Buscar

práticas de aço (top)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 3, do total de 39 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 6, do total de 39 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você viu 9, do total de 39 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Prévia do material em texto

ROTEIRO DE PRÁTICAS 
ESTRUTURAS METÁLICAS 
 
 
OBJETIVOS 
 
O aluno será capaz de determinar os esforços solicitantes em estruturas 
metálicas, e de dimensionar as principais peças estruturais em aço de acordo 
com estes esforços, utilizando os métodos adequados de cálculo, e 
observando os critérios exigidos nas Normas Técnicas Brasileiras. 
 
1) Uma viga de edifício comercial esta sujeita a momentos fletores oriundos 
de diferentes cargas: Peso próprio de estrutura metálica ܯ௚ଵ = 10݇ܰ.݉ Peso dos outros componentes não metálicos permanentes ܯ௚ଶ = 50݇ܰ.݉ Ocupação da estrutura ܯ௤ = 30݇ܰ.݉ Vento ܯ௩ = 20݇ܰ.݉ Calcular o momento fletor solicitante de projeto ܯௗ௦௢௟ 
 
Solução: As solicitações M୥ଵ e 	M୥ଶ	são permanentes e devem figurar e devem figurar em todas as combinações de esforços. As solicitações M୯ e M୴ são variáveis e devem ser consideradas, uma de cada vez, como dominantes nas combinações. Têm-se então as seguintes combinações: 1,25M୥ଵ + 	1,5M୥ଶ + 1,5M୯ + 	1,4	x	0,6M୴ = 149,3	kN. m 1,25M୥ଵ + 	1,5M୥ଶ + 1,4M୴ + 	1,5	x	0,7M୯ = 147,0	kN. m 
O momento fletor solicitante de projeto Mୢୱ୭୪ = 149,3 kN.m 
 
 
 
 
 
2) Uma diagonal de treliça de telhado está sujeita aos seguintes esforços 
normais (+ tração) oriundos de diferentes cargas. Calcular o esforço 
normal solicitante de projeto. 
 Peso próprio da treliça e cobertura metálica N୥ = 1k	N Vento de sobrepressão v1 N୴ଵ = 1,5	kN Vento de sucção v2 N୴ଶ = −3	kN Sobrecarga variável N୯ = 0,5	kN Calcular o esforço solicitante de projeto. 
Solução: 
Neste	caso	as	cargas	variáveis	vl	 e	v2	não	ocorrem	simultaneamente; logo,	não	 se	combinam.	Na	combinação	em	que	a	carga	v2 for dominante, a carga permanente	
terá	efeito	favorável. Tem-se	então: 1,25N୥ + 	1,4N୴ଵ + 1,5	x	0,5N୯ = 3,87	kN 1,0N୥ + 	1,4N୴ଶ = −3,20	kN 1,25N୥ + 	1,5N୯ + 1,4	x	0,6N୴ଵ୯ = 3,26	kN Observa-se neste exemplo uma característica típica de cobertura em aço: por ser uma estrutura leve, a ação do vento de sucção produziu reversão nos sinais dos esforços devidos ao peso próprio.Portanto, a diagonal deverá ser projetada para suportar com segurança os seguintes esforços normais de projeto: Nୢ = 3,87	kN	(tração) Nୢ = −3,26	kN	(compressão) 
 
 
3) Calcular a espessura necessária de uma chapa de I00 mm de largura, sujeita a um 
esforço axial de 100 kN (10 ƞ). Resolver o problema para o aço MR250 u lizando o 
método das tensões admissíveis com σ୲ = 	0,6f୷ 
Solução: Para o aço MR250, temos a tensão admissível (referida a área bruta): 
σ୲ = 0,6	x	250 = 150MPa = 15kN/cm² Área bruta necessária: A୥ = Nσ୲ = 	10015 = 6,67cm² Espessura necessária: t = 	6,6710 = 0,67cm	(adotar	7,94mm = 5/16") 
4) Repetir o problema anterior, fazendo o dimensionamento com o método dos estados limites e comparar os dois resultados. 
Solução: Admitindo-se que o esforços de tração seja provocado por uma carga variável de utilização, a solicitação de cálculo vale: 
ௗܰ 	= ݕ௤N = 1,5	x	100 = 150kN A área bruta necessária é obtida por: 
ܣ௚ = 	 ௗܰ
௬݂/ݕ௔ଵ = 15025/1,10 	6,60cm²		 
 
 Espessura necessária: t = 	6,6010 = 0,66cm	(adotar	7,94mm = 5/16") Verifica-se que, no caso de tração centrada devida a uma carga variável, o método dos Estados Limites e o de Tensões Admissíveis fornecem o mesmo dimensionamento. 
5) Duas chapas 22 x 300 mm são emendadas por meio de talas com 2 x 8 parafusos Ø 22 mm (7/8"). Verificar se as dimensões das chapas são satisfatórias, admitindo-se aço MR250. (ASTM A36). 
 
 
Solução: Área bruta: 
ܣ௚ 	= 	30	x	2,22	 = 	66,6	cm² A área líquida na seção furada é obtida deduzindo-se quatro furos com diâmetro 22 + 3,5 = 25,5 mm. 
ܣ௡ = (30 − 4	x	2,55)	x	2,22 = 44,04	cm² Admitindo-se que a solicitação seja produzida por uma carga variável de utilização, o esforço solicitante de cálculo vale: 
ௗܰ = ݕ௤N = 1,5	x	300 = 450kN Os esforços resistentes são obtidos com as equações 2.1a e 2.1b 
 
 Área bruta: 
ௗܰ௥௘௦ = 	66,6	x	251,10 = 1513	kN 
Área Líquida: 
ௗܰ௥௘௦ = 	44,0	x	401,35 = 1304	kN Os esforços resistentes são superiores aos esforços solicitantes, concluindo-se que as dimensões satisfazem com folga. 
6) Duas chapas 28cm x 20mm são emendadas por traspasse, com parafusos d = 20 mm, sendo os furos realizados por punção. Calcular o esforço resistente de projeto das chapas, admitindo-as submetidas à tração axial. Aço MR250. 
 
Solução: A ligação por traspasse introduz excentricidade no esforço de tração. No exemplo, esse efeito será desprezado, admitindo-se as chapas sujeitas à tração axial. O diâmetro dos furos, a considerar no cálculo da seção líquida, é 20	 + 	3,5	 = 	23,5	mm	 O esforço resistente de projeto poderá ser determinado pela seção bruta ou pela seção líquida da chapa, e a menor seção líquida deverá ser pesquisada nos percursos 1-1-1 , 2-2-2 e 3-3-3.
 
 
 Seção bruta: 
ܣ௚ 	= 	28	x	2	 = 	56	cm2	 Seção líquida: 1-1-1 ܣ௡ 	= (28 − 2	x	2,35)2 = 	46,6	cm² 2-2-2 ܣ௡ 	= ቀ28 + 2	x	 ଻,ହమସ୶ହ − 4	x	2,35ቁ x	2 = 48,45cm² 3-3-3 ܣ௡ 	= ቀ28 + 4	x	 ଻,ହమସ୶ହ − 5x	2,35ቁ x	2 = 55cm² Observa-se que a menor seção líquida corresponde à seção reta 1-1-1. Os esforços resistentes de projeto são obtidos com as Eqs. 2.1a e 2.1b. Área bruta 
ௗܰ௥௘௦ = 	56	x	251,10 = 1273kN(127tf) Área líquida 
ௗܰ௥௘௦ = 	46,6	x	4051,35 = 1381kN(138tf) O esforço resistente de projeto é determinado pela seção bruta, valendo 1273 kN 
7) Calcular o diâmetro do tirante capaz de suportar uma carga axial de 150 kN, sabendo-se que a transmissão de carga será feita por um sistema de roscas e porcas. Aço ASTM A36 (MR250). Admite-se que a carga seja do tipo permanente, com grande variabilidade. 
 
Solução: 
ܣ௚ = 	 ݕ௚x	N0,75	 ௨݂/ݕ௔ଶ = 1,4	ݔ	1500,75	40/1,35 = 9,45	cm² > ݕ௚x	N0,75	 ௨݂/ݕ௔ଵ = 1,4	ݔ	15025/1,10 = 9,24cm² 
 
 O diâmetro de barra pode ser adotado igual a: D=3,49cm (1 3/8”) ܣ௚=9,58 cm² 
8) Para a cantoneira L 178 x 102 x 12,7 (7" x 4" x 112") indicada na Figura, determinar: a) a área líquida, sendo os conectares de diâmetro igual a 22 mm (7/8"); b) maior comprimento admissível, para esbeltez máxima igual a 300. 
 
Solução: O cálculo pode ser feito rebatendo-se a cantoneira segundo seu eixo. Comprimentos líquidos dos percursos, considerando-se furos com diâmetro 22,2 + 3,5 = 25,7 mm (1"): Percurso 1-1-1:		178	 + 	102	 − 	12,7	 − 	2	x	25,4	 = 	216,5	mm	 Percurso 1-2-2-1: 178 + 102 − 12,7 + ቀ ଻଺మ
ସ୶଻଺
+ ଻଺మ
ସ୶ଵଵହ
− 3	x	25,4ቁ = 48,45cm² O caminho 1-1-1 é critico. Seção líquida ܣ௡ 	= 	21,6	x	1,27	 = 	27,4cm² O maior comprimento desta cantoneira trabalhando como peça tracionada será 
ܫ௠௔௫ 	= 	300	x	ܫ௠௜௡ 	= 	300	x	2,21	 = 	663cm 
 
 
9) Para o perfil U 381 (15") x 50,4 kg/m, em aço MR250. Calcular o esforço de tração resistente. Os conectares são de 22 mm de diâmetro. 
 
Solução: a) Escoamento da seção bruta 
ௗܰ௥௘௦ 	= 		ܣ௚x	 ௬݂1,10 = 		64,2	ݔ	251,10 = 1459	kN	 b) Ruptura da seção líquida: Diâmetro do furo a se considerar no cálculo = 22,0 + 3,5
=25,5 mm Área líquida (seção 1-1)= 64,2 - 4 X 2,55 X 1,02 = 53,8 cm²
 Área líquida efetiva, considerando-se fator de redução ܥ௧ 
ܥ௧ = 1 − 2,07,5 = 0,73 
ܣ௡ 	= 	0,73	x	53,8	 = 	39,4	cm² 
ௗܰ௥௘௦ = 39,4	x 401,35 = 1169	kN c) Ruptura por cisalhamento de bloco no perímetro da área hachurada na figura Área cisalhada ܣ௚௩ = 	2	x	1,02	x	15
	 = 	30,6cm² 
ܣ௡ 	= 	2	x	1,02	x	(15	– 	1,5	x	2,55) 	= 	22,8cm² Área tracionada ܣ௡௧ 	= 	1,02	x	(3	x	8,5	– 	3	x	2,55) = 	18,2cm² 
 
 Utiliza-se equação: 
ܴௗ 		
= 0,6	x	40	x	22,8 + 40	x	18,21,35 = 944kN > 0,6	x	25	x	30,6 + 40	x	18,21,35 = 879kN d) Conclusão: O esforço resistente de tração do perfil é determinado pela ruptura por cisalhamento de bloco da área hachurada da figura: 
ௗܰ௥௘௦ =879kN 
10) Calcular o esforço resistente de tração do perfil da figura, agora com ligação soldada. 
 
Solução: O esforço resistente ao escoamento da seção bruta foi obtido no problema é igual a 1444kN.Com o fator de redução obtém-se o esforço resistente para ruptura da seção efetiva na ligação: 
ܥ௧ 	= 	1− 20100 	= 	0,80 
ௗܰ௥௘௦ = 	0,80	x	64,2	x	401,35 = 1450kN	 
 
 
11) Ao perfil U 381 (15”) x 50,4 kg/m do problema são acrescentados dois furos, como indicado na figura. Calcular o esforço de tração resistente.Os conectares são de 22 mm de diâmetro. 
 
Solução: a) Ruptura de seção líquida O cálculo para ruptura da seção líquida será feito agora com as seções 1 - 1, 2-2 e 2-1-1-2. Área líquida: Seção 1-1: 
ܣ௡ = 	64,2	– 	4	x	2,55	x	1,02	 = 	53,8cm² Seção2-2: 
ܣ௡ 	= 	64,2	– 	2	x	2,55	x	1,02	 = 		59,0cm² Seção 2-l-1-2: 
ܣ௡ 	= 64,2− 4	x	2,55	x	1,02 + 2	x	7,5²4	x	8,5 x	1,02	 = 	57,6	cm²	 Admitindo solicitações uniformes nos conectores, o esforço normal na seção 1-1 será: N − ൬ 210൰N = ൬ 810൰N e por isso o esforço resistente à ruptura da seção líquida 1-1 será majorado de 10/8 para ser comparado ao esforço solicitante total N. 
 
 Ruptura da seção líquida efetiva, considerando o fator de redução C1 igual a 0,73 Seção 1-1: ௗܰ௥௘௦ 	= 	 (0,73	X	53,8)	X	40	X	(10/8)/1,35	 = 	1454kN Seção2-1-1-2: ௗܰ௥௘௦s	 = 	 (0,73	X	57,6)	X	40/1,35 = 	1246kN Comparando os resultados de esforço resistente à ruptura da seção líquida, vê-se que o percurso 1 - 1, embora com menor área líquida, não é determinante, pois o esforço na seção 1 - 1 é inferior ao esforço total N. b) Escoamento da seção bruta 
ௗܰ௥௘௦ = 1444	kN c) Ruptura por cisalhamento de bloco Com a distância agora adotada entre a última seção com furos e ruptura por cisalhamento de bloco não será determinante. d) Conclusão O esforço resistente à tração do perfil ௗܰ௥௘௦ é igual a 1246 kN. 
12) Calcule o esforço resistente à tração da chapa de 20 mm de espessura ligada a outras duas chapas por parafusos de 19 mm de diâmetro. Aço MR250. 
 
ܣ݃	28	ݔ	2 = 56ܿ݉² 
௧ܰ,ோௗ = Ag	x	fy1,10 => 56	cm²	x	25	kn/cm²1,10 = 1272,73	KN 
݀ᇱ = 1,9 + 0,35 = 2,25ܿ݉ 
ܮܿݎ݅ݐ1 = 28 + 0 − (2,25ݔ3) = 21,25ܿ݉ 
 
 
ܮܿݎ݅ݐ2 = 28 + (7,5	x	2)²4x(5x2) − (2,25x4) = 24,63cm 
௧ܰ,ோௗ = Ae	x	fu1,35 => 42,5	cm²	x	40	kn/cm²1,35 = 1259,26	KN O esforço resistente é 1259,26 KN 
13) Calcule o esforço resistente da cantoneira tracionada de contraventamento L 50 X 50 X 6 ligada à chapa de nó por parafusos Ø 9,5mm (3/8"). Aço MR250. 
 AG = (0,6x5)+(4,4x0,6) = 5,64 cm² 
௧ܰ,ோௗ = Ag	x	fy1,10 => 5,64	cm²	x	25	kn/cm²1,10 = 128,18	KN Aliq = Ag – Ad’ Ad’ = (0,95 + 0,35) x 0,6 = 0,78 cm² Aliq = 5,64 – 0,78 = 4,86 cm² Elementos Área X XA Y YA 1 3 0,3 0,9 2,5 7,5 2 2,64 2,8 7,39 03 0,79 Total 5,64 8,2 8,29 
 
 Usar ݁௖ referente ao lado onde encontra-se o parafuso Área 1 = (0,6 x 5 ) = 3 cm Área 2 = (4,4 x 0,6) = 2,64 cm X = ଼,ଶଽ
ହ,଺ସ = 1,47cm Y = ଼,ଶଽହ,଺ସ = 1,47 cm 
݁௖ = 1,47 cm 
ܥ௧ = 1 - ୣୡ୐ୡ => 1 – ଵ,ସ଻ଵ଴ 	 =0,85 
ܣ௘ = ܣ௟௜௤ x ܥ௧ 
ܣ௘ = 4,86 x 0,85 => ܣ௘ = 4,13 cm² 
௧ܰ,ோௗ = Ae	x	fu1,35 => 4,13	cm²	x	40	kn/cm²1,35 = 1267,11	KN A peça resiste ao esforço solicitado 
 
 
14) Determine qual a máxima força de tração que pode solicitar a barra indicada na figura abaixo. Dados: - Aço A36 (MR250), f୷=25kN/cm²; f୳=40kN/cm². - A chapa (5,0 x 50mm) está ligada por meio de solda ao seu elemento de apoio. 
 
 a) Área bruta = Área líquida, pois não há furos ou aberturas na seção. A୥ = 	0,5	x	5,0	 = 	2,5cmଶ b) Coeficiente de redução –C୲, como a força de tração está sendo transmitida uniformemente ao elemento a ser dimensionado – C୲ = 1,0. c) Verificação ESB: 
௧ܰ,ோௗ = 2,5	ݔ	251,10 = 56,82݇ܰ 
 
d) Verificação RSE: 
௧ܰ,ோௗ = 2,5	ݔ	401,35 = 74,07݇ܰ 
 
De (c) e (d), ௧ܰ,ோௗ= 56,82kN 
 
 
 
15) Determine se o perfil abaixo resiste a uma força de tração centrada de 650kN. Dados: - Aço A36, perfil cantoneira de abas iguais, L-152x12,7mm. - Ligação da barra ao elemento adjacente através de parafusos com 12,7mm, furo padrão. 
 
 
Das tabelas de perfis: 
 
ܣ௚=37,1cm² (fornecida pelo fabricante). 
 
Área teórica: 15,2	ݔ	1,27 + (15,2− 1,27)ݔ	1,27 = ܣ௚′ = 	36,9951ܿ݉ଶ 
 
ݕ௚=42,69mm. 
a) ESB: 
௧ܰ,ோௗ = 37,1	ݔ	251,10 = 843,18݇ܰ 
 
 
 
 
 
b) RSE: 
Área Líquida: 
Parafuso ݀௕=12,7mm, furo padrão: dfuro teórico=12,7 + 1,5 = 14,2mm, “folga” 
obrigatória a ser considerada:14,2 + 2,0mm = 16,2mm. 
 
ܣ௡ = 15,2 x 1,27 + (15,2-1,62-1,27) x 1,27 = 34,94cm², ou ܣ௡ = 37,1 – 1,62 x 1,27 = 
35,04cm², a diferençadeve-se aos valores diferentes de área real, fornecida pelo 
fabricante, e teórica, calculada a partir dedimensões nominais da seção. Sob o 
aspecto prático, pode-se utilizar qualquer um dos valores. Nesteexemplo será 
utilizado ܣ௡=35,04cm². 
Coeficiente ܥ௧: 
Como a força de tração não é transmitida uniformemente a toda a seção transversal 
no local da ligação -ܥ௧≠1,0.	Aplica-se 3.2.2 (c),ܥ௧ = 1 − ௘೎ℓ೎	.	Com ܥ௧ ≤	0,9	e	≥	0,6. 
Para cálculo do comprimento da ligação ℓ௖ , pode-se supor inicialmente a distância 
entre os centros dosfuros igual a 3݀௕ (mínimo de norma – será visto quando for 
estudada a ligação parafusada), ou seja: ℓ௖ = 2x 3 x 12,7 = 76,2mm.Com esse valorܥ௧ 
= 1 - 42,69/76,20 = 0,44, menor que o mínimo 0,6, deve-se alterar aligação. 
ܥ௧ = 1 − 42,69	ℓ௖ ≥ 0,6,݀ܽí	ℓ௖ ≥ 106,73݉݉,ܽ݀݋ݐܽ݊݀݋ − ݏ݁	ℓ௖ = 110݉݉ 
ܥ௧ = 1 − 42,69	110 = 0,61, ݁	ܣ௘ , = 0,61	ݔ	35,04 = 21,37ܿ݉ଶ 
௧ܰ,ோௗ = ଷ଻,ଵ	௫	ସ଴ଵ,ଷହ = 633,19݇ܰ < 843,18݇ܰ, ݈݋݃݋	 ௧ܰ,ோௗ = 633,00݇ܰ,	 a barra não 
resiste. 
 
 
 
16) Verifique se a barra resiste à força indicada. 
Dados: 
 - Aço A36, barra chata com espessura 8,0mm. 
 - Ligação da barra ao elemento adjacente através de parafusos com 10,0mm, 
furo padrão. 
 - Distância entre linhas de parafusos, 90mm, distância entre o 
primeiro/último furo e as bordas verticais,40mm, entre as linha de furos e as bordas 
horizontais, 55mm 
 
 
 
a) ESB: 
ܣ௚ = 0,8 x 20 = 16cm². 
௧ܰ,ோௗ = 16	ݔ	251,10 = 363,64݇ܰ 
 
 
 
 
b) RSE: 
 
Diâmetro do furo: 10,0 + 3,5mm = 13,5mm 
Seção 1: 
ܣ௡ଵ = 16 − 1,35	ݔ	2 − 924	ݔ	9 	ݔ	0,8 = 15,64ܿ݉² 
Seção 2: ܣ௡ଶ= 16 - 1,35 x 0,8 = 14,92cm2 ←	crítica; 
ܥ௧ = 1,0; 
ܣ௘ = 1,0 x 14,92 = 14,92cm² 
௧ܰ,ோௗ = 14,92	ݔ	401,35 = 442,07݇ܰ 
 
c) ௧ܰ,ோௗ = 363,64kN, a barra resiste. 
 
 
17) Verificação de elemento comprimido – seção duplamente simétrica. Determine a máxima força de compressão que pode ser aplicada a uma coluna bi-rotulada com 3000 mm de comprimento entre suas fixações, sendo dado: Aço A-36 (MR250) – ௬݂ = 25 kN/cm2 e ௨݂ = 40 kN/cm2. G = 7.000kN/cm2; E = 20.000kN/cm2. Perfil I – 160 x 17,9mm (série europeia, tabela ARCELOR-Laminado) 
ܣ௚ = 22,80cm2; ݐ௙ = 9,51mm; ܫ௬ = 54,7cm4; d = 160mm; ݐ௪ = 6,3mm; ݎ௫ = 6,40mm; 
௙ܾ = 74mm; ݎ௬ = 1,55cm; ܫ௫ = 935cm4. 
 Sendo a coluna bi-rotulada e sem travamentos intermediários, pois não há observação sobre travamentos intermediários no enunciado, ܮ௫ = ܮ௬ = 300cm. a) Verificação da esbeltez da coluna 
ߣ௬ 	= 	1,0	ݔ	3001,55 = 	193,54 (da tabela do item 3.3.1d, K=1,0), como λ≤200	- OK. 
ߣ௫ = 3006,40 = 	46,88	 b) Cálculo de ௖ܰ,ோௗ 
௖ܰ ,ோௗ 	= ܺܳܣ௚ ௬݂ݕ௔ଵ Para o cálculo de 	ܰோௗ é necessário determinar Q e X, uma vez que os demais elementos são conhecidos 
 
 c) Cálculo de Q Alma da seção – AA – ܳ஺ 
 Aba da seção – ܣ௅ – ܳ௦ 
 Q = ܳ஺	ݔ	ܳ௦ = 1,0. d) Cálculo de χ O valor de χ depende da esbeltez reduzida λ଴ , que por sua vez depende dos valores de força axial de flambagem elástica, apresentados no mesmo item para alguns tipos de seção transversal. Flambagem por flexão em torno do eixo Y (esbeltez máxima) 
௘ܰ௬ = 	 ߨ².ܧ. ܫ௬(ܭ௬.ܮ௬)² = 120,15݇ܰ 
ܿ݋݉	ܬ௬ 	൫݋ݑ	ܫ௬, ݅݊éݎܿ݅ܽ	݁݉	ݐ݋ݎ݊݋	݀݁	ݕ൯ = 54,7݁ܿ݉ସ; E = 20.000kN/cm² 
	ܭ௬ = 1,0	(ܾܽݎݎܽ	ݎ݋ݐݑ݈ܽ݀ܽ);ܮ௬ = ܮ௫ = 300ܿ݉ 
ܾ
ݐ
= 	1,49ඨܧ
௬݂
= 1,49	ඨ200.000250 = 42,14 
ܾ
ݐ
= 	160 − 2	ݔ	9,516,3 = 22,38 < 42,14 → ܳ஺ = 1,0 
Tabela pág. 6 – caso 2 (a favor da segurança, desprezou-se o raio de concordância). Valor Limite 
(E=200.000MPa, NBR 8800 e ௬݂=250Mpa, Aço A-36No exemplo: 
ܾ
ݐ
= 	0,56ඨܧ
௬݂
= 0,56	ඨ200.000250 = 15,84 
ܾ
ݐ
= 	 742	ݔ	9,51 = 3,89 < 15,84 → ܳ௦ = 1,0 
Tabela pág. 6 – caso 4 Valor Limite 
No exemplo: 
 
 
ߣ଴ = ඨܳ.ܣ௚ . ௬݂
௘ܰ
= 2,1718 
Com Q=1,00; ܣ௚ = 22,80ܿ݉²; 	 ௬݂ = ଶହ௞ே	௖௠మ 	݁	 ௘ܰ௬ 	݈ܿܽܿݑ݈ܽ݀݋	ܽܿ݅݉ܽ 
ߣ଴ > 1,5 → ܺ = 0,887ߣ଴² → ܺ = 0,1844 Flambagem por flexão em torno do eixo X 
௘ܰ௫ = 	 ߨ².ܧ. ܫ௫(ܭ௫ . ܮ௫)² = 2.048,265݇ܰ 
ߣ଴ = 0,5275,ߣ଴ ≤ 1,5 → ܺ = 0,658ߣ଴² = 0,89 Conforme foi demonstrado anteriormentem para a seções com dupla simetria, o valor mínimo do coeficiente X, na flambagem por flexão, corresponde sempre a máxima esbeltez. Flambagem por flexo-torção 
௘ܰ௭ = 1ݎ଴² ቈߨଶ.ܧ.ܥ௪(ܭ௭.ܮ௭)ଶ + ܩܬ቉ ,݋݊݀݁	ܽݏ	ܿ݋݊ݏݐܽ݊ݐ݁ݏ	ܥ௪ 	݁	ܬ	(ܿ݋݊ݏݐܽ݊ݐ݁	݀݁	ݐ݋ݎçã݋), Podem ser obtidas nas tabelas dos fabricantes dos perfis. Com ݔ଴ = ݕ଴ = 0, ݎ଴² = ݎ௫²+ݎ௬² = 1,55² + 6,40² = 6,58ܿ݉ ‘h=160-9,51=150,49mm J=ଵ
ଷ
= (2. ௙ܾ . ݐ௙ଷ +h.	ݐ௪³)=	ଵଷ = (2	ݔ	7,4	ݔ	0.95ଷ + 15,05	ݔ	0,63ଷ = 5,4975ܿ݉ସ 
ܥ௪ = ௧೑.௕೑.௛²ଶସ =3.636,47 ܿ݉଺ Substituindo na expressão de ௘ܰ௭:	 ௘ܰ௭ = 1.073,01݇ܰ > 	 ௘ܰ௬ = 120,15݇ܰ, Logo, o eixo y é mais desfavorável. 
 
 e) Determinação de ோܰௗ 
௖ܰ,ோௗ=௑.ொ.஺೒.௙೤௬ೌభ =95,79kN Com x=0,18; Q=1,0; ܣ௚ = 22,8ܿ݉²; 	 ௬݂ = 25݇ܰ/ܿ݉ଶ݁	ݕ௔ଵ = 1,1 O eixo y definiu a carga máxima de compressão que pode ser aplicada a essa barra, que é de 95,8kN 
18)Verificação de elemento comprimido – seção cantoneira. A treliça da figura tem suas barras comprimidas constituídas por cantoneiras. Sabendo que a força de compressão na barra indicada da treliça é de 800kN, verifique se as dimensões propostas estão compatíveis. Dados: Comprimento da barra– 2000 mm (presas apenas pelas extremidades) Aço A36; Perfil 2L – 152 x 152 x 12,7mm Propriedades do perfil (Tabela Usiminas): 
ܣ௚=37,1cm2; ݎ௫=ݎ௬=4,72cm; ܬ௫=ܬ௬=828cm4 
ݎ௠௜௡=3,0cm. 
 Como a barra é constituída por duas cantoneiras, cabe a cada cantoneira 400kN. Uma vez que as barras estão conectadas apenas pelas suas extremidades, nos nós, pode-se considerar que atende ao disposto na simplificação prevista pela NBR 8800. Como a barra é constituída por duas cantoneiras, cabe a cada cantoneira 400kN. Uma vez que as barras estão conectadas apenas pelas suas extremidades, nos nós, pode-se considerar que atende ao disposto na simplificação prevista pela NBR 8800, colocada na pág. 14. 
 
 a) Esbeltez da barra: 
ߣ௠௔௫ 	= 	 ܭ. ܮݎ௠௜௡ 	= 	1.2003 	= 	66,67	 < 	200	ܱܭ	 b) Comprimento equivalente: 
ܮ௫
ݎ௫
= 2004,72 = 42,72 < 80 → ܭ௫ܮ௫ = 72ݎݔ + 0,75	ܮ௫ = = 72	ݔ	4,72 + 0,75	ݔ	200 = 	489,84ܿ݉ c) Força de flambagem elástica: 
௘ܰ௫ = ߨଶ.ܧ. ܫ௫ଵ(ܭ௫ଵ. ܮ௫ଵ)ଶ = 	 ߨଶ	ݔ	20000	ݔ	828(489	ݔ	84)ଶ = 681,17݇ܰ d) Cálculo de Q: Única situação, Aba da seção – ܣ௟ – ܳ௦ 
 e) Cálculo de χ: 
ߣ଴ = ඨܳ.ܣ௚ . ௬݂
௘ܰ
= ඨ1,00	ݔ	.37,10	ݔ	25681,17 = 1,1669 
ߣ଴ ≤ 1,5 → ܺ = 0,658ߣ଴² = 0,5656 
ܾ
ݐ
= 	045ඨܧ
௬݂
= 0,45	ඨ200.000250 = 12,73 
ܾ
ݐ
= 	 15212,7 = 11,97 < 12,73 → ܳ௦ = 1,0 
Tabela pág. 6 – caso 3 Valor Limite 
No exemplo: 
 
 f) Cálculo de ோܰ஽: 
௖ܰ,ோௗ = ௑.ொ .஺೒ .௙೤௬ೌభ = ଴,ହ଺ହ଺	௫	ଵ,଴଴	௫	ଷ଻,ଵ	௫	ଶହଵ,ଵ = 476,88kN > ௌܰௗ = 400݇ܰ	ܱܭ 
19) Dimensionamento de elemento comprimido. Para a coluna da figura a seguir, dimensionar o perfil para resistir a uma força normal de compressão, centrada e de cálculo de 850kN. 
 a) Pré-dimensionamento: As expressões do item 5 da NBR são apresentadas na forma de verificação (isso vale para todos os tipos de esforços), portanto, para o dimensionamento, sempre será necessário um procedimento iterativo de estimativa (pré-dimensionamento) e verificação (com eventuais ajustes). Tomando-se a expressão básica: 
௖ܰ ,ோௗ = ܺ.ܳ.ܣ௚. ௬݂ݕ௔ଵ É necessário estimar o produto X Q. Uma estimativa razoável é arbitrar o valor 0,6, daí: 
௖ܰ ,ோௗ = ܺ.ܳ.ܣ௚ . ௬݂ݕ௔ଵ = 0,6	ݔ	ܣ௚ 	ݔ	251,10 = 850 → ܣ௚ = 62,33ܿ݉² 
 
 Consultando uma tabela de perfis, pode-se adotar um perfil H, laminado, de faces paralelas: 
 
IP Massa [kg/m]
d 
[mm]
bf 
[mm]
tf 
[mm]
tw 
[mm]
k 
[mm]
g1 
[mm]
g2 
[mm]
200 42,3 190 200 10,0 6,5 28,0 110 -
220 50,5 210 220 11,0 7,0 29,0 120 -
240 60,3 230 240 12,0 7,5 33,0 90 35 
IP A [cm2]
Ix 
[cm4]
Wx
[cm3]
rx 
[cm]
Zx 
[cm3]
Iy 
[cm4]
Wy 
[cm3]
ry 
[cm]
Zy 
[cm3]
It 
[cm4]
Cw 
[cm6]
200 53,8 3690 389 8,28 430 1340 134 4,98 204 21,1 108000
220 64,3 5410 515 9,17 568 1950 178 5,51 271 28,6 193300
240 76,8 7760 675 10,1 744 2770 231 6,00 352 41,8 328500 Como a área foi estimada, será adotado inicialmente o perfil IP-210 x 220. b) Verificação da esbeltez: 
ߣݕ	 = 	 (1,0	ݔ	650)/5,51	 = 	117,96	 < 	200	ܱܭ!	 
ߣݔ	 = 	 (1,0	ݔ	325)/9,17	 = 	35,44	 < 	200	ܱܭ!	 c) Cálculo de Q Alma da seção – AA – ܳ஺ 
 Aba da seção – ܣ௅ – ܳ௦ 
ܾ
ݐ
= 	1,49ඨܧ
௬݂
= 1,49	ඨ200.000250 = 42,14 
ܾ
ݐ
= 	1887 = 26,86 < 42,14 → ܳ஺ = 1,0 
Tabela pág. 6 – caso 2; h=210-2 x 11=188mm Valor Limite 
(E=200.000MPa, NBR 8800 e ௬݂=250Mpa, Aço A-36 No exemplo: 
 
 
 Q = ܳ஺	ݔ	ܳ௦ = 1,0. d) Cálculo de χ 
ߣ଴ = ߣ௠௔௫ߨ ඨܳ. ௬݂ܧ = 117,96ߨ ඨ1,00	ݔ	.2520000 = 1,3276 
ߣ଴ ≤ 1,5 → ܺ = 0,658ߣ଴² = 0,4782 Para verificação da flambagem por flexo-torção: 
ݎ଴2 = ݎ௫² + ݎ௬² = 9,172 + 5,512 = 114,45cm2; ܥ௪ = 193.300cm6; ܫ௧ (ou ܬ௧) = 28,6cm4; 
௘ܰ௭ = 1ݎ଴² ቈߨଶ.ܧ.ܥ௪(ܭ௭ .ܮ௭)ଶ + ܩܬ቉ = 2.538,34݇ܰ 
ߣ଴ = ඨܳ.ܣ௚ . ௬݂
௘ܰ
= ඨ1,00	ݔ	.64,3	ݔ	10	ݔ	252538,34 = 0,7958 
ߣ଴ ≤ 1,5 → ܺ = 0,658ߣ଴² = 0,7672	(ݒ݈ܽ݁	݋	ܽ݊ݐ݁ݎ݅݋ݎ) 
ܾ
ݐ
= 	0,56ඨܧ
௬݂
= 0,56	ඨ200.000250 = 15,84 
ܾ
ݐ
= 	11011 = 10,0 < 15,84 → ܳ௦ = 1,0 
Tabela pág. 6 – caso 4; b=220/2=110 Valor Limite 
No exemplo: 
 
 e) Cálculo de ோܰ஽ 
௖ܰ,ோௗ = ܺ.ܳ.ܣ௚ . ௬݂ݕ௔ଵ = 698,82݇ܰ < 850݇ܰ É necessário verificar o próximo perfil, provavelmente será verificado, pois a simples relação de área (698,82	ݔ	64,3/76,8	 = 	834,80݇ܰ).	 Será adotado IP-230 x 240 f) Nova verificação de esbeltez 
ߣ௬ = 1,0	ݔ	6506,00 	= 	108,33	 < 	200	ܱܭ!	 
ߣݔ	 = 1,0	ݔ	32510,1 		= 	32,18	 < 	200	ܱܭ!	 g) Novo cálculo de Q Alma da seção – AA – QA 
ℎ	 = 	230	– 	2ݔ12	 = 	206݉݉. 
ܾ
ݐ
= 	2067,5 = 27,47 < 42,14 → ܳ஺ = 1,0 Aba da seção – ܣ௅ – ܳ௦– 
	ܾ	 = 	2402 	= 	120	 
ܾ
ݐ
= 	12012 = 10,0 < 15,84 → ܳ௦ = 1,0 
ܳ	 = 	 ܳ஺ 	ݔ	ܳ௦ 	= 	1,0	 
 
 h) Cálculo de χ 
ߣ଴ = ߣ௠௔௫ߨ ඨܳ. ௬݂ܧ = 108,33ߨ ඨ1,00	ݔ	.2520000 = 1,2191 
ߣ଴ ≤ 1,5 → ܺ = 0,658ߣ଴² = 0,5368 Para verificação da flambagem por flexo-torção: 
ݎ଴2 = ݎ௫2 + ݎ௬2 = 10,12 + 6,02 = 138,01cm2; ܥ௪ = 328.500cm6; ܫ௧ (ou ܬ௧) = 41,8cm4; 
௘ܰ௭ = 1ݎ଴² ቈߨଶ.ܧ.ܥ௪(ܭ௭ .ܮ௭)ଶ + ܩܬ቉ = 3.232,20݇ܰ 
ߣ଴ = ඨܳ.ܣ௚. ௬݂
௘ܰ
= ඨ1,00	ݔ	.76,8	ݔ	10	ݔ	253232,2 = 0,7707 Como ߣ଴ é menor que o anterior, vale o anterior. Cálculo de ோܰௗ 
௖ܰ,ோௗ = ܺ.ܳ.ܣ௚. ௬݂ݕ௔ଵ = 936,96݇ܰ > 850݇ܰ	 → ܱܭ!	 Adota-se o perfil IP 230 x 240 
 
 20) Verificação de viga fletida. Calcule o máximo carregamento distribuído que pode ser aplicado na viga da figura, sabendo que: A viga não tem travamento lateral intermediário. Dados: . Perfil Aço A 36, tipo VS 550x64; . bf=250mm; tf=9,5mm; tw=6,3mm); . Ag = 81cm2; Ix=42500cm4; Wx=1550cm3; rx=22,9cm; . Zx=1730cm4; . Iy=2480cm4; ry=5,53cm; . Cw=1807000cm6; It ou J = 18,7cm4. 
 
 
SOLUÇÃO: 
a) Verificação da esbeltez da alma 
 
λ = h/tw = (550-2.5,5) = 84,29 ; 
 
λ௥ = 5,7√
୉
୤୷
 =5,7√ଶ଴଴଴଴
ଶହ
 =161,22 
 
λ < λ௥ 
 
λ< - alma não esbelta ! 
 
b) Verificação de FLA 
 
λ = 84,29 ; 
 
λ௣ = 3,76√
୉
୤୷
 =3,76√ଶ଴଴଴଴
ଶହ
 =106,35 
λ < λ௣ → seção compacta MRd = MPL/γa1 
 
MPL = Zx.fy = 1730 . 25 = 43.250kN.cm = 432.5kN.m 
 
 
 
MRd1 = 432,5/1,1 = 393,18kN.m 
 
 
c) Verificação de FLM 
λ = b/tf = 250/(2.9,5) = 13,16; 
 
λ௣ = 0,38√
୉
୤୷
 =0,38√ଶ଴଴଴଴
ଶହ
 =10,75 
 
λ௥ = 0,95√
୉.୩ୡ
௙೤ି஢ೝ
 == 0,95√ଶ଴.଴଴଴୶଴,ସଷହ଻
ଶହି଻,ହ = 21,20 
 
σ௥ = 0,3fy = 0,3.25 = 7,5kN/cm² 
 
kc = ସ
√
౞
೟ೢ
 = ସ
√
ఱయభ
ల,య=0,4357(0,35≤kc≤0,76) 
 
λp < λ < λr → seção semi compacta MRd = 1/γa1 ቂܯ௣௟ − (ܯ௣௟ −ܯ௥) ஛ି	஛୮஛୰ି	஛୮ቃ 
Mr = (fy-σr).W= (25 – 7,5)1550 = 271,25kN.m 
MRd = 1/1,1 [432,5 – (432,5-271,25). ଵଷ,ଵ଺ି	ଵ଴,଻ହ
ଶଵ,ଶ଴ି	ଵ଴,଻ହ ] = 359,37kN.m 
 
d) Verificação de FLT 
 
λ = Lb/ry = 250/5,53 = 45,21; 
 
λ௣ = 1,76√
୉
୤୷
 =1,76√ଶ଴଴଴଴
ଶହ
 =49,78 → λ<λ௣ → seção compacta MRd = MPL/γa1 
 
MPL = Zx.fy = 1730 . 25 = 43.250kN.cm = 432.5kN.m 
MRd1 = 432,5/1,1 = 393,18kN.m 
 
e) MRd 
 
Momento resistido é o mínimo entre as verificações → MRd = 359,37kN.m 
 
f) Carga distribuída 
MRd ≥ Msd = ୯	୶	୪²
଼
 → q ≥ 8.MRd/ l² 
 
qd ≤ 459,99kN/m ~ 460kN/m 
 
 21) Dimensionamento de viga fletida. Defina qual o perfil Ip que deve ser utilizado na viga da figura, sabendo que: A viga tem travamento lateral intermediário a cada terço do vão. Perfil Aço A 36. A carga está aplicada no meio do vão. 
 
 SOLUÇÃO: a) Pré-dimensionamento Zmin ெೞ೏.ಋ౗భ
௙௬
		= ହ଺ଶହ଴.ଵ,ଵ
ଶହ
= 2475 cm3 →da	tabela:	Ip	– 550x106, bf=210mm; tf=17,8mm; tw=11,1mm. Zx=2780cm3; Wx=2440cm3; ry=4,45cm; Iy=2670cm4; Cw=1884000cm6; J=124cm4. Msd = 300 . 7,5/4 = 562,5 kN.m b) Verificação de FLA e da esbeltez da alma 
λ	=	h/tw	=	(550-2.17,8)/11,1 = 46,45 ; ߣr	=5,7ට ா
௙௬
	= 5,7ටଶ଴଴଴଴
ଶହ
	=		161,22	λ<	ߣr - alma não esbelta ! 
λ	=	46,45	;	ߣp	=3.76ට ா
௙௬
	= 3,76ටଶ଴଴଴଴
ଶହ
	= 106,35 →	λ<	ߣp →	seção compacta MRd = 
MPL/γa1 MPL = Zx.fy = 2780 . 25 = 69500kN.cm = 695,0kN.m MRd1 = 695,0/1,1 = 631,82kN.m c) Verificação de FLM 
λ	=	b/tf	=	210/(2.17,8)	=	6,1;						ߣp	=0,38ට ா
௙௬
	= 0,38ටଶ଴଴଴଴
ଶହ
=10,75 
λ<	ߣp →	seção compacta MRd = MPL/γa1;	MRd1	=	631,82kN.m d) Verificação de FLT 
 
 
λ = Lb/ry = 250/4,45 = 56,18; ߣp = 1,76ට ா
௙௬
	= 1,76ටଶ଴଴଴଴
ଶହ
= 49,78 
ߣp = ଵ,ଷ଼ඥூ೤.಻
௥௬.௃.ఉ = 	ඩ1 + ඨ1 + ଶ଻஼ೈ.ഁభమூ೤ , com os dados já conhecidos →	λr	=	158,1 
λp	<	λ	<	ߣr →	seção semi compacta MRd = Cb/γa1[MPL – ( MPL – Mr) ఒି	ఒ୮
ఒ୰ି	ఒ୮
 ] 
ߚଵ= (௙೤ି	ఙೝ)ௐா.௃ 	= 0,0172; Mr = (fy-σr).W = (25 – 7,5)2440 = 427,0kN.m Cálculo de Cb 
 Cb =	 ଵଶ,ହெ೘áೣ
ଶ,ହெ೘áೣାଷெಲାସெಳାଷெ಴ onde MA – ¼ de Lb; MB – ½ de Lb; Mc – ¾ de Lb Cb = ଵଶ,ହ.ହ଺ଶ,ହ(ଶ,ହ)ହ଺ଶା(ଷାଷ)ସ଺଼,଻ହ . 1 = 1,09 Na expressão de MRd →	MRd	=	672,99kN.m e) MRd Momento resistido é o mínimo entre as verificações →	MRd	=	672,99kN.m	>	562,5	kN.m – OK! O perfil selecionado está OK. 
 
5,5 m 
 
21 Verificar a estabilidade de um tubo circular 323,8 x 12,7mm aço ASTM A572 grau 42, sujeito a uma força axial de compressão de 1700kN, sendo 700kN de ações permanentes e 1000kN de ações variáveis. A peça tem 5,5m de comprimento e ambas as extremidades rotuladas. 
Dados: 
௬݂ = 29 kN/ cm², 	 ௨݂ = 41,5 kN/ cm² E = 20.000 kN/cm² 
ܣ௚ = 124,12 cm2 D = 32,38 cm t = 1,27 cm L = 550 cm r = 11,01 cm I = 15041cm4 Resolução: 
௖ܰ,ௌௗ = 700	ݔ	1,35 + 1000	ݔ	1,50 = 2445	݇ܰ 
௖ܰ,ௌௗ ≤ ௖ܰ,ோௗ 
௘ܰ = ߨଶ.ܧ. ܫ(݇. ܮ)ଶ = 	 ߨଶ	ݔ	20000	ݔ	15041(1	ݔ	550)ଶ = 9.814,74݇ܰ Determinar Q 
ܦ
ݐ
≤ 0,11	ݔ	ඨܧ
௬݂
→ ܳ1 
33,381,27 ≤ 0,11	ݔඨ2000029 25,496≤ 75, 862	→ ܳ1 
ߣ଴ = ඨܳ.ܣ௚ . ௬݂
௘ܰ
= ඨ1	ݔ	124,12	ݔ	259.814,74 = 0,61 → ܺ = 0,856 
 
 ܰ
௖,ோௗ = ܺ.ܳ.ܣ௚ . ௬݂ݕ௔ଵ → 0,856	x	1	x	124,12	x	251,10 = 2801, 05	Kn Revisão de conceitos básicos Centroide 
 
 
1 ) LOCALIZE O CENTRÓIDE DA ÁREA DA PLACA NA FIGURA ABAIXO: 
 
X = ∑ distância de X.A Y = ∑ distância de Y.A 
 A Total A Total 
 
X = - 4 = 0,35m2 Y = 1 4 = 1,22m2 
 11,5 11,5 
Elementos Área (m2) X A.X Y A.Y 1 4,5 1 4,5 1 4,5 2 6,0 -1 - 6,0 1,5 9,0 3 1,0 - 2,5 - 2,5 0,5 0,5 
∑ 11,5 - 4,0 14 
 
 
2 ) LOCALIZE O CENTRÓIDE DA ÁREA DA PLACA NA FIGURA ABAIXO: 
 
 
X = 80 000 = 20 mm Y = 184 000 = 46000 mm 
 4 000 4.000 
Determinar a coordenada y do centróide da seção abaixo: 
 
Y = 121 = 4,65m2 
 26 
Elementos Área (mm) X A.X Y A.Y 1 1600 20 3200 70 112 000 2 2400 20 4800 30 72 000 
∑ 4000 80000 14 
Elementos Área (m2) X A.X Y A.Y 1 6,0 -2,5 -15 6,0 36 2 14,0 0 0 3,5 49,0 3 6,0 2,5 15 6,0 36 
∑ 26,0 0 121 
 
 
3) Determinar a distância c do centróide da figura abaixo: 
Dados: b = 10cm; e = 2,5cm; h = 20cm; h1 = 17,5cm. 
Y = 851,56 = 12,39cm 68,75 C = 7,61cm 
 
 
Propriedades de figuras planas - centróide 
4 ) Determinar os centróides das sessões abaixo: 
 
 
̅ݔ = 	 ∑ ܣ. ݔ
∑ܣ
= 	1110004200 = 26,43	݉݉ 
ݕത = 	 ∑ܣ.ݕ
∑ܣ
= 	 04200 = 0	݉݉ 
Elementos Área (mm) Y A.Y 1 25 18,75 468,75 2 48,75 8,75 382,81 
∑ 68,75 851,56 
Elemento Área (mm²) X (mm) Y (mm) AX (mm³) AY (mm³) 
1 1000 50 115 50000 115000 
2 2200 5 0 11000 0 
3 1000 50 -115 50000 -115000 
Σ 4200 111000 0 
 
 
 
Elemento Área (mm²) X (mm) Y (mm) AX (mm³) AY (mm³) 
1 10000 25 100 250000 1000000 
2 20000 200 225 4000000 4500000 
3 10000 375 100 3750000 1000000 
Σ 40000 8000000 6500000 
̅ݔ = 	∑ ܣ.ݔ
∑ܣ
= 	800000040000 = 200	݉݉ 
ݕത = 	 ∑ ܣ. ݕ
∑ܣ
= 	650000040000 = 162,5	݉݉ 
 
Elemento Área (mm²) X (mm) Y (mm) AX (mm³) AY (mm³) 
1 20000 25 200 500000 4000000 
2 12500 125 25 1562500 312500 
Σ 32500 2062500 4312500 
̅ݔ = 	 ∑ ܣ. ݔ
∑ܣ
= 	206250032500 = 63,46	݉݉ 
ݕത = 	 ∑ܣ.ݕ
∑ܣ
= 	431250032500 = 132,69	݉݉ 
 
 
 
Elemento Área (mm²) X (mm) Y (mm) AX (mm³) AY (mm³) 
1 15000 0 150 0 2250000 
2 15000 0 325 0 4875000 
Σ 30000 0 7125000 
̅ݔ = 	 ∑ ܣ.ݔ
∑ܣ
= 	 030000 = 0	݉݉ 
ݕത = 	 ∑ ܣ. ݕ
∑ܣ
= 	712500030000 = 237,5	݉݉ 
 
Elemento Área (mm²) X (mm) Y (mm) AX (mm³) AY (mm³) 
1 7200 0 345 0 2484000 
2 16200 0 195 0 3159000 
3 7200 0 30 0 216000 
Σ 30600 0 5859000 
̅ݔ = 	 ∑ ܣ.ݔ
∑ܣ
= 	 030600 = 0	݉݉ 
ݕത = 	 ∑ܣ.ݕ
∑ܣ
= 	585900030600 = 191,47	݉݉ 
 
 
 
Elemento Área (mm²) X (mm) Y (mm) AX (mm³) AY (mm³) 
1 1200 -70 30 -84000 36000 
2 2400 0 50 0 120000 
3 1200 70 30 84000 36000 
Σ 4800 0 192000 
̅ݔ = 	 ∑ܣ.ݔ
∑ܣ
= 	 04800 = 0	݉݉ 
ݕത = 	∑ ܣ. ݕ
∑ܣ
= 	1920004800 = 40	݉݉

Outros materiais