Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original
578 17 CHEMICAL KINETICS −2.2 −2.1 −2.0 −1.9 −1.8 2.0 2.5 3.0 case (ii) case (i) log([complex]/moldm−3) lo g( υ 0 /m ol dm −3 s− 1 ) Figure 17.1 Similarly, for case (ii) the intercept is log υ0/moldm−3 s−1 = 4.868 which cor- responds to υ0 = 7.37... × 104 moldm−3 s−1 when [complex] = 1 mol dm−3. Hence kr,eff ,ii = υ0 [complex] = 7.37... × 10 4 moldm−3 s−1 1 mol dm−3 = 7.37... × 104 s−1 Because kr,eff = kr[Y]b , taking the logarithm gives log kr,eff = log kr + log[Y]b = log kr + b log[Y] where the properties of logarithms log(xy) = log x + log y and log xa = a log x are used. �is expression implies that a graph of log kr,eff against log[Y]will be a straight line of slope b. However, because there are only two data points, one for [Y] = 2.7mmol dm−3 and one for [Y] = 6.1mmol dm−3, a graph is not necessary and an alternative approach is used.�e two data points give the equations log kr,eff ,i = log kr + b log[Y]i and log kr,eff ,ii = log kr + b log[Y]ii Subtracting the second equation from the �rst gives log kr,eff ,i − log kr,eff ,ii = b log [Y]i − b log[Y]ii Hence, using log x − log y = log(x/y), log( kr,eff ,i kr,eff ,ii ) = b log( [Y]i [Y]ii ) Rearranging for b gives b = log (kr,eff ,i/kr,eff ,ii) log ([Y]i/[Y]ii) = log [(1.66... × 104 s−1)/(7.37... × 104 s−1)] log [(2.7 mmol dm−3)/(6.1 mmol dm−3)] = 1.83 . . .