Prévia do material em texto
Prova Impressa GABARITO | Avaliação II - Individual (Cod.:1023990) Peso da Avaliação 2,00 Prova 98771988 Qtd. de Questões 10 Acertos/Erros 10/0 Nota 10,00 Estudamos cinco métodos iterativos para obter as aproximações das raízes de uma função real qualquer. No entanto, dentre os cincos métodos, cada um apresenta suas vantagens e limitações. Neste caso, é de interesse do pensador escolher qual destes métodos é o mais conveniente, ou seja, vantajoso para aplicar na sua situação problema para a tomada de decisão. Sobre esses métodos, associe os itens, utilizando o código a seguir: I- Método da bisseção. II- Método das cordas. III- Método de Newton. IV- Método das secantes. V- Método da iteração linear. ( ) Para trabalhar com este método, a grande dificuldade está centrada na descoberta da função de iteração apropriada, e sua vantagem é que a convergência é rápida. ( ) Este método não exige as derivadas da função. Para chegarmos a uma aproximação confiável da raiz são necessárias várias iterações. É utilizado para refinar o intervalo que contém a raiz. ( ) Este método exige que o pesquisador conheça a derivada da função e a sua forma analítica; no entanto, quando modificado, ele mantém constante o valor da primeira derivada durante todo o processo interativo. ( ) Método utilizado quando o pesquisador tem a certeza de que o sinal da segunda derivada da função é constante, com a necessidade da realização de uma análise gráfica e possui uma convergência lenta. ( ) A ordem de convergência está situada entre a convergência linear da iteração linear e a convergência quadrática do método de Newton. Assinale a alternativa que apresenta a sequência CORRETA: A IV - V - I - II - III. B IV - V - II - I - III. C V - I - III - II - IV. D V - II - I - III - IV. Em matemática, denomina-se interpolação linear o método de interpolação que se utiliza de uma função linear f(x) (um polinômio de primeiro grau) para representar, por aproximação, uma suposta função f(x), que originalmente representaria as imagens de um intervalo descontínuo contido no domínio de f(x). Portanto, pela interpolação linear é possível determinar o valor da função para um ponto intermediário entre dois pontos distintos. Sobre um enunciado que seja coerente com este contexto, assinale a alternativa CORRETA: VOLTAR A+ Alterar modo de visualização 1 2 A Seja y = f(x) definida pelos pontos (2,4) e (4,5), determine aproximadamente o valor de f(5). B Seja y = f(x) definida pelos pontos (0,1) e (2,9), determine aproximadamente o valor de f(1). C Seja y = f(x) definida pelos pontos (0,1) e (1,2), determine aproximadamente o valor de f(7). D Seja y = f(x) definida pelos pontos (1,3) e (2,9), determine aproximadamente o valor de f(3). Existem vários métodos que determinam as raízes de uma função, dentre elas alguns necessitam de pelo menos um ponto suficientemente máximo para iniciar o processo de resolução. No entanto, o método do Algoritmo Quociente-Diferença não necessita desta informação. Com base nesse método, analise as sentenças a seguir: I- Podemos aplicá-lo desde que conheçamos um ponto próximo da raiz. II- Este método permite encontrarmos todas as raízes de um polinômio simultaneamente. III- Podemos aplicá-lo para qualquer tipo do polinômio. IV- Este método permite encontrarmos inclusive raízes complexas. Assinale a alternativa CORRETA: A As sentenças III e IV estão corretas. B As sentenças I e III estão corretas. C As sentenças II e IV estão corretas. D As sentenças I e II estão corretas. As expressões algébricas que se formam a partir da união de duas ou mais variáveis e constantes, relacionadas através de operações de multiplicação, subtração ou adição, recebem o nome de polinômios. Dado o polinômio P (x) = 0,5x² - 4x -1, determine o seu valor para x igual a 0,5. Com base no exposto, assinale a alternativa CORRETA: A O valor do polinômio é 2,125. B O valor do polinômio é 2,375. C O valor do polinômio é -2,875. D O valor do polinômio é -1,875. 3 4 5 As expressões algébricas que se formam a partir da união de duas ou mais variáveis e constantes, relacionadas através de operações de multiplicação, subtração ou adição, recebem o nome de polinômios. Dado o polinômio P (x) = 0,5x² + 2x + 1, determine o seu valor para x igual a 0,5. Com base no exposto, assinale a alternativa CORRETA: A O valor do polinômio é 1,125. B O valor do polinômio é 2,75. C O valor do polinômio é 2,125. D O valor do polinômio é 2,5. Método iterativo clássico que data do final do século XVIII. Técnicas iterativas são raramente utilizadas para solucionar sistemas lineares de pequenas dimensões, já que o tempo requerido para obter um mínimo de precisão ultrapassa o requerido pelas técnicas diretas como a eliminação gaussiana. Contudo, para sistemas grandes, com grande porcentagem de entradas de zero, essas técnicas aparecem como alternativas mais eficientes. Sistemas esparsos de grande porte frequentemente surgem na análise de circuitos, na solução numérica de problemas de valor de limite e equações diferenciais parciais. De que método estamos falando? A Método de Gauss. B Método de bissecção. C Método de Jacobi. D Método de Newton. Muitas situações-problema, como consumo de água, produção de uma empresa, entre outras, são resolvidas por meio de funções. Nesse processo, com o auxílio da representação gráfica, busca-se entendimento dos fenômenos mais variados. Dependendo de algumas características da função, tem-se métodos distintos de resolução. Um dos métodos de resolução que define o consumo de água num determinado tempo ou quantas horas a mais os funcionários terão que trabalhar para suprir um funcionário ausente pode ser solucionado pelo método de interpolação linear. Sobre a interpolação polinomial linear, analise as sentenças a seguir: I- Pode ser utilizada desde que f seja uma função monótona, crescente ou decrescente. II- Depende da restrição do intervalo, a fim de obtermos um polinômio de grau 1. III- É eficiente quando, para o mesmo conjunto de valores de x, queremos interpolar duas funções distintas. IV- É utilizado quando estamos interessados no valor de f em apenas um ponto x. Assinale a alternativa CORRETA: A As sentenças II e IV estão corretas. 6 7 B As sentenças I e IV estão corretas. C As sentenças II e III estão corretas. D As sentenças I e III estão corretas. Os métodos de Jacobi e Gauss-Seidel são métodos que encontram uma solução aproximada da solução de um sistema linear. Quando não se tem mais um sistema linear, e sim um sistema não linear, devemos fazer uso de outros métodos para encontrar uma solução aproximada para o sistema, sendo dois deles o método da interação linear e o método de Newton. O método da interação linear, em geral, é mais fácil de ser implementado, porém requer mais condições do sistema que o método de Newton. Com base no exposto, assinale a alternativa CORRETA que apresenta a solução (com um arredondamento de 3 casas decimais) do sistema não linear depois de duas iterações (k = 2) e o ponto inicial (0,5; 0,1) usando o método da iteração linear: A x = 0,492 e y = 0,123. B x = 0,5 e y = 0,1. C x = 0,495 e y = 0,125. D x = 0,505 e y = 0,125. As expressões algébricas que se formam a partir da união de duas ou mais variáveis e constantes, relacionadas através de operações de multiplicação, subtração ou adição, recebem o nome de polinômios. Dado o polinômio P (x) = 0,6x² + 0,9x - 3, determine o seu valor para x igual a 0,5. Com base no exposto, assinale a alternativa CORRETA: A O valor do polinômio é -2,4. B O valor do polinômio é 1,65. C O valor do polinômio é 3,6. D O valor do polinômio é -1,5. No universo da Matemática, tudo que estudamos tem uma razão e aplicabilidade. Da teoria à prática, os logaritmos são trabalhados em diversas áreas do conhecimento. O trabalho com uma função logarítmica tem como objetivo facilitar os cálculos, bem como ampliar os conhecimentos 8 9 10 em assuntos específicos, como:a) na Química, quando o trabalho envolve radioatividade, para determinar o tempo de desintegração de uma substância radioativa é utilizada a fórmula: Q=qo.e^(-r-t). Nesta fórmula, Q representa a massa da substância, qº a massa inicial, r a taxa de redução da radioatividade e a variável t o tempo. Equações com essa tipologia podem ser resolvidas com o auxílio da teoria dos logaritmos; b) no ano de 1935, os sismólogos Charles Francis Richter e Beno Gutenberg desenvolveram uma escala para quantificar o nível de energia liberada por um sismo. A escala Richter, que também é conhecida por escala de magnitude local, é uma função logarítmica. Assim, é possível quantificar em Joules a quantidade de energia liberada por um movimento tectônico; c) na Medicina, quando é ministrado um tratamento, o paciente recebe o medicamento, que entra na corrente sanguínea, que passa por órgãos como fígado e rins. Neste caso, é possível obter o tempo necessário para que a quantidade desse medicamento presente no corpo do paciente seja menor ou maior que uma determinada quantidade, e para isso é necessário trabalhar com uma equação logarítmica. Neste contexto, trabalhando com uma margem de erro menor ou igual a (0,1), calcule o valor aproximado da função: f(x) = x.log(x+1) - 2, sabendo que a função tem apenas uma raiz real, que está contida no intervalo. A A função tem sua raiz real em 3,2. B A função tem sua raiz real em 3,3. C A função tem sua raiz real em 3,25. D A função tem sua raiz real em 3,5. Imprimir