avaliacao III final

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 4 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1O estudo das matrizes e determinantes possibilita uma série de regras que permitem o cálculo simplificado de várias situações. As propriedades operatórias destes conceitos podem, além de serem provadas por artifícios matemáticos formais, serem mostradas mediante exemplos numéricos. Sendo A, B e C matrizes reais de ordem n, utilize exemplos numéricos para analisar as opções e classifique V para as sentenças verdadeiras e F para as falsas: ( ) AB = BA. ( ) A+B = B+A. ( ) det (AB) = det (A) . det (B). ( ) det (A+B) = det (A) + det (B). Assinale a alternativa que apresenta a sequência CORRETA:
A
F - V - V - F.
B
F - F - V - V.
C
F - V - F - F.
D
V - F - F - V.
2.
A
3 ou -3.
B
1/3.
C
3.
D
Raiz de 3.
3A matemática é repleta de regras e fórmulas, e cada uma foi criada visando a facilitar a vida do ser humano. Os estudos sobre a matriz vêm desde o século XIX e trazem uma nova experiência ao campo da matemática. Sobre as matrizes e os elementos associados, classifique V para as sentenças verdadeiras e F para as falsas: ( ) O determinante de uma matriz triangular superior é dado pela multiplicação dos termos da diagonal principal. ( ) Ao permutar duas linhas de uma matriz, o determinante dessa matriz não muda de sinal. ( ) O determinante de uma matriz com duas linhas ou colunas iguais é zero. ( ) Se todos os elementos de uma linha ou de uma coluna de uma matriz forem iguais a 1, então o determinante dessa matriz será igual a zero. Assinale a alternativa que apresenta a sequência CORRETA:
A
F - V - F - F.
B
F - V - F - V.
C
V - F - V - F.
D
V - F - V - V.
4A operação entre vetores chamada de Produto Interno Usual aplica-se, muitas vezes, à necessidade de observar se dois vetores são ortogonais ou não. A partir daí, encontramos aplicações na engenharia e na computação em geral. Com base nisso, considere os vetores a seguir, calcule seu Produto Interno Usual e assinale a alternativa CORRETA:
A
19.
B
-4.
C
4.
D
-19.
5Em Matemática, uma transformação linear é um tipo particular de função entre dois espaços vetoriais que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação linear também pode ser chamada de aplicação linear ou mapa linear. Sobre a representação algébrica de uma transformação, analise as seguintes opções e assinale a alternativa CORRETA:
A
Somente a opção III está correta.
B
Somente a opção I está correta.
C
Somente a opção II está correta.
D
Somente a opção IV está correta.
6A criação do Plano Cartesiano, por René Descartes, possibilitou o avanço de várias áreas da matemática. Uma delas foi trabalhar conceitos algébricos de maneira geométrica. Com isto, a Álgebra Vetorial transcendeu o campo abstrato para o campo prático. Numa visão concreta, qual das figuras a seguir é a representação do vetor v = (-1,2) no plano cartesiano?
A
Figura 4.
B
Figura 1.
C
Figura 2.
D
Figura 3.
7Ao falarmos do Produto Interno, podemos nos confundir, muitas vezes. Por exemplo, em física, em particular nas aplicações da teoria da Relatividade, o produto interno tem propriedades um pouco diferentes do que as usuais. Podemos ter equívocos quanto ao produto escalar, comumente usado na geometria euclidiana, que é um caso especial de produto interno. Portanto, quanto à necessidade de definirmos Produto Interno corretamente, analise as sentenças a seguir: I- O produto interno se faz necessário por facilitar e tornar mais coerente, num espaço vetorial qualquer, noções como comprimento e distância. II- O produto interno se faz necessário para a generalização dos conceitos de autovalor e autovetor. III- O produto interno se faz necessário porque facilita o cálculo do determinante. IV- O produto interno se faz necessário porque determina se a transformação linear é um operador linear. Assinale a alternativa CORRETA:
A
Somente a sentença III está correta.
B
Somente a sentença II está correta.
C
Somente a sentença I está correta.
D
Somente a sentença IV está correta.
8Considere o ponto A (1, 2). Sabe-se que o vetor OA, onde O é a origem do sistema cartesiano, e o vetor OB definem um paralelogramo. O vetor OB é obtido através de uma dilatação do vetor OA, no sentido do mesmo, de fator 3/2, seguida por uma rotação de 30° no sentido horário. Determine a área aproximada do paralelogramo definido por esta rotação:
A
10,67 u.a
B
5,34 u.a
C
2,23 u.a
D
3,37 u.a
9Em geral, convenientemente, chamamos de matriz, em matemática, uma tabela organizada em linhas e colunas, as quais podemos operar e atingir resultados importantes e práticos. Neste sentido, e sabendo que estudamos algumas operações envolvendo matrizes, analise a operação entre as matrizes a seguir e assinale a alternativa CORRETA:
A
Somente a opção IV está correta.
B
Somente a opção III está correta.
C
Somente a opção II está correta.
D
Somente a opção I está correta.
10Os problemas ligados ao conceito de autovalores permeiam muito mais do que estamos acostumados a verificar. Não são apenas as raízes do polinômio característico de uma transformação linear, mas sim o problema clássico de autovalores é absolutamente essencial para a compreensão e análise de estruturas simples, tais como treliças, vigas, pórticos, placas etc., como também de sistemas estruturais mais complexos, dentre os quais podem ser citados os seguintes: pontes rodoviárias e ferroviárias, torres de aço de telecomunicações e de transmissão de energia, estádios de futebol, passarelas de pedestres, edificações residenciais, edifícios altos, plataformas off-shore etc. Acerca da soma dos autovalores da transformação exposta, classifique V para as sentenças verdadeiras e F para as falsas e, em seguida, assinale a alternativa que apresenta a sequência CORRETA:
A
V - F - F - F.
B
F - F - V - F.
C
F - V - F - F.
D
F - F - F - V.
11(ENADE, 2008) Considere o sistema de equações a seguir.
A
A primeira asserção é uma proposição falsa, e a segunda é verdadeira.
B
As duas asserções são proposições verdadeiras, mas a segunda não é uma justificativa correta da primeira.
C
A primeira asserção é uma proposição verdadeira, e a segunda é falsa.
D
As duas asserções são proposições verdadeiras e a segunda é uma justificativa correta da primeira.
12(ENADE, 2011) Considere o sistema de equações lineares Ax = b, com m equações e n incógnitas. Supondo que a solução do sistema homogêneo correspondente seja única, avalie as afirmações a seguir: I- As colunas da matriz A são linearmente dependentes. II- O sistema de equações lineares Ax = b tem infinitas soluções. III- Se m > n, então a matriz A tem m - n linhas que são combinações lineares de n linhas. IV- A quantidade de equações do sistema Ax = b é maior ou igual à quantidade de incógnitas. São corretas apenas as afirmações:
A
I e II.
B
III e IV.
C
II e III.
D
I, II e IV.

Continue navegando