Prévia do material em texto
Avaliando Aprendizado Teste seu conhecimento acumulado Disc.: MÉTODOS QUANTITATIVOS Aluno(a): UANDERLEI DA SILVA COSTA 201802090002 Acertos: 1,6 de 2,0 13/02/2024 Acerto: 0,2 / 0,2 Uma confeitaria produz três tipos de bolos: de chocolate, de laranja e de limão. As quantidades de alguns ingredientes de cada tipo de bolo estão na tabela a seguir O modelo matemático para o planejamento da produção diária de bolos, com o objetivo de maximizar o lucro da confeitaria, é dado por: Com base nesses dados, respondonda às questões. O lucro máximo obtido com a produção dos três tipos de bolo é de $ 160,00. Caso a disponibilidade de ovos passasse a 80 unidades, o lucro máximo da confeitaria: Passaria a $ 200,00. Passaria a $ 220,00. Passaria a $ 170,00. Não sofreria alteração. Passaria a $ 180,00. Respondido em 13/02/2024 18:40:09 Questão / 1 a https://simulado.estacio.br/alunos/inicio.asp https://simulado.estacio.br/alunos/inicio.asp javascript:voltar(); javascript:voltar(); Explicação: A resposta certa é: Não sofreria alteração. Como podemos ver na solução do solver abaixo, não há alteração: Acerto: 0,2 / 0,2 Fonte: Adaptado de Centro de Seleção - Universidade Federal de Goiás (CS-UFG) - Concurso da Universidade Federal de Goiás (UFG) para o cargo de Engenheiro de Produção, 2018. Considere o seguinte problema de programação linear: O valor ótimo da função objetivo deste problema é: 27 8 19 11 21 Respondido em 13/02/2024 18:42:37 Explicação: A resposta certa é: 19 Acerto: 0,2 / 0,2 Questão / 2 a Questão / 3 a Uma confeitaria produz três tipos de bolos: de chocolate, de laranja e de limão. As quantidades de alguns ingredientes de cada tipo de bolo estão na tabela a seguir O modelo matemático para o planejamento da produção diária de bolos, com o objetivo de maximizar o lucro da confeitaria, é dado por: Com base nesses dados, respondonda às questões. A função objetivo do dual do problema é: Max w = 8y1 + 10y2 + 70y3 Min w = 5y1+ 6y2 + 8y3 Min w = 0,2y1 + 0,6y2 + 2y3 Max w = 0,2y1 + 0,6y2 + 2y3 Min w = 8y1 + 10y2 + 70y3 Respondido em 13/02/2024 18:50:41 Explicação: A resposta correta é: Min w = 8y1 + 10y2 + 70y3 Se o primal é um problema de maximização, sabemos que o dual é um problema de minimização. Sabemos, também, que os termos independentes do primal são os coe�cientes da função objetivo do dual. Desse modo, a função objetivo do dual é : Min W=8y1+10y2+70y3 Acerto: 0,2 / 0,2 Um treinador necessita formar um time de nadadores para competir em uma prova olímpica de 400 metros medley. Os nadadores apresentam as seguintes médias de tempo em cada estilo: Questão / 4 a O treinador deseja designar os nadadores para os diferentes estilos de modo a obter o menor tempo possível para completar o medley. Considere que a variável de decisão do modelo matemático para este problema é xij, que recebe o valor igual a ''1'' se decidirmos que o estilo ''i'' será alocado ao designado ''j'', sendo ''0'' se decidirmos o contrário, de tal forma: X11= 1, se o nado livre é alocado ao nadador 1; zero, caso contrário. X12= 1, se o estilo peito é alocado ao nadador 1; zero, caso contrário. X13 =1, se o estilo borboleta é alocado ao nadador 1; zero, caso contrário. X14=1, se o estilo costas é alocado ao nadador 1; zero, caso contrário. X21= 1, se o nado livre é alocado ao nadador 2; zero, caso contrário. X22= 1, se o estilo peito é alocado ao nadador 2; zero, caso contrário. X23= 1, se o estilo borboleta é alocado ao nadador 2; zero, caso contrário. X24= 1, se o estilo costas é alocado ao nadador 2; zero, caso contrário. X31= 1, se o nado livre é alocado ao nadador 3; zero, caso contrário. X32= 1, se o estilo peito é alocado ao nadador 3; zero, caso contrário .X33= 1, se o estilo borboleta é alocado ao nadador 3; zero, caso contrário. X34= 1, se o estilo costas é alocado ao nadador 3; zero, caso contrário. X41= 1, se o nado livre é alocado ao nadador 4; zero, caso contrário. X42= 1, se o estilo peito é alocado ao nadador 4; zero, caso contrário. X43= 1, se o estilo borboleta o é alocado ao nadador 4; zero, caso contrário. X44= 1, se o estilo costas é alocado ao nadador 4; zero, caso contrário. Assim, na con�guração da equipe que minimiza o tempo total para completar o medley, é correto a�rmar que: O nadador 4 não é alocado para nenhum estilo. O nadador 4 é alocado para o nado livre. O nadador 4 é alocado para o estilo costas. O nadador 4 é alocado para o estilo borboleta. O nadador 4 é alocado para o estilo peito. Respondido em 13/02/2024 18:57:01 Explicação: A resposta certa é: O nadador 4 é alocado para o estilo peito. Acerto: 0,2 / 0,2 Uma mãe deseja que seus �lhos tenham uma alimentação equilibrada e, por isso, consultou uma nutricionista, que lhe recomendou que eles consumam por dia, no mínimo, 10 mg de vitamina A, 70 mg de vitamina C e 250 de vitamina D. Mas essa mãe também está preocupada com os custos. Ela deseja oferecer aos �lhos a dieta equilibrada, porém ao menor custo possível. Para ajudar nos cálculos, ela fez uma pesquisa sobre informações nutricionais para diferentes tipos de alimento, conforme apresentado a seguir. Tabela de informações nutricionais em mg Vitamina Leite (L) Carne (kg) Peixe (kg) Salada (100 g) A 2 2 10 20 C 50 20 10 30 D 80 70 10 80 A mãe também foi ao supermercado e veri�cou que um litro de leite custa $ 2,00, um quilo de carne custa $ 20,00, um quilo de peixe custa $ 25,00, e que para preparar 100 g de salada ela gastaria $ 3,00. O modelo matemático para o planejamento da alimentação das crianças, buscando minimizar o custo, é dado por: Min Z = 2x1 + 20x2 + 25x3 + 3x4 s. a.: 2x1 + 2x2 + 10x3 + 20x4 ≥ 10 50x1 + 20x2 + 10x3 + 30x4 ≥ 70 80x1 + 70x2 + 10x3 + 80x4 ≥ 250 x1, x2, x3, x4 ≥ 0 Sendo: x1 = litros de leite a serem consumidos por dia pelas crianças x2 = quilos de carne a serem consumidos por dia pelas crianças x3 = quilos de peixe a serem consumidos por dia pelas crianças x4 = 100 g de salada a serem consumidos por dia pelas crianças O custo mínimo para esse problema é de: 4,46 5,46 6,46 2,46 3,46 Respondido em 13/02/2024 19:02:26 Explicação: A resposta certa é: 6,46. Com o uso do solver, chegamos na solução: Questão / 5 a Acerto: 0,2 / 0,2 Uma empresa tem dois tipos de produtos, A e B. Ela tem disponíveis 8 horas de mão de obra para produzir os produtos A e 12 horas para produzir os produtos B. Cada produto A tem um lucro de R$ 50,00 e cada produto B tem um lucro de R$ 80,00. A empresa tem como objetivo maximizar seu lucro e deve produzir pelo menos 2 unidades de A e não pode produzir mais de 4 unidades de B. Qual é o número máximo de unidades de B que a empresa deve produzir para maximizar seu lucro? 4 unidades. 6 unidades. 5 unidades. 2 unidades. 3 unidades. Respondido em 13/02/2024 19:03:07 Explicação: A resposta certa é: 4 unidades. Justi�cativas: "3 unidades." falsa - Produzindo 3 unidades de B, a empresa utilizaria 12 horas de mão de obra para produzi-los, atendendo a restrição de horas disponíveis. No entanto, o lucro obtido seria R$ 240,00 (2 unidade de A x R$ 50,00 + 3 unidade de B x R$ 80,00) o que não é o máximo possível. "4 unidades." Verdadeira - Produzindo 4 unidades de B, a empresa utilizaria todas as 12 horas disponíveis para produzi-los e o lucro obtido seria R$ 320,00 (2 unidade de A x R$ 50,00 + 4 unidade de B x R$ 80,00), o que é o máximo possível, atendendo as restrições de horas e de produção de A. "2 unidades." falsa - Produzindo 2 unidades de B, a empresa não atingiria o lucro máximo possível, já que não estaria utilizando todas as horas disponíveis para produção de B. "5 unidades." falsa - Produzindo 5 unidades de B, a empresa ultrapassaria a restrição de horas disponíveis para produção de B "6 unidades." falsa - Produzindo 6 unidades de B, a empresa ultrapassaria a restrição de horas disponíveis para produção de B e a restrição de produçãode B. Questão / 6 a Acerto: 0,2 / 0,2 Uma mãe deseja que seus �lhos tenham uma alimentação equilibrada e, por isso, consultou uma nutricionista, que lhe recomendou que eles consumam por dia, no mínimo, 10 mg de vitamina A, 70 mg de vitamina C e 250 de vitamina D. Mas essa mãe também está preocupada com os custos. Ela deseja oferecer aos �lhos a dieta equilibrada, porém ao menor custo possível. Para ajudar nos cálculos, ela fez uma pesquisa sobre informações nutricionais para diferentes tipos de alimento, conforme apresentado a seguir. Tabela de informações nutricionais em mg Vitamina Leite (L) Carne (kg) Peixe (kg) Salada (100 g) A 2 2 10 20 C 50 20 10 30 D 80 70 10 80 A mãe também foi ao supermercado e veri�cou que um litro de leite custa $ 2,00, um quilo de carne custa $ 20,00, um quilo de peixe custa $ 25,00, e que para preparar 100 g de salada ela gastaria $ 3,00. O modelo matemático para o planejamento da alimentação das crianças, buscando minimizar o custo, é dado por: Min Z = 2x1 + 20x2 + 25x3 + 3x4 s. a.: 2x1 + 2x2 + 10x3 + 20x4 ≥ 10 50x1 + 20x2 + 10x3 + 30x4 ≥ 70 80x1 + 70x2 + 10x3 + 80x4 ≥ 250 x1, x2, x3, x4 ≥ 0 Sendo: x1 = litros de leite a serem consumidos por dia pelas crianças x2 = quilos de carne a serem consumidos por dia pelas crianças x3 = quilos de peixe a serem consumidos por dia pelas crianças x4 = 100 g de salada a serem consumidos por dia pelas crianças O custo mínimo que a mãe vai ter é de $ 6,46. Caso recomendação de ingestão mínima de vitamina C passasse para 100 mg por dia, o custo mínimo: Aumentaria em $ 3,20. Não sofreria alteração. Aumentaria em $ 2,20. Aumentaria em $ 1,20. Aumentaria em $ 0,20. Respondido em 13/02/2024 19:14:40 Explicação: A resposta certa é: Não sofreria alteração. Com base na solução do Solver, percebe-se que não há alteração no valor. Questão / 7 a Acerto: 0,0 / 0,2 Fonte: Adaptado de Cesgranrio - Concurso Petrobrás/2012, cargo: Analista de Pesquisa Operacional Júnior Considere o seguinte problema de programação linear: Maximize Z = x1 + 2x2 Sujeito a: x1 + 2x2 ≤ 8 -x1 + x2 ≤ 16 x1 ≥ 0, x2 ≥ 0 O valor ótimo da função objetivo deste problema é: 8 20 18 10 40 Respondido em 13/02/2024 19:41:15 Explicação: A resposta certa é: 8 Acerto: 0,0 / 0,2 Uma mãe deseja que seus �lhos tenham uma alimentação equilibrada e, por isso, consultou uma nutricionista, que lhe recomendou que eles consumam por dia, no mínimo, 10 mg de vitamina A, 70 mg de vitamina C e 250 de vitamina D. Mas essa mãe também está preocupada com os custos. Ela deseja oferecer aos �lhos a dieta equilibrada, porém ao menor custo possível. Para ajudar nos cálculos, ela fez uma pesquisa sobre informações nutricionais para diferentes tipos de alimento, conforme apresentado a seguir. Tabela de informações nutricionais em mg Vitamina Leite (L) Carne (kg) Peixe (kg) Salada (100 g) Questão / 8 a Questão / 9 a A 2 2 10 20 C 50 20 10 30 D 80 70 10 80 A mãe também foi ao supermercado e veri�cou que um litro de leite custa $ 2,00, um quilo de carne custa $ 20,00, um quilo de peixe custa $ 25,00, e que para preparar 100 g de salada ela gastaria $ 3,00. O modelo matemático para o planejamento da alimentação das crianças, buscando minimizar o custo, é dado por: Min Z = 2x1 + 20x2 + 25x3 + 3x4 s. a.: 2x1 + 2x2 + 10x3 + 20x4 ≥ 10 50x1 + 20x2 + 10x3 + 30x4 ≥ 70 80x1 + 70x2 + 10x3 + 80x4 ≥ 250 x1, x2, x3, x4 ≥ 0 Sendo: x1 = litros de leite a serem consumidos por dia pelas crianças x2 = quilos de carne a serem consumidos por dia pelas crianças x3 = quilos de peixe a serem consumidos por dia pelas crianças x4 = 100 g de salada a serem consumidos por dia pelas crianças O custo mínimo que a mãe vai ter é de $ 6,46. Caso recomendação de ingestão mínima de vitamina D passasse para 350 mg por dia, o custo mínimo: Aumentaria em $ 2,00. Não sofreria alteração. Aumentaria em $ 1,36. Aumentaria em $ 2,36. Aumentaria em $ 0,36. Respondido em 13/02/2024 19:49:47 Explicação: A resposta certa é: Aumentaria em $ 2,36. Com base na solução do Solver, percebe-se que o custo aumenta em R$ 2,36: Acerto: 0,2 / 0,2 Questão / 10a Uma fábrica de bicicletas acaba de receber um pedido de R$750.000,00. Foram encomendadas 3.000 bicicletas do modelo 1, 2.000 do modelo 2 e 000 do modelo 3. São necessárias 2 horas para a montagem da bicicleta do modelo 1 e 1 hora para sua pintura. Para a bicicleta do modelo 2, leva-se 1,5 hora para a montagem e 2 horas para pintura. Para a bicicleta do modelo 3, são necessárias 3 horas de montagem e 1 hora de pintura. A fábrica tem disponibilidade de 10.000 horas para montagem e 6.000 horas para pintura até a entrega da encomenda. Os custos para a fabricação das bicicletas são: R$350,00 para a bicicleta 1, R$400,00 para a bicicleta 2 e R$430,00 para a bicicleta 3. A fábrica teme não ter tempo hábil para produzir toda a encomenda e, por isso, cotou o custo de terceirizar a sua fabricação. O custo para comprar uma bicicleta do modelo 1 seria de R$460,00, para uma bicicleta do modelo 2, R$540,00, e de R$580,00 para a bicicleta do modelo 3. Para desenvolver o modelo de programação linear para minimizar o custo de produção da encomenda de bicicletas, considere as seguintes variáveis de decisão: x1 = quantidade de bicicletas do modelo 1 a ser fabricada internamente x2 = quantidade de bicicletas do modelo 2 a ser fabricada internamente x3 = quantidade de bicicletas do modelo 3 a ser fabricada internamente c1 = quantidade de bicicletas do modelo 1 a ser comprada de concorrente c2 = quantidade de bicicletas do modelo 2 a ser comprada de concorrente c3 = quantidade de bicicletas do modelo 3 a ser comprada de concorrente Assim, sobre a solução ótima deste problema, é correto a�rmar que: A fábrica não precisou terceirizar sua produção. A fábrica compra 900 bicicletas do modelo 2. A fábrica compra 900 bicicletas do modelo3. A fábrica produz 900 bicicletas do modelo 2. A fábrica compra 900 bicicletas do modelo 1. Respondido em 13/02/2024 19:52:09 Explicação: A resposta certa é: A fábrica compra 900 bicicletas do modelo 1.