Buscar

09 - CALCULO DE MEDICAMENTOS Introducao

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 26 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 26 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 26 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1Cálculo de Medicamentoswww.treinasaude.com
cálcul
o de 
medica
mento
s
autora PR
oFª. ms
. ViVian
e B. m. 
taFFne
R
http://www.treinasaude.com
Índice
1. Introdução ........................................................................................................................... 04
2. Conceitos Matemáticos Básicos ............................................................................. 05
2.1. Unidades de Medidas para massa, volume, tempo e 
quantidade de substância, e prefixos métricos....................................... 05
2.2. Regra de Três Simples ....................................................................................... 08
2.3. Soluções: Proporção/Porcentagem............................................................ 10
3. Transformação de Soro ............................................................................................... 13
4. Reconstituição, Diluição e Rediluição ..................................................................... 17
4.1. Diluição na Pediatria e Neonatologia ........................................................... 17
5. Gotejamento de Soluções ........................................................................................... 19
6. Medicamentos Especiais ............................................................................................. 22
6.1. Penicilina .................................................................................................................... 22
6.2. Insulinas...................................................................................................................... 23
6.3. Heparina .................................................................................................................... 24
meta
Ao finalizar o curso você será capaz de calcular as dosagens dos medicamentos 
com segurança a partir da interpretação correta das prescrições médicas, utilizan-
do conceitos matemáticos e aplicando fórmulas específicas.
oBJetiVos de aPRendiZaGem
 Relembrar conceitos matemáticos básicos como: unidades de medidas, pre-
fixos métricos, porcentagem, proporção, concentração e Regra de Três sim-
ples e aplicá-los;
 Identificar com clareza as incógnitas a serem resolvidas no cálculo de medica-
mentos nas situações problemas propostas
 Conhecer e aplicar as fórmulas de gotejamento de macro e micro gotas para 
infusão de soro e medicamentos
 Calcular a diluição e rediluição de medicamentos
 Calcular medicamentos especiais (penicilina, insulina e heparina)
PÚBlico-alVo
 Técnicos de Enfermagem e enfermeiros em formação
 Técnicos de Enfermagem e enfermeiros formados
 Estudantes ou profissionais da área de saúde que necessitam realizar cálcu-
los de medicamentos em sua rotina
indicadoRes
 Taxa de erros no cálculo de medicação
4 Cálculo de Medicamentos www.treinasaude.com
conceito
1. intRoduÇÃo 
O cálculo de medicamentos faz parte da rotina de vários profissionais da área de saúde e em 
qualquer âmbito de atuação (Ambulatórios, Unidades Básicas, Hospitais, etc), sendo o mesmo, de 
extrema importância para uma prática segura e livre de danos ao paciente (preocupação das institui-
ções de saúde em nível mundial).
De acordo com o Protocolo de Segurança na Prescrição, Uso e Administração de medicamentos 
(BRASIL, 2013, p. 10): “O cálculo das doses de medicamentos é fonte importante de erros graves 
e este problema pode ser minimizado com a familiaridade do prescritor com o medicamento e com 
a conferência do cálculo. Independente da via de administração, o cálculo deve ser preciso a fim 
de garantir uma terapêutica adequada e contribuir com a manutenção ou recuperação da saúde 
do paciente.
Para que se calcule a dosagem correta de um medicamento a ser administrado, é necessária a 
aplicação de alguns conceitos matemáticos básicos como as unidades de medidas do sistema métrico 
(para massa, volume, tempo e quantidade de substância), prefixos métricos, proporção, porcentagem 
e regra de três simples. 
Está pronto para rever esses conceitos?
http://www.treinasaude.com
5Cálculo de Medicamentoswww.treinasaude.com
2. conceitos matemáticos Básicos 
Vamos iniciar vendo as unidades de medida do sistema métrico mais utilizadas nas instituições 
de saúde.
2.1 unidades de medidas PaRa massa, Volume, temPo e 
quantidade de suBstância, e PReFixos métRicos
Na ciência, unidade de medida é uma medida específica de determinada grandeza física usa-
da para servir de padrão para outras medidas.
As unidades de medida mais comuns no setor de saúde no Brasil são:
Grandeza física Unidade de medida Símbolo
massa quilograma Kg
volume litro ou gota L ou gota 
tempo segundo s
quantidade de substância unidades internacionais UI
Os prefixos métricos (ou, simplificadamente, prefixos) são um conjunto de prefixos de unidade 
especificados pelo Sistema Internacional de Unidades (SI) que são usados com a finalidade de indicar 
um múltiplo ou uma fração de uma unidade básica de medida. Os prefixos, conforme padronizados 
no SI, são:
Nome Símbolo Escala Equivalente numérico
quilo K Mil 1000
hecto* h Cem 100
deca* da Dez 10
nenhum Unidade 1
deci* d Décimo 0,1
centi* c Centésimo 0,01
mili m Milésimo 0,001
micro µ Milionésimo 0,000 001
* esses prefixos não são tão comumente utilizados no Brasil e nem em saúde. Qual foi a última 
vez que você viu o pacote de algum produto no supermercado marcado em centigrama ou 
centilitro?
Ao unirmos os prefixos às unidades básicas de medida temos as unidades que são utilizadas 
nas medicações e prescrições, e que serão as unidades que utilizaremos em nossos cálculos.
http://www.treinasaude.com
Elenir
Realce
Elenir
Nota
ATENÇÃO
Estas são as mais utilizadas 
Elenir
Realce
6 Cálculo de Medicamentos www.treinasaude.com
Para massa as unidades mais utilizadas nas instituições de saúde são: quilograma (Kg), 
grama (g), miligrama (mg) e micrograma (mcg ou µg). Essas são apresentadas nos medicamentos na 
forma sólida (pó).
1 Kg 1.000 g
1 g 1.000 mg
1 mg 1.000 mcg ou µg
Para volume as unidades mais utilizadas são o litro (L), o mililitro (mL) e a gota e microgota e 
são apresentadas nos medicamentos na forma líquida.
1 litro (L) 1000 mililitros (mL)
1 gota 1 macrogota
1 gota 3 microgotas 
20 gotas* 1ml= 1g 
60 gotas* 1 colher de café = 3 mL
2 colheres de chá 1 colher de sobremesa
1 colher de chá 5 mL
1 colher de sobremesa 10 mL
1 colher de sopa 15 mL
* medida líquida aproximada, pois pode variar de acordo com a densida-
de do líquido e do tamanho da abertura do conta-gotas. As padroniza-
ções referentes a medidas caseiras podem variar segundo a bibliografia 
utilizada e o país.
As colheres caseiras são de tamanhos diversos e não devem ser utilizadas 
como parâmetros. Em soluções líquidas, o fabricante da medicação já for-
nece a medida com o medicamento. Por ser um sistema caseiro atualmente 
são pouco utilizados nas instituições.
Observação 1:
Observação 2:
Quanto às unidades para tempo, as mais utilizadas são: segundo, hora e minuto
1h 60 minutos
1 minuto 60 segundos
http://www.treinasaude.com
Elenir
Realce
Elenir
Realce
Elenir
Realce
Elenir
Nota
Equivalência cia para os sólidos.
Poderá variar de acordo a massa.
Elenir
Realce
7Cálculo de Medicamentoswww.treinasaude.com
E, finalmente, para quantidade de substância, a unidade é simplesmente UI (Unidade 
Internacional) e não é convencional serem utilizados os prefixos em conjunção com essa unidade.
Como vocês viram os prefixos são utilizados em conjunção com as unidades de medida. A 
conversão de uma unidade de medida com um dado prefixo para um prefixo diferente é, apesar de 
extremamente simples, fonte de muitos erros por desatenção do profissional, por isso, vale reforçar 
como isso é feito: 
Dicas ao iniciar o processo de cálculo de qualquer medicação:
1. Sempre verifique no setor de farmácia da instituição se não há em estoque a medicação con-
forme prescrição médica. Caso já esteja disponível, issoo irá poupar de realizar o cálculo;
2. Ok! Tem que fazer mesmo o cálculo: então sempre confira os prefixos métricos das prescri-
ções e das medicações disponíveis. Se os prefixos métricos forem diferentes, transforme-os 
em um mesmo prefixo. Isso ajuda a reduzir erros.
3. Para converter uma unidade maior em uma unidade menor ou vice-versa, imagine uma 
escada. Ela permite simplificar operações com múltiplos de 10. 
Ao subir um degrau divide-se o número que está no patamar por 10, no caso de números 
decimais é só andar com a vírgula para esquerda a cada degrau; e, quando não houver 
mais algarismos coloca-se o “zero”. 
Ao descer os degraus, ao invés de dividir basta multiplicar da mesma forma por 10. Com 
números decimais, a vírgula andará para direita, além de acrescentar um zero à direita.
1 g
10 dg
SUBINDO CADA DEGRAU
DIVIDIR POR 10
DESCENDO CADA DEGRAU
MULTIPLICA POR 10
100 cg
1000 mg
Fonte: (COREN – SP, 2011).
Relembrou? Agora vamos praticar...
http://www.treinasaude.com
Elenir
Realce
Elenir
Realce
Elenir
Realce
8 Cálculo de Medicamentos www.treinasaude.com
Transforme as seguintes unidades em mililitro (mL):
EXERCÍCIO RESPOSTA
5 L
30 cm3
7 dL
98 cL
0,1 dL
Transforme as unidades em miligramas (mg):
EXERCÍCIO RESPOSTA
10 g
0,1 g
0,01 g
15 dg
0,05 g
2.2 ReGRa de tRês simPles
Agora veremos a Regra de Três Simples, você se lembra dela?
É definida como um processo que permite solucionar problemas com grandezas direta ou in-
versamente proporcionais. Ela é considerada simples quando há três elementos e deseja-se calcular 
o quarto elemento (REGRA ..., 2017)
Veja isso no exemplo a seguir:
Temos ampolas de Dipirona com 2 mL de solução. 
Quantos mL terão cinco ampolas?
1 ampola 2 mL
5 ampolas X mL
Resposta: Cinco ampolas de Dipirona terão 10 mL de solu-
ção no total.
A Regra de Três Simples também é subdividida em direta ou inversa. Na Enfermagem, utili-
zamos a direta, que é aquela em que ao aumentar um elemento aumenta-se também o outro, como 
foi descrito no exemplo acima. Na inversa ocorre o oposto, ao aumentarmos um elemento o outro é 
diminuído (COREN-SP, 2011).
Elemento 1: 1 ampola
Elemento 2: 5 ampolas
Elemento 3: 2 mL
Elemento 4: X
Respostas:
5000 mL — Cada cm3 = 1mL = 30mL — 700 mL — 980 mL — 10 mL
10000 mg — 100 mg — 10 mg — 1500 mg — 50 mg
http://www.treinasaude.com
Elenir
Realce
Elenir
Nota
5.000 ml
0,03 ml
700 ml
980 ml
10 ml
Elenir
Nota
Elenir
Nota
10.000
100
10
0,15
50
Elenir
Nota
Elenir
Nota
ATIVIDADES no Fórum.
9Cálculo de Medicamentoswww.treinasaude.com
Para resolver um cálculo utilizando a Regra de Três Simples, é importante considerar:
1. A mesma grandeza física na mesma coluna, volume sobre volume ou massa sobre massa, 
por exemplo.
2. Transformar prefixos métricos diferen-
tes em prefixos iguais. Gramas em mi-
ligramas, litro em mililitros, etc.
3. A primeira linha deve ser da informa-
ção que você já tem e a segunda linha 
o que você deve calcular.
 ANTES DE APLICAR A REGRA DE TRÊS SAIBA QUE:
1. O cálculo de medicamentos por via oral (VO), na forma de comprimidos, pode resultar na 
necessidade de cortá-los (se possuírem sulco) ou diluí-los em água filtrada para administrá-los. 
Considere isso em seu cálculo.
Vale lembrar que comprimidos que não possuem sulco não devem ser cortados. Nesse caso, 
se necessário, o mesmo deve ser macerado e diluído em 10 mL de água destilada (AD) para 
ser feita a dosagem correta.
2. Considere que alguns medicamentos são apresentados na forma de gotas. 
3. O cálculo para os medicamentos Subcutâneos (SC), Intramusculares (IM) e Endovenosos (EV) 
também são realizados com a regra de três simples.
Vamos ao exemplo considerando os itens 1, 2 e 3 citados acima:
Dra. Cristina prescreveu 100 mg do antibiótico Amicacina (EV) a uma paciente, porém na uni-
dade em que você está só há ampolas de 500 mg/2mL (lê-se: “há 500 mg de Amicacina em cada 
2 mL de solução”). Veja a resolução desse cálculo utilizando a Regra de Três:
500 mg 2 mL (Linha 1: informação)
100 mg X mL (Linha 2: o que deve ser calculado)
Na regra de três, calcula-se o X (incógnita) multiplicando os opostos. Pense da seguinte 
forma: se 500 mg está em 2 mL, 100 mg estará em quantos mL?
500 X = 200 
X = 200
500
X = 0,4 mL
Resposta: Você precisará de 0,4 mL de solução para administrar 100 mg de Amicacina à paciente.
Ficaria:
Linha 1: informaç
ão (o que você já
 sabe, o dado 
que você já tem)
Linha 2: o que vo
cê deve calcular (
o que você quer 
descobrir, calcula
r)
http://www.treinasaude.com
10 Cálculo de Medicamentos www.treinasaude.com
Considere as duas prescrições abaixo que o Dr. Carlos realizou para dois pacientes diferentes 
internados em uma unidade de Clínica Médica.
Paciente A: 
Prescrição Médica: Administrar 25 mg de Captopril (VO) agora.
Disponível na unidade: comprimidos de 50 mg sulcados.
Resolução:
1 comprimido 50 mg
X comprimido 25 mg
50 X= 25
X = 25
50
 = 0,5
Resposta: Devo administrar 0,5, o que equivale à metade de um comprimido. Como o comprimido é 
sulcado é possível parti-lo ao meio.
Paciente B: 
Prescrição Médica: Administrar Gentamicina 20 mg (IM) de 12/12 horas. 
Disponível na unidade: Gentamicina 80 mg/2 mL. (Lê-se: há 80 mg de Gentamicina em cada 
2 mL de solução)
Resolução:
80 mg 2 mL
20 mg X mL
80 X = 20 x 2
80 X = 40
X = 40
80
 = 0,5 mL
Resposta: Devo administrar 0,5 mL de Gentamicina.
2.3 soluÇões: PRoPoRÇÃo/PoRcentaGem
Alguns medicamentos são prescritos e estão disponíveis em porcentagens e em proporções, que 
são formas de expressar as concentrações de uma solução. Para entender melhor o que isso significa 
é importante relembrar os conceitos de: soluto, solvente e solução.
http://www.treinasaude.com
11Cálculo de Medicamentoswww.treinasaude.com
Vejamos primeiro essas definições de acordo com Fogaça (2017). Nessa hora, seus conheci-
mentos de Química irão lhe ajudar!
mistura homogênea composta
por 2 componentes
Parte sólida ou líquida que será dissolvida.
SOLUÇÃO:
SOLUTO
SOLVENTE
SOLUTO
Parte que dissolve uma substância, permite
que um soluto se distribua em seu interior.
SOLVENTE
A partir do soluto e solvente é possível calcular a concentração de uma solução, que é a rela-
ção entre o soluto e o solvente. Essas podem ser expressas em uma proporção de massa/volume 
(x g de um soluto em x mL de solução), ou em porcentagem (%). Porcentagem significado dizer 
“partes de cem”.
Portanto, é representada em massa de soluto por volume de solução, e não por volume de sol-
vente (IUPAC, 2014)
Sendo assim, quando falamos Soro Glicosado (SG) a 5%, estamos dizendo 5 partes de um total 
de 100 ou seja, que há 5 g de glicose (soluto) em 100 mL de solução. Ou, quando dizemos solução 
de KMnO4 a 1:20.000, estamos dizendo que há 1 g de KmnO4 em 20.000 mL de solução. É impor-
tante lembrar que sempre que for apresentada uma medicação em proporção ou porcentagem as uni-
dades serão em gramas e mililitros, mas você pode transformá-las se for necessário para o cálculo.
Exemplos:
Em uma unidade de Clínica Médica temos ampolas de glicose a 50% com 20 mL. Quantas 
gramas de glicose (soluto) há nessa ampola?
1º- ) lê-se glicose a 50%: há 50 g de glicose em cada 100 mL de solução, logo:
50 g 100 mL
X g 20 mL
100 X = 50 x 20
X = 1000
100
 = 10 g
Resposta: Há nessa ampola 10 g de glicose.
http://www.treinasaude.com
12 Cálculo de Medicamentos www.treinasaude.com
Quanto de soluto há nas soluções abaixo?
a) 1 ampola de 10 mL de KCl a 19,10%.
1º- ) lê-se KCl a 19,10%: há 19,10 g de KCl em cada 100 mL solução, logo:
19,10 g de KCl 100 mL
 X g de KCl 10 mL
100 X = 1,91
X = 191
100
 = 1,91 g
Resposta: Em 1 ampola de 10 mL há 1,91 g de KCl.
b) 1 ampola de 20 mL de NaCl a 30%. 
30 g de NaCl 100 mL
 X g de NaCl 20 mL
100 X = 600
X = 600
100
 = 6 g
Resposta: Em 1 ampola de 20 mL há 6 g de NaCl.
c) 1 frasco de 500 mL de SG a 15%.
15 g de glicose 100 mL
 X g de glicose 500 mL
100 X = 7500
X = 7500
100
 = 75 g
Resposta:Em 1 frasco de 500 mL há 75 g de glicose.
Escreva as proporções correspondentes:
EXERCÍCIO RESPOSTA
1:100
5:1000
1:30.000
Um medicamento bastante utilizado e expresso em proporção é o KMnO4 (Permanganato de 
Potássio). Esse sal de manganês, na apresentação de comprimido ou pó, de cor roxo-escura é utiliza-
do como antisséptico e antimicótico, podendo ser utilizado na forma de compressas ou por imersão 
da área afetada da pele na solução preparada. Entretanto, se calculado de maneira incorreta, em 
altas concentrações, pode ser corrosivo (GIOVANI, 2017).
Resposta:
1 g em 100 mL — 5 g em 1000 mL — 1 g em 30.000 mL
http://www.treinasaude.com
13Cálculo de Medicamentoswww.treinasaude.com
Veja abaixo as duas prescrições realizadas pela Dra. Angélica solicitando KMnO4:
a) Preparar um 1 L de solução de KMnO4 a 1:20.000 mL utilizando comprimido de 100 mg.
1 L = 1000 mL
1 g = 1000 mg
1000 mg (soluto) 20.000 mL (solução)
 X mg 1000 mL
20.000 X = 1.000.000
X = 1.000.000
20.000
 = 50 mg
Resposta: Deve-se utilizar 50 mg (meio comprimido do de 100 mg disponível) para preparar 
1 L dessa solução.
b) Preparar 1 L de KMnO4 1:20.000 utilizando uma solução já pronta a 2%.
1 L = 1000 mL 
1 g = 1000 mg
1000 mg 20.000 mL 
 X mg 1.000 mL
20.000 X = 1.000.000
X = 1.000.000
20.000
 = 50 mg
2% = 2000 mg ou 2 g em 100 mL
2000 mg 100 mL
 50 mg X mL
2000 X = 5000
X = 5000
2000
 = 2,5 mL
Resposta: Utilizar 2,5 mL da solução pronta a 2% para preparar 1 L de KMnO4.
3. tRansFoRmaÇÃo de soRo
Os soros são apresentados em porcentagem exatamente da forma como vimos para outras 
medicações anteriormente. Os soros merecem nossa atenção pois muitas vezes serão prescritos em 
porcentagens não disponíveis na farmácia do hospital.
Os principais soros utilizados são: 
•	 Glicosado: água + glicose, apresentado em frascos ou bolsas de diversos volumes, podendo 
ter diferentes concentrações de glicose, por exemplo, SG 10% ou SG 5%;
Lembre-se: transfo
rme 
as unidades de m
edida 
(L em mL e g em m
g)
Lembre-se: transfo
rme 
as unidades de m
edida 
(L em mL e g em m
g)
http://www.treinasaude.com
14 Cálculo de Medicamentos www.treinasaude.com
•	 Fisiológico: água + NaCl 0,9% (Cloreto de Sódio), frascos ou bolsas de diversos volumes e 
ampolas, muito utilizadas para diluir medicamentos a serem infundidos. Pode ser misturado 
a outros soros e infundido junto à hemoderivados. Importante lembrar que soro fisiológico é 
com NaCl 0,9%;
•	 Glicofisiológico: é uma solução que sempre contém glicose a 5% e cloreto de sódio a 0,9%. 
Prescrito para reposições volêmicas e tratamento de queimaduras.
Ao preparar o soro prescrito, você deve considerar a concentração do soro que já possui e a 
partir dela calcular a concentração diferente prescrita pelo médico. 
 DICA:
Acrescentar
mais soluto!
Acrescentar
mais solvente para
diluir mais a
solução.
MA
IS 
CO
NC
EN
TR
AD
A
MENOS CONCENTRADA
Dr. Joaquim prescreveu a infusão de um SG 10% 500 mL (EV). Entretanto, não há na unidade 
o SG 10%. Porém, há SG 5% 500 mL e ampolas de glicose 50% 10 mL. A partir do que você tem 
deverá ser feita a transformação.
Primeiro você precisa descobrir a quantidade de glicose necessária 
SG 5% 500 mL 5 g 100 mL
5 g 100 mL
X g 500 mL 
100 X = 2500 
X = 25 g de glicose (é o que temos disponível em 500 mL de SG 5%)
Tenho 25 g de glicose, agora vou calcular a quantidade que quero em um SG 10%.
10 g 100 mL
 X g 500 mL
100 X = 5000
X = 50 g de glicose (o que o médico quer)
 TENHO 25 G E PRECISO DE 50 G.
http://www.treinasaude.com
15Cálculo de Medicamentoswww.treinasaude.com
Tenho na unidade ampolas de glicose 50% – 10 mL, agora vou descobrir a quantidade de 
glicose que há em 1 ampola de glicose 50%.
50 g 100 mL (50%)
 X g 10 mL
100 X = 500
X = 500
100
X = 5 g de glicose em cada ampola
Se cada ampola possui 5 g e preciso de 50 g no soro e também já sei que já tenho 25 g no 
SG 5% então terei que acrescentar nesse soro 5 ampolas de glicose a 50% o equivalente a 50 mL.
Resposta: Deverá ser acrescentado no SG 5% 5 ampolas de glicose 50%, o que equivale a 50 mL 
para transformar o SG 5% em SG 10%.
Note que nesse exemplo adicionaríamos 50 mL a 500 mL de SG 5%, resultando em uma solução 
com 550 mL. Se o paciente não puder receber um soro com 550 mL por ter patologias renais, 
cardiopatias ou ser da neonatologia/pediatria isso deve ser considerado.
Entretanto, se acrescentarmos 50 mL no soro, o volume total ficará em 550 mL. Então teremos 
que desprezar 50 mL do soro para acrescentar os 50 mL necessários. Se desprezarmos 50 mL 
de soro estaremos desprezando também certa quantidade de glicose, concorda? Nosso próximo 
passo é identificar o quanto de glicose será desprezada.
Soro 5%
5 g 100 mL
X g 50 mL
100 X = 250 
X = 2,5 g (será desprezada em 50 mL)
Se o soro tinha 25 g de glicose e desprezei 2,5 g fiquei com 22,5 g (25 g – 2,5 g).
Se acrescentei 25 g de glicose (5 ampolas) fiquei com 47,5 g no total. A prescrição médica pediu 
50 g, portanto ainda falta acrescentar 2,5 g (justamente o que desprezei).
Onde buscar 2,5 g? Resposta: Nas ampolas de glicose!
Cada ampola de glicose 50% contém 5 g em 10 mL, se preciso de 2,5 g precisarei de 1/2 am-
pola de glicose 50%:
 5 g 10 mL
2,5 g X mL
5 X = 25
X = 5 mL (1/2 ampola)
Resposta final: Serão necessárias 5 1/2 ampolas de glicose 50% para 
que após desprezarmos 50 mL correspondesse a prescrição médica.
SAIBA MAIS
Lembre-se: Para c
alcular uma 
transformação é i
mportante 
sempre considera
r o que 
TENHO disponíve
l e o que 
PRECISO frente à
 prescrição 
médica.
http://www.treinasaude.com
16 Cálculo de Medicamentos www.treinasaude.com
Veja mais um exemplo de prescrição do Dr. Joaquim:
Prescrição: Infundir 500 mL de um Soro Glicofisiológico (SGF) (EV).
Disponível na unidade: SG 5% — 500 mL e SF 0,9% — 500 mL. A partir desses soros temos 
que preparar um soro glicofisiológico 500 mL. Além disso, há disponível na unidade ampolas de 
NaCl 30%
1º- passo: saber quanto temos de glicose e de cloreto de sódio em 500 ml de SGF. Em um SGF, temos 
glicose a 5% e NaCl a 0,9%.
GLICOSE:
5 g 100 mL
X g 500 mL
X = 2500
100
 = 25
X = 25 g de glicose há em 500 mL de SG 5%
NaCl:
0,9 g 100 mL
 X g 500 mL
100 X = 450
X = 450
100
X = 4,5 g de cloreto de sódio há em 500 mL de SF 0,9%
Resposta: Para a preparação de SGF, podemos acrescentar 4,5 g de cloreto de sódio em um SG 5% 
ou acrescentar 25 g de glicose em um SF a 0,9%.Como temos ampolas de NaCl 30% então prepa-
raremos a partir do SG 5%.
2º- passo: Como vamos acrescentar 4,5 g de NaCl em 500 mL de SG 5%, precisamos calcular quan-
tos mL de NaCl 30% precisamos:
NaCl 30% ampolas de 10 mL:
30 g 100 mL
 X g 10 mL
X = 300
100
 = 3 g
Temos 3 g por ampola e precisamos de 4,5 g, então: 
 3 g 10 mL 
4,5 g X mL
3 X = 45 mL
X = 15 mL (o que equivale a 1,5 ampolas)
Resposta: Para obter um SGF, devemos acrescentar 15 mL (ou 1,5 ampolas) de 10 mL de NaCl 30%.
http://www.treinasaude.com
17Cálculo de Medicamentoswww.treinasaude.com
4. ReconstituiÇÃo, diluiÇÃo e RediluiÇÃo
Nesse ponto do curso, você já usou esses conceitos antes mesmo de serem apresentados for-
malmente, como viram e fizeram nos exemplos e exercícios com KMnO4 e de transformações de soro.
Diluição nada mais é do que de tornar uma solução menos concentrada em partículas de soluto 
através do aumento do solvente, ou seja, acrescentar solvente a uma solução.
É importante diferenciar o termo RECONSTITUIÇÃO do termo DILUIÇÃO. 
A Empresa Brasileira de Serviços Hospitalares (2017, p.5) define que “O processo 
de reconstituição compreende a diluição do pó liofilizado do frasco-ampola em 
diluente próprio, para obtenção do medicamento em solução para administração 
IV, conforme recomendação do fabricante”. 
OBS: IV significa intravenoso é o mesmo que endovenoso (EV) como já vimos ante-
riormente.
Portanto, reconstituir é acrescentar um líquido (diluente do própriofabricante ou 
outro diluente com a indicação do fabricante) em um medicamento para trans-
formar sua característica de sólido (pó liofilizado) em líquido, porém não há al-
teração de sua concentração. Já a diluição acontece quando um medicamento já 
está no estado líquido e acrescenta-se outro líquido a ele diminuindo assim a sua 
concentração. Então, nas medicações em pó, em alguns casos, ocorre primeiro a 
reconstituição para depois ocorrer diluição. 
Por exemplo, um frasco de um antibiótico X que está em forma de pó liofilizado 
primeiro é reconstituída (transforma-se o pó em líquido acrescentando-se no fras-
co uma ampola do diluente para reconstituição do fabricante) para depois ser 
diluído, caso seja necessário aumentar a quantidade de solvente para diminuir a 
concentração da medicação.
SAIBA MAIS
4.1 diluiÇÃo na PediatRia e neonatoloGia
A diluição é bastante comum nas especialidades de Pediatria e Neonatologia. Isso acontece 
porque as doses prescritas são calculadas por meio do peso ou da superfície corporal da criança e, 
por serem tipicamente doses muito pequenas, não são disponíveis comercialmente, somente sendo 
obtidas após a diluição.
Nessas especialidades, muitas vezes, além da diluição (aspirar um volume X do frasco da me-
dicação e acrescentar um volume Y de AD) faz-se também a rediluição que consiste em repetir esse 
processo de diluição mais de uma vez. O profissional possui livre arbítrio para estipular o volume que 
será necessário para a diluição e rediluição. A diluição e rediluição são feitas para que se consiga a 
dose prescrita de medicação em um volume possível de ser aspirado com segurança. Trabalhar com 
volumes muito pequenos de medicação aumenta as chances de erros.
http://www.treinasaude.com
18 Cálculo de Medicamentos www.treinasaude.com
Vale salientar que quando o volume a ser administrado for menor que 1 mL, a seringa de 1 mL 
com escala centesimal (Insulina) possibilita aspirar e visualizar com exatidão através de sua gradua-
ção, evitando a rediluição de alguns medicamentos.
Vamos compreender melhor com esse exemplo: 
Dra. Letícia prescreveu Ranitidina 6,5 mg (EV) de 12/12h. Disponível na unidade ampola de 
25 mg/mL, volume total de 2 mL. Quantos mL devo administrar?
Resolução:
25 mg/mL 50 mg/2mL (volume total) + 8 mL de Água destilada (AD) para diluir já que 
a concentração prescrita é muito pequena, assim obtenho 10 mL.
50 mg 10 mL 
6,5 mg X mL
50 X = 65
X = 65
50
 = 1,3 mL
Resposta = Devo aspirar 2 mL da ampola (volume total), acrescentar 8 mL de AD e dessa solução 
aspirar 1,3 mL.
Se não tivesse acrescentado 8 mL veja como ficaria o cálculo:
50 mg 2 mL
6,5 mg X mL
50 X = 13
X = 0,26 mL (volume muito pequeno não é mesmo?)
Mais um exemplo para você:
Dra. Luiza prescreveu 35 mg de Amicacina (EV), há disponível ampolas de 500 mg/2 mL. 
Quantos mL dessa solução devo administrar?
500 mg 2 mL + 8 mL de AD para diluir já que a concentração prescrita é muito pequena, 
assim obtenho 10 mL
500 mg 10 mL 
35 mg X mL
500 X = 350
X = 350
500
 = 0,7 mL
Resposta: Devo aspirar 2 mL da ampola (volume total), acrescentar 8 mL de AD e dessa solução aspi-
rar 0,7 mL. Posso aspirar esse volume de 0,7 mL em uma seringa de 1 mL.
http://www.treinasaude.com
19Cálculo de Medicamentoswww.treinasaude.com
5. GoteJamento de soluÇões
O cálculo do gotejamento deve ser realizado para controle de infusão contínua, que é prescrita 
em horários que determinarão o tempo de infusão e a quantidade de gotas que deverão ser infundi-
das por minuto. Esse gotejamento poderá ser em macro ou microgotas.
Hoje, na maioria das instituições de saúde há Bombas de Infusão (BI) para o controle de volume 
a ser infundido, porém muitas vezes, por alguma razão, essa pode não estar disponível para o uso 
(GIOVANI, 2017). 
Ela é utilizada em casos em que há a necessidade de controle rigoroso de gotejamento. Por 
esse motivo torna-se ainda mais importante que o profissional de Enfermagem saiba calcular o gote-
jamento de uma medicação ou de um soro.
Há apenas uma fórmula básica a ser aplicada no cálculo do gotejamento e três variações, que 
você poderá facilmente construir a partir do que já sabe. A fórmula básica é:
Nº- de gotas por minuto = Volume
Tempo x 3
 = V
T x 3
sendo que:
Gotas = macrogotas ; Volume = mililitros ; Tempo = horas
Essa fórmula, em formato de macrogotas e horas é a mais utilizada em saúde. A partir dela, 
podemos chegar em suas variações.
1ª- variação: fórmula em microgotas. A fórmula em microgotas é utilizada em Pediatria, Neo-
natologia, na infusão de alguns antibióticos ou nos casos de algumas medicações quimioterápicas. 
Nesse caso, o equipo de microgotas é conectado a uma bureta (dispositivo que controla volumes 
pequenos e em quantidades exatas). Para chegar nessa fórmula basta lembrarmos que 1 macrogota 
= 3 microgotas, então multiplicamos a fórmula base por 3, chegando a: 
Nº- de microgotas por minuto = V
T
Microgota Macrogota
EQUIPO MACRO E MICROGOTAS
http://www.treinasaude.com
20 Cálculo de Medicamentos www.treinasaude.com
Vamos aos exemplos:
Prescrição Médica: Administrar 1000 mL de Solução Fisiológica (SF) 0,9% de 12/12h. Qual o 
gotejamento dessa infusão?
V
T X 3
 = gotas/min ➟ 
1000
12 x 3
 = 1000
36
 = 27,77... = 28 gotas/min
Se o cálculo tivesse que ser realizado em microgotas teriamos o seguinte:
V
T
 = microgotas/min ➟ 
1000
12
 = 83,33... = 83 microgotas/min
Perceba que nos casos acima houve a necessidade de ARREDONDAMENTO. Isso deve ser 
feito para trabalharmos com números inteiros porque não existe meia gota, não é mesmo? Diferente 
de outros cálculos em que a dose resultante é a que deve ser administrada sem arredondamento, ok? 
Para fazermos isso precisamos considerar algumas regras:
• Se o número após a vírgula for (1, 2, 3 ou 4) mantemos o mesmo número sem os décimos. 
4,3 gotas/min➟
o número que vai ser eliminado (3) é < 5, portanto arredondamos para 4 gotas/min.
• Se o número após a vírgula for (6, 7, 8 e 9) arredondamos para cima. 
4,7 gotas/min➟
o número que vai ser eliminado (7) é > 5, portanto arredondamos para 5 gotas/min
E se o número for o 5 como devemos proceder? Ele é uma exceção!
• Se o número após a vírgula for igual a 5 há dois casos (ASSOCIAÇÃO BRASILEIRA DE NOR-
MAS TÉCNICAS, 2014; INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2009):
o 1º- caso: número é 5, mas não é seguido apenas de zeros. Nesse caso, ele é arredondado 
para cima, seguindo a mesma regra para os números 6 a 9.
o 2º- caso (exceção): número é exatamente 5, seguido apenas de zeros. 
Nesse caso o número, após o arredondamento, 
deverá ser sempre par.
4,501 gotas/min ➟ = 5 gotas/min
4,500 gotas/min ➟ = 4 gotas/min
5,500 gotas/min ➟ = 6 gotas/min
Já estou 
até imag
inando v
ocê 
pensando
 que essa
 regra é 
meio 
maluca. P
ois é, eu 
também 
acho, 
mas é a r
egra da 
ABNT e d
a ISO.
http://www.treinasaude.com
21Cálculo de Medicamentoswww.treinasaude.com
2ª- variação: fórmula em macrogotas para prescrição em minutos. Há casos de prescrições em 
que o tempo é expresso em minutos (30 min, 45 min, 180 min etc) ao invés de horas, por isso pre-
cisamos modificar a fórmula base. Como 1 hora = 60 minutos, basta multiplicarmos a fórmula base 
por 60, obtendo:
Nº- de gotas por minuto = V x 20
T
3ª- variação: fórmula em microgotas para prescrição em minutos. Para fazer essa variação da 
fórmula basta fazermos, ao mesmo tempo, as duas transformações que fizemos para chegar as 2 
variações anteriores, ou seja, multiplicamos a fórmula por 3 e depois por 60, chegando a:
Nº- de microgotas por minuto = V x 60
T
 DICA: como conferir se as fórmulas estão corretas? Basta você resolver um exemplo para si 
mesmo e as respostas deverão ser iguais. Imagine uma prescrição imaginária de 36 mL de uma 
medicação X de 12/12h:
Resolvendo usando a fórmula base:
Nº- de gotas por minuto = 36
12 x 3
 = 1 gota/min
Resolvendo usando a fórmula de microgotas: 
Nº- de microgotas por minuto = 36
12
 = 3microgotas/min = 1 gota/min
Resolvendo usando a fórmula de macrogotas para prescrição em minutos: 
Nº- de gotas por minuto = 36
12 x 60
 x 20 = 1 gota/min
Resolvendo a fórmula de microgotas para prescrição em minutos:
Nº- de microgotas por minuto = 36
12 x 60
 x 60 = 3 microgotas/min = 1 gota/min
http://www.treinasaude.com
22 Cálculo de Medicamentos www.treinasaude.com
Exemplo: 
Dra. Patrícia prescreveu a medicação Flagyl 500 mg (EV), para infundir 100 mL em 50 minutos. 
Quantas gotas e microgotas por minuto?
V x 20
T
 = 100 x 20
50
 = 2000
50
 = 40 gotas/min
V x 60
T
 = 100 x 60
50
 = 6000
50
 = 120 microgotas/min
 DICA: Se 1 gota possui 3 microgotas, então multiplicando 40 gotas/min obteria o resultado de 
120 microgotas/min.
6. medicamentos esPeciais
O principal fator que faz esses medicamentos merecerem uma atenção especial é o fato de 
que são apresentados usando UI (Unidade Internacional). Além disso, trataremos abaixo apenas das 
particularidades de cada um, sendo que, praticamente todo o conhecimento que necessitam para 
usarem esses medicamentos vocês já obtiveram nas sessões anteriores.
6.1 Penicilina
A particularidade da Penicilina G Cristalina é a de que ela somente está disponível em pó e 
precisa ser reconstituída e diluída para ser administrada na veia do paciente e, quando esse processo 
é feito, a solução apresenta uma expansão. Por quê? Porque há 2 mL de soluto no frasco de 
5.000.000 UI e o peso molecular da medicação é alto. No frasco de 10.000.000 UI a expansão 
é de 4 mL. Assim, durante a reconstituição, sempre iremos adicionar AD o suficiente para a solução 
totalizar 10 mL no frasco.
OBS: Após se calcular o volume a ser administrado geralmente infunde-se a medicação em 100 
mL de SG 5%.
Vamos ao exemplo:
Dr. Francisco prescreveu 1.500.000 UI de Penicilina G Cristalina (EV) de 4/4h a um paciente. 
Temos somente frasco/ampola de 5.000.000 UI. Quanto devo administrar?
5.000.000 10 mL (8 mL de AD da reconstituição + 2 mL do soluto expandido) 
1.500.000 X mL
X = 15.000.000
5.000.000
 = 3 mL
Resposta: Devo administrar 3 mL.
http://www.treinasaude.com
23Cálculo de Medicamentoswww.treinasaude.com
Outro exemplo:
Dr. José prescreveu para um paciente 2.500.000 UI de Penicilina G Cristalina (EV) de 4/4 h. 
Como vimos no exercício anterior, nessa unidade há apenas frasco/ampola de 5.000.000 UI dessa 
medicação, quanto devo administrar?
5.000.000 10 mL (8 mL de AD da reconstituição + 2 mL do soluto expandido)
2.500.000 X mL
X = 25.000.000
5.000.000
 = 5 mL
Resposta: Devo administrar 5 mL.
6.2 insulinas
A particularidade das insulinas é que possuem seringas específicas para seu uso, já graduadas 
em UI. No entanto, se se essas seringas por alguma razão não estiverem disponíveis, a insulina de-
verá ser administrada usando seringas comuns, graduadas em mL. 
Atualmente os frascos de insulinas apresentam-se na concentração de 100 UI/mL, havendo 
também seringas de: 
 1 mL graduadas em 100 UI 
 0,3 mL graduadas em 30 UI
 0,5 mL graduadas em 50 UI
Quando o frasco de insulina é compatível com a seringa basta aspirar as unidades necessárias 
e realizar a aplicação. Se for prescrito 40 UI de insulina, há frasco de 100 UI e seringa de 100 UI, 
basta aspirar 40 UI na seringa e administrar ao paciente. Fácil, não é mesmo? 
E quando essa seringa não estiver disponível?
Há 2 situações em que isso pode acontecer e que será necessário a aplicação de uma fórmula 
e da regra de 3, com ela é possível transformar qualquer prescrição de insulina utilizando seringas 
em UI ou em mL.
1ª- situação: A UI do frasco de insulina não é compatível com a UI da seringa ou seja, o frasco 
é de 100 UI porém as seringas disponíveis são de 30 UI ou 50 UI;
2ª- situação: O frasco de insulina é de 100 UI, porém não estão disponíveis seringas graduadas 
em UI, sendo então necessário se calcular o volume necessário e aspirá-lo em seringas hipodér-
micas de 3 ou 5 mL.
Nessas situações, é muito importante saber realizar a aplicação da seguinte FÓRMULA:
Frasco Seringa Fui Salvo
Prescrição X Pelo X
Grave usando o lembrete:
http://www.treinasaude.com
24 Cálculo de Medicamentos www.treinasaude.com
Exemplo da 1ª- situação:
Foi prescrito pelo dra. Meire a administração de 20 UI de Insulina Regular (SC), porém só há 
na unidade frascos de 100 UI e seringa de 50 UI. Frasco e seringa não são correspondentes, correto?
Aplicando a fórmula teremos: 
100 UI 50 UI
 20 UI X 
100 X = 1000
X = 1000
100
 = 10 UI
Resposta: Será necessário administrar 10 UI da seringa de 50 UI para corresponder à prescrição 
médica solicitada.
Exemplo da 2ª- situação
Dr. João Vitor prescreveu 30 UI de Insulina NPH (SC). Quantos mL de insulina serão administra-
das se na unidade há apenas seringas de 3 mL?
Aplicando a fórmula teremos:
Frasco Seringa
Prescrição X
100 UI 1 mL
 30 UI X mL
100 X = 30
X = 30
100
 = 0,3 mL
Resposta: Serão administrados 0,3 mL.
Para facilitar o cálculo, na fórmula, sempre será utilizado seringa (1 mL), independente das 
seringas serem de 3 ou 5 mL. Isso é justificado porque utilizaremos a quantidade equivalente a 
seringa de insulina padrão (como se estivesse substituindo). 
OBS: A administração de uma dosagem incorreta de insulina pode ocasionar Hipoglicemia. As 
insulinas SC e IM não devem ser diluídas, pois perdem a estabilidade. Só será diluída se administra-
da por via endovenosa, em bomba de infusão.
6.3 HePaRina 
A heparina é um anticoagulante, também é apresentada em UI. O que faz a heparina merecer 
atenção especial é que erros em seu cálculo trazem consequências sérias ao paciente, como por 
exemplo, Hemorragias.
http://www.treinasaude.com
25Cálculo de Medicamentoswww.treinasaude.com
Ela está frequentemente envolvida em eventos adversos graves e até mesmo fatais cabendo às 
instituições a discussão e elaboração de recomendações para a prática segura desse medicamento 
(AHOUAGI et al, 2013).
O cálculo de heparina é exatamente igual aos exemplos já vistos anteriormente, como no exem-
plo a seguir:
Dr. Júlio prescreveu 7.500 UI de heparina SC. Tenho na unidade frasco/ampola com 5.000 UI. 
Quantos mL devo administrar ao paciente?
5.000 UI 1 mL
7.500 UI X mL
5.000 X = 7.500
X = 7.500
5.000
 = 1,5 mL
Resposta: Deve ser administrado 1,5 mL de heparina.
http://www.treinasaude.com
26 Cálculo de Medicamentos www.treinasaude.com
ReFeRências
AHOUAGI et al. Heparina: erros de medicação, riscos e práticas seguras na utilização. Belo Horizon-
te, v. 2, n. 5, p 1-6, 2013. Disponível em: <http://www.ismp-brasil.org/site/wp-content/uploads/2015/07/
V2N5.pdf>. Acesso em: 16 nov. 2017.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5891: regras de arredondamento na numera-
ção decimal. Rio de Janeiro, 2014.
BRASIL. Ministério da Saúde. Anexo 03: protocolo de segurança na prescrição, uso e administração 
de medicamentos. Brasília: Ministério da Saúde, 2013. 45 p. Disponível em: <http://www20.anvisa.gov.br/
segurancadopaciente/index.php/publicacoes/item/seguranca-na-prescricao-uso-e-administracao-de-medica-
mentos>. Acesso em: 13 nov. 2017.
Conselho Regional de Enfermagem de São Paulo (COREN – SP). Boas práticas: cálculo seguro. São Paulo: 
COREN, 2011. 32 p. v. 1. Disponível em:<http://www.coren-sp.gov.br/sites/default/files/boas-praticas-calcu-
lo-seguro-volume-1-revisao-das-operacoes-basicas_0.pdf>. Acesso em: 16 out. 2017.
EMPRESA BRASILEIRA DE SERVIÇOS HOSPITALARES (EBSERH). Ministério da Educação. Reconstituição, 
diluição e administração de medicamentos endovenosos. 12. ed. 2017. 43 p. Disponível em: <https://farma-
cia.hc.ufg.br/up/734/o/MAN_001-12_Reconstitui%C3%A7%C3%A3o__dilui%C3%A7%C3%A3o_e_adminis-
tra%C3%A7%C3%A3o_de_medicamentos_endovenosos.pdf?1488563524>. Acesso em: 14 nov. 2017.
FOGAÇA, Jennifer Rocha Vargas. Soluto e solvente. 2017. Disponível em: <http://brasilescola.uol.com.
br/quimica/soluto-solvente.htm>. Acesso em: 27 out. 2017.
GIOVANI, Arlete M. M. Enfermagem: cálculo e administração de medicamentos. 14ed. São Paulo: 
Rideel, 2017. 407 p.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO). ISO 80000-1:2009: quantities and units 
part 1 – general. 2009. Disponível em: <https://www.iso.org/standard/30669.html>. Acesso em: 19 feb. 2018.
INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY (IUPAC). Compendium of chemical termino-
logy gold book. 2014. Disponível em: <http://goldbook.iupac.org/pdf/goldbook.pdf>. Acesso em: 19 feb. 2018.
REGRA de três simples ou composta. 2017. Disponível em:<www.regradetres.com.br> Acesso em: 17 out. 
2017.
http://www.treinasaude.com
http://www.ismp-brasil.org/site/wp-content/uploads/2015/07/V2N5.pdf
http://www.ismp-brasil.org/site/wp-content/uploads/2015/07/V2N5.pdf
http://www20.anvisa.gov.br/segurancadopaciente/index.php/publicacoes/item/seguranca-na-prescricao-uso-e-administracao-de-medicamentos
http://www20.anvisa.gov.br/segurancadopaciente/index.php/publicacoes/item/seguranca-na-prescricao-uso-e-administracao-de-medicamentos
http://www20.anvisa.gov.br/segurancadopaciente/index.php/publicacoes/item/seguranca-na-prescricao-uso-e-administracao-de-medicamentos
http://www.coren-sp.gov.br/sites/default/files/boas-praticas-calculo-seguro-volume-1-revisao-das-operacoes-basicas_0.pdf
http://www.coren-sp.gov.br/sites/default/files/boas-praticas-calculo-seguro-volume-1-revisao-das-operacoes-basicas_0.pdf
https://farmacia.hc.ufg.br/up/734/o/MAN_001-12_Reconstitui%C3%A7%C3%A3o__dilui%C3%A7%C3%A3o_e_administra%C3%A7%C3%A3o_de_medicamentos_endovenosos.pdf?1488563524
https://farmacia.hc.ufg.br/up/734/o/MAN_001-12_Reconstitui%C3%A7%C3%A3o__dilui%C3%A7%C3%A3o_e_administra%C3%A7%C3%A3o_de_medicamentos_endovenosos.pdf?1488563524
https://farmacia.hc.ufg.br/up/734/o/MAN_001-12_Reconstitui%C3%A7%C3%A3o__dilui%C3%A7%C3%A3o_e_administra%C3%A7%C3%A3o_de_medicamentos_endovenosos.pdf?1488563524
http://brasilescola.uol.com.br/quimica/soluto-solvente.htm
http://brasilescola.uol.com.br/quimica/soluto-solvente.htm
https://www.iso.org/standard/30669.html
http://goldbook.iupac.org/pdf/goldbook.pdf
http://www.regradetres.com.br

Continue navegando