Buscar

Operações Unitárias 3 módulo - CPMA.COMUNIDADES.NET

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 58 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 58 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 58 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1
. . . . . . . . . 
 
E S C O L A SE S C O L A SE S C O L A SE S C O L A S P A D R E A N C H I E T AP A D R E A N C H I E T AP A D R E A N C H I E T AP A D R E A N C H I E T A 
 
C U R S O T É C N I C O E M Q U Í M I C A 
 
 
 
OPERAÇÕES UNITÁRIAS 
A P O S T I L A 3 º M Ó D U L O 
PROF. FÁBIO CALHEIROS CAIRES 
fabioc@anchieta.br 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ºSEMESTRE - 2009 
 
 
 
 
 2
. . . . . . . . . 
 
 
ConteúdoConteúdoConteúdoConteúdo 
1. INTRODUÇÃO À FILTRAÇÃO ............................................................................................................. 3 
2. FUNDAMENTOS TEÓRICOS DA FILTRAÇÃO ............................................................................. 3 
3. FASES DA FILTRAÇÃO ............................................................................................................................ 4 
4. EQUIPAMENTOS DE FILTRAÇÃO .................................................................................................... 5 
5. TIPOS DE FILTROS ................................................................................................................................... 6 
6. TIPOS DE FILTROS DE PRESSÃO ...................................................................................................... 8 
7. ELUTRIADORES ...................................................................................................................................... 15 
8. CÁLCULO DA VELOCIDADE TERMINAL EM ELUTRIADORES ...................................... 16 
9. INTRODUÇÃO E OBJETIVOS DE SEDIMENTADORES ........................................................ 17 
10. FUNDAMENTOS DA SEDIMENTAÇÃO ......................................................................................... 17 
11. CLASSIFICAÇÃO DE SEDIMENTADORES .................................................................................. 18 
5. TIPOS DE CLARIFICADORES............................................................................................................ 18 
12. TIPOS DE ESPESSADORES ................................................................................................................. 20 
13. CICLONES – OBJETIVOS E APLICAÇÕES ................................................................................... 24 
14. FUNCIONAMENTO DOS CICLONES ............................................................................................. 24 
15. VANTAGENS E DESVANTAGENS ................................................................................................... 26 
16. INTRODUÇÃO E OBJETIVOS DA MOAGEM ............................................................................. 27 
17. PROPRIEDADES DOS SÓLIDOS ...................................................................................................... 27 
18. MECANISMOS DE FRAGMENTAÇÃO ........................................................................................... 27 
18.1. SELEÇÃO DE EQUIPAMENTOS ....................................................................................................... 29 
20. EQUIPAMENTOS .................................................................................................................................... 31 
12. DESTILAÇÃO ............................................................................................................................................ 36 
13. PRODUÇÃO DE VÁCUO ...................................................................................................................... 50 
14. ABSORÇÃO ................................................................................................................................................ 52 
15. DESSORÇÃO ............................................................................................................................................. 53 
16. Adsorsão ........................................................................................................................................................ 53 
17. TROCA IÔNICA ....................................................................................................................................... 54 
18. BIBLIOGRAFIA ........................................................................................................................................ 58 
 
 
 3
. . . . . . . . . 
 
1.1.1.1. INTRODUÇÃOINTRODUÇÃOINTRODUÇÃOINTRODUÇÃO À FILTRAÇÃOÀ FILTRAÇÃOÀ FILTRAÇÃOÀ FILTRAÇÃO 
Fazer passar um líquido contendo sólidos em suspensão através de um leito poroso, chamado 
tela ou meio filtrante. O líquido passa, formando o chamado filtrado, enquanto o sólido fica 
retido na tela, formando o bolo ou a torta. Essa operação visa obter como produto, o fluido 
em estado de maior "pureza", ou seja, mais livre de eventuais agentes "poluentes" (físicos, 
químicos e biológicos). 
 
Os objetivos principais do processo de filtração são decorrentes das seguintes situações: 
 
� A água é habitualmente filtrada para ser ingerida; 
� O ar é freqüentem ente filtrado para ser respirado; 
� Os alimentos e bebidas são filtrados para serem consumidos; 
� Óleos, fluidos e combustíveis são necessariamente filtrados para moverem nossas 
máquinas e veículos; 
� Tintas, vernizes, resinas, adesivos, lubrificantes, solventes e uma infinidade de produtos 
e subprodutos são obrigatoriamente filtrados para serem utilizados. 
 
A filtração é indispensável para separar componentes, para eliminar impurezas, para 
estabelecer a qualidade do produto final e garantir a nossa qualidade de vida. 
 
 
2.2.2.2. FUNDAMENTOS TEÓRICOSFUNDAMENTOS TEÓRICOSFUNDAMENTOS TEÓRICOSFUNDAMENTOS TEÓRICOS DA FILTRAÇÃODA FILTRAÇÃODA FILTRAÇÃODA FILTRAÇÃO 
As partículas ficam retidas na tela em duas fases bem distintas: 
 
1º. Por um curto espaço de tempo, as partículas são atraídas pelas fibras por efeito 
eletrostático. Deste modo, as partículas, mesmo que menores que os interstícios, são atraídas e 
coladas nas fibras. O líquido que atravessa neste primeiro momento é chamado de “primeiro 
filtrado”, em função do seu aspecto turvo causado pelas partículas que conseguem atravessar a 
tela. 
 
2º. Poucos segundos depois, as partículas coladas formam uma capa que constituem uma 
barreira que aumenta a chance das partículas ficarem retidas. Esta capa irá engrossar, 
formando o BOLO, que deverá ser retirado com o passar do tempo, devido ao aumento da 
perda de carga, em um processo de lavagem. 
A formação da primeira capa é extremamente importante para eficiência da filtração. Porém, 
a capa se forma em função das cargas elétricas de sinal contrário entre fibras da tela e 
partículas. Freqüentemente alguns problemas surgem, tais como: 
� As cargas elétricas da tela e das partículas possuem mesmo sinal; 
 
 
� As cargas não são suficientemente fortes para provocar a atração. 
 
 
Pode-se solucionar estes problemas mediante um ou mais dos seguintes meios: 
� Troca de material da tela filtrante; 
 
� Uso de polieletrólitos; (indicado para aproveitar os sólidos). 
 
� Uso de coadjuvantes de filtração; (indicado para aproveitar o líquido). 
 
 4
. . . . . . . . . 
 
3.3.3.3. FASES DA FILTRAÇÃOFASES DA FILTRAÇÃOFASES DA FILTRAÇÃOFASES DA FILTRAÇÃO 
A operação de filtração se realiza da seguinte forma: 
 
� Formação da préFormação da préFormação da préFormação da pré----capacapacapacapa. Prepara-se em um tanque separado uma suspensão de 
coadjuvante em água (eventualmente outro líquido) que é feito passar através do filtro. Nessa 
operação, o coadjuvante fica retido na tela, formando um bolo chamado de "pré-capa". 
 
� Filtração. Filtração. Filtração. Filtração. Uma vez formada a pré-capa, se procede à filtração da suspensão que 
interessa. Como a tela já tem uma pré-capa, as partículas ficarão retidas na mesma, poisnão 
poderão passar pelos interstícios existentes entre as diminutas partículas que formam o 
coadjuvante (pois o mesmo tem uma elevada área específica, o que significa que as partículas 
são muito pequenas). 
O uso de coadjuvantes está indicado quando se quer aproveitar o líquido, pois o sólido ficará 
irremediavelmente contaminado com o coadjuvante. 
 
A filtração consiste das seguintes fases, quando não há formação de pré-capa: 
 
� PréPréPréPré----filtraçãofiltraçãofiltraçãofiltração, de alguns segundos de duração, durante a qual se forma uma pequena 
camada de bolo sobre a tela, suficiente para reter as partículas que virão depois.O líquido 
produzido durante esta primeira fase chamado de primeiro fi1trado é turvo e não pode ser 
utilizado. Ele deve ser recirculado para misturar-se com o líquido que ainda deve filtrar. 
 
� FiltraçãoFiltraçãoFiltraçãoFiltração, durante a qual as partículas ficam retidas no bolo previamente formado. O 
líquido sai límpido e pode ser aproveitado. As partículas retidas no bolo vão aumentando a 
sua espessura, e conseqüentemente a perda de carga. A fase dura até a perda de carga atingir 
um valor previamente estipulado como máximo admissível. 
 
� Lavagem do boloLavagem do boloLavagem do boloLavagem do bolo. Terminada a filtração é preciso lavar o bolo. A lavagem tem o 
seguinte objetivo: 
o Eliminar o resto de líquido mãe ainda presente no bolo, se o que se pretende 
aproveitar é o sólido; 
o Aproveitar o resto de líquido mãe ainda presente no bolo, se o que se pretende 
aproveitar é o líquido. 
 
� Remoção dos sólidos e lavagem da tela filtrante. Remoção dos sólidos e lavagem da tela filtrante. Remoção dos sólidos e lavagem da tela filtrante. Remoção dos sólidos e lavagem da tela filtrante. Qualquer que seja a porção que se 
pretende aproveitar, é preciso remover o bolo e lavar a tela filtrante para recomeçar o ciclo. A 
tela é lavada geralmente com água, a não ser que exista incompatibilidade com o líquido 
filtrado. 
 
TIPOS DE TORTATIPOS DE TORTATIPOS DE TORTATIPOS DE TORTA 
 
De um modo geral o tipo de torta depende da natureza do sólido, da granulometria e da 
forma das partículas, do modo como a filtração é executada e do nível de heterogeneidade do 
sólido. Conforme a espessura da torta existe uma variação da resistência ao escoamento do 
filtrado. Esta resistência varia com a alteração da pressão de passagem do filtrado gerando dois 
tipos de tortas: 
1)Compressíveis1)Compressíveis1)Compressíveis1)Compressíveis 
2)In2)In2)In2)Incompressíveiscompressíveiscompressíveiscompressíveis 
 
 
 
 
 5
. . . . . . . . . 
 
4.4.4.4. EQUIPAMENTOSEQUIPAMENTOSEQUIPAMENTOSEQUIPAMENTOS DE FILTRAÇÃODE FILTRAÇÃODE FILTRAÇÃODE FILTRAÇÃO 
 
Podem ser classificados nos seguintes critérios: 
 
� Força propulsora: gravidade, pressão, vácuo, força centrífuga 
� Material que constitui o meio filtrante: areia,tecido, tela metálica, papel 
� Função: clarificadores e espessadores 
� Detalhes construtivos: de areia, prensa, lâminas, rotativos 
� Regime de operação: batelada ou contínuo 
 
Normalmente a classificação dos filtros industriais segue pelo menos dois dos critério acima 
citados. 
 Existe uma grande variedade de filtros industriais. Poucos operam por gravidade. A grande 
maioria opera sob pressão ou sob vácuo. No primeiro caso, a pressão, da ordem de alguns 
kg/cm2 (centenas de kilo Pascal) e fornecida por uma bomba, é exercida sobre a face da tela 
em contato com o material a filtrar. No segundo caso, o vácuo, da ordem de 600-650 mm Hg 
(isto é, correspondentes a uma pressão absoluta de 100-150 mm Hg) e produzido por uma 
bomba de vácuo ou um ejetor, é exercido sobre a face da tela em contato com o líquido 
filtrado. 
Neste último caso, obviamente. a força que ajuda a filtração é a pressão atmosférica 
existente do outro lado. 
Embora exista uma grande variedade de filtros industriais nos limitaremos a falar naqueles 
que ainda hoje são os mais utilizados. Embora tenham sido inventados nos começos do 
século. 
 A escolha do equipamento filtrante depende, em grande parte, da economia do processo, 
mas as vantagens econômicas serão variáveis de acordo com o seguinte: 
1.Viscosidade, densidade e reatividade química do fluido; 
2.Dimensões da partícula sólida, distribuição granulométrica, forma da partícula, 
tendência à floculação e deformabilidade; 
3.Concentração da suspensão de alimentação; 
4.Quantidade de material que deve ser operado; 
5.Valores absolutos e relativos dos produtos líquido e sólido; 
6.Grau de separação que se deseja efetuar; 
7.Custos relativos da mão-de-obra, do capital e da energia. 
 
Na escolha de um filtro para um processo específico, os fatores relacionados à finalidade do 
serviço devem ser comparados aos associados às características do equipamento e do meio 
filtrante. 
 
Fatores Importantes Relacionados com a Finalidade do Serviço 
 
� Tipo de suspensão a manusear; 
� Volume a ser produzido; 
� Condições do processo; 
� Exigências de desempenho; 
� Materiais aceitáveis para a construção do filtro. 
 
Fatores Importantes Relacionados com o Equipamento: 
 
� Tipo do ciclo (em batelada / contínuo) 
� Força motriz; 
� Taxa de produção das maiores e das menores unidades 
 
 6
. . . . . . . . . 
 
� Precisão da separação; 
� Possibilidade de lavagem da torta; 
� Confiabilidade; 
� Materiais de construção; 
� Custos. 
 
As estimativas de custos devem incluir Depreciação (custo do equipamento instalado mais 
tempo de vida),Manutenção; Custos de operação (mão de obra, utilidades e meio 
filtrante);Prejuízos por perda do produto (se houver); 
Entre estas duas séries de fatores estão as considerações sobre o pré-condicionamento da 
suspensão e o uso de auxiliares de filtração. 
As características da suspensão indicam se para o seu tratamento é mais recomendável um 
c1arificador ou um filtro com formação de torta. Se a melhor opção é o filtro de torta, as 
características da suspensão irão determinar a velocidade de formação e a natureza da torta, e 
também influenciará a escolha da força motriz, o tipo de ciclo e o modelo específico da 
máquina. 
As exigências de lavagem da torta também afetam de modo significativo a escolha do 
equipamento, porque a eficiência de lavagem varia muito com o tipo de filtro. 
 
 
5.5.5.5. TIPOS DE FILTROS TIPOS DE FILTROS TIPOS DE FILTROS TIPOS DE FILTROS 
5.15.15.15.1 Meios filtrantes granuladosMeios filtrantes granuladosMeios filtrantes granuladosMeios filtrantes granulados 
Filtro de operação descontínua; 
� Filtros industriais mais simples; 
� Uma ou mais camadas de sólidos particulados; 
� Meios filtrantes duplos - operação mais prolongada no ciclo de operação; 
� Lavagem reversa - água ou ar; 
� Gravidade ou pressão; 
� Os sólidos podem ser menores que os interstícios entre as partículas do leito - agregação 
em flocos ou adsorção na superfície do leito; 
Principais aplicações: 
� Grandes volumes de suspensão muito diluída; 
� Nem o sólido, nem o líquido, têm valor unitário elevado; 
� O sólido não precisa ser recuperado; 
� Purificação de águas servidas. 
 
 
 
 
 
 
 7
. . . . . . . . . 
 
5.25.25.25.2 Filtros dFiltros dFiltros dFiltros de Pressão e Pressão e Pressão e Pressão 
Filtros de pressão, com a exceção do Filtro de Pressão de Tambor Rotativo, são máquinas do 
tipo semi-contínuas que incluem uma lavagem e um modo de descarga do bolo ao término do 
ciclo de filtração. O ciclo de filtração pode se estender de 5-10 minutos em aplicações de 
filtração de bolo e até 8 horas ou mais horas para polimento de líquidos. 
Considerando que a operação é em bateladas, e que estes filtros normalmente são 
alimentados de (e descarregam para) um processo contínuo, um tanque de estocagem é 
requerido a montante do filtro, e a jusante para a coleta parcial do bolo. 
A coletade filtrado depende do modo operacional do filtro que pode ser a vazão constante, a 
pressão constante, ou ambas, com pressão aumentando e a taxa de fluxo diminuindo como 
quando se utiliza uma bomba centrífuga. 
São disponíveis Filtros de Pressão que operam continuamente, mas, devido a dificuldade para 
a remoção do bolo, eles são mecanicamente complexos e caros; assim, se aplicam 
principalmente em processos de química fina, onde o valor agregado ao produto é alto. 
Há dois fatores restringentes que determinam a duração do ciclo de filtração: 
� Para filtração de bolo é o volume disponível para formação de bolo e uma vez que o 
volume está cheio o ciclo tem que terminar até mesmo se a pressão permissível ainda não foi 
alcançada; 
� Para polimento, ou quando os sólidos saturam o meio rapidamente, o ciclo tem que 
terminar quando a pressão permissível for alcançada independentemente da espessura do 
bolo. 
A taxa de filtração é influenciada, em condições amplas, pelas propriedades da suspensão. A 
tendência, é que a taxa cresça com: 
� O aumento da pressão; 
� Partículas mais grossas; 
� Distribuição de partícula com alta uniformidade; 
� Sólidos não-enlodados ou não-gelatinosos; 
� Bolos incompressíveis; 
� Mais baixa viscosidade do líquido e; 
� Temperaturas mais altas. 
Auxiliar de Filtração e PréAuxiliar de Filtração e PréAuxiliar de Filtração e PréAuxiliar de Filtração e Pré----Capa Capa Capa Capa 
Auxiliar de filtração e pré-cobertura são mencionados freqüentemente com relação à filtração 
sob pressão e a diferença na sua aplicação é: 
� O auxiliar de filtração é usado quando a suspensão tem baixo conteúdo de sólidos com 
partículas finas e enlodadas que são de filtração difícil. Para aumentar a filtração, sólidos 
grossos com grande área de superfície são adicionados à suspensão e servem como um corpo-
auxiliar que captura e prende em seus interstícios as partículas de filtração lenta e produz uma 
matriz de torta porosa. A quantia adicionada depende da natureza dos sólidos e varia de Y, 
para sólidos não-compressíveis e até 5 vezes para sólidos gelatinosos . 
� A pré-cobertura do meio filtrante é obtido pela deposição de sólidos sobre o tecido, 
formando um meio poroso de 2-3mm de espessura e permeabilidade conhecida; sua 
aplicação requer habilidade, pois eleva o volume efetivo do bolo, prolonga o tempo do ciclo, e 
um consumo elevado pode ser bastante caro. 
A pré-capa, antecedendo a filtração, serve para dois propósitos principais: 
� Quando os contaminantes são gelatinosos e pegajosos eles formam uma barreira que evita 
entupimento do pano. Igualmente a interface entre a pré-capa e o pano separa-se facilmente e 
assim o bolo descarrega deixando um pano limpo. 
� Quando um filtrado claro é requerido imediatamente depois de iniciado o ciclo de 
filtração; caso contrário a recirculação deve ser empregada até que um filtrado claro seja 
obtido. 
 
Os seguintes materiais servem como auxiliares-de-filtração ou para formar a pré-capa: 
� Terra diatomácea (também chamada Diatomita) que consiste de silicatos formados por 
restos de esqueletos de minúsculas plantas unicelulares aquáticas (diátomos). 
 
 8
. . . . . . . . . 
 
� Perlita que consiste de triturado vítreo e termo-expandido de rocha de origem vulcânica. 
� Celulose que consiste de fibras de peso leve. 
� Uma madeira especial está se tornando popular nos anos recentes, já que é combustível e 
reduz o alto custo de obtenção. Há fabricantes atualmente que moem, lavam e classificam 
uma madeira especial até permeabilidades que podem ajustar-se a uma grande faixa de 
aplicações. 
 
Todo o material que serve como auxiliar-de-filtração ou para formar pré-capa é produzido sob 
especificação, em um processo controlado. Porém, para aplicações que não requerem 
qualidade alta, qualquer outro sólido que esteja prontamente disponível, e tenha propriedades 
semelhantes, pode ser usado como auxiliar. 
 
 
6.6.6.6. TIPOS DE FILTROS DE TIPOS DE FILTROS DE TIPOS DE FILTROS DE TIPOS DE FILTROS DE PRESSPRESSPRESSPRESSÃOÃOÃOÃO 
Os tamanhos padrões para os equipamentos estão discriminados a seguir: 
� Filtro-prensa até 1000 m2 e 20 m3 de torta. 
� Filtro de Placa Horizontal até 60 m2 e 4 m3 de capacidade de bolo. 
� Filtro Folha Vertícal até 100 m2 e 7 m3 capacidade de bolo em vasos de pressão verticais e 
até 300 m2 e 20 m3 de capacidade de bolo em vasos horizontais. 
� Filtro Nutsche até 16 m2 e 8 m3 de capacidade de bolo. 
� Filtro Automático até 120 m2 . 
� Filtro de Velas até 120 m2. 
As vantagens e desvantagens dos filtros de pressão, comparadas com outros métodos de 
separação são: 
VantagensVantagensVantagensVantagens 
� São obtidos bolos com conteúdo de umidade muito baixo . 
� Os bolos podem ser colocados e aplainados em capas, contanto que eles não sejam 
tixotrópicos e suficientemente estáveis para suportar um trator. 
� Podem ser alcançadas: recuperação intensiva de solúveis ou remoção de contaminantes do 
bolo. 
� Filtrados limpos podem ser produzidos através de recirculação do filtrado durante 1-2 
minutos, ou através de pré-capa, se um filtrado claro é requerido logo desde o começo. 
� Soluções podem ser polidas a um alto grau de claridade. 
� Com exceção do Filtro-prensa, é possível uma construção ajustada para uso de gás. 
� Com exceção do Filtro-prensa, é possível revestir os tanques com uma camisa de vapor, se 
a preservação de calor é requerida. Isto é de importância particular para salmouras saturadas. 
� Os corpos e interiores do filtro podem ser construídos de uma variedade larga de ligas que 
incluem materiais sintéticos para filtros-prensa. 
� Os Filtros de Pressão estão disponíveis com um grande nível de automatização, para 
trabalho intensivo controlado por operador e até máquinas completamente automáticas. 
DesvantagensDesvantagensDesvantagensDesvantagens 
� A lavagem do pano é difícil e, se os sólidos são pegajosos, uma pré-capa de uns 3mm de 
diatomita ou perlita é necessária. Isto soma outra etapa antes da filtração e se não for feita 
cuidadosamente, uma pré-cobertura muito fina é formada, podendo deixar áreas com o pano 
exposto que irão saturar rapidamente. Reciprocamente, se uma pré-capa muito espessa é 
formada, pois o operador sempre procura ter a sua "margem de segurança", irá consumir o 
volume efetivo disponível para o bolo. 
� O operador quase não pode ver o bolo se formando, e fica impossibilitado de fazer 
inspeção enquanto o filtro está em operação. 
� Os interiores são difíceis limpar e este pode ser um problema nas aplicações envolvendo 
alimentos ou matérias-primas para indústria farmacêutica. 
6.16.16.16.1 Filtro PrensaFiltro PrensaFiltro PrensaFiltro Prensa 
 
 9
. . . . . . . . . 
 
 
Dentre os principais segmentos e aplicações, destacam-se: 
 
 
� INDÚSTRIA QUÍMICA: beneficiamento de soluções a base de hidróxidos, silicatos, 
cáusticos, etc. 
� EFLUENTES: indústrias cerâmicas, metalúrgicas, siderúrgicas, de vidros, mármores e 
granitos. Processos de galvanização, fosfatização, decapagem, lavagem de gases, E.T.E., etc 
� LODOS SANITÁRIOS: estações de tratamento de esgoto primário ou secundário, etc. 
� POLPAS INDUSTRIAIS: extratos, pigmentos, corantes, etc. 
 
O Filtro Prensa consiste em uma cabeça e seguidor que contêm entre si um pacote de placas 
retangulares verticais que são apoiadas pelo lado ou 
sobre vigas. A cabeça serve como um extremo fixo 
no qual os tubos de alimentação e filtrado é 
conectado e o seguidor move-se ao longo das vigas e 
comprime as placas juntas durante o ciclo de 
filtração por um mecanismo hidráulico ou 
mecânico. 
 
Cada placa é revestida com um pano filtrante em 
ambos os lados e, uma vez apertadas lado a lado, 
elas formam uma série de câmaras que dependem 
do número de placas. As placas geralmente têm 
 
 10
. . . . . . . . . 
 
uma porta de alimentação centralque atravessa toda a extensão do filtro prensa, de forma que 
todas as câmaras do conjunto de placas estão interconectadas. 
 
 
Do mesmo modo, quatro aberturas de canto conectam todas as placas e coletam os filtrados-
mãe e de lavagem em uma "descarga fechada" para saídas que são localizadas no mesmo lado 
que a entrada de alimentação. Alguns filtros prensa têm placas que dispõem de torneiras no 
seu lado mais inferior, de forma que o filtrado flui em uma "descarga aberta" para uma calha e 
serve como "mostrador" da condição do pano filtrante, pela claridade do 
filtrado que atravessa cada câmara. 
A desvantagem deste arranjo é que não pode ser usado com 
filtrados que são tóxicos, inflamáveis ou voláteis. 
 
Atualmente, a maioria dos filtros-prensa é equipada 
com características que habilitam operação 
completamente automática controladas por CLP. 
Para as aplicações onde o bolo é o produto, não podem 
ser usados précobertura nem auxiliares de filtração pois 
eles se misturam e descarregam junto com o bolo 
 
 
 
Critérios de Seleção Critérios de Seleção Critérios de Seleção Critérios de Seleção 
Os Filtros-prensa se aplicam melhor nas seguintes circunstâncias: 
� Quando é requerido um conteúdo muito baixo de umidade, para a secagem térmica da 
torta ou 
incineração. 
� Quando é requerida alta claridade do filtrado, para aplicações de polimento. 
� Quando é requerida a liberação da torta auxiliada por compressão. 
� Quando o bolo é disposto como enchimento de terra, para esparramar com um trator, 
desde que ela seja dura o bastante para agüentar seu peso. 
� Quando grandes áreas de filtração são requeridas, num espaço limitado. 
 
Eles devem ser selecionados com cuidado: 
� Na filtração de salmouras saturadas, porque as placas esfriam durante a descarga da torta, 
requerendo aquecimento prévio para alimentar a polpa do processo. Para tais salmouras, 
filtros autoclavados como os de Placas Horizontais, Folha Vertical ou Filtros de Velas se 
adaptam melhor, à medida que eles podem ser cobertos com uma camisa de vapor. 
� Quando há um risco de contaminação ambiental por bolos tóxicos, inflamáveis ou voláteis, 
quando as placas são abertas para descarga, ao término de cada ciclo. Novamente, os filtros 
autoclavados são melhor adaptados . 
 
 11
. . . . . . . . . 
 
� Quando uma lavagem eficiente é requerida, pois com a câmara cheia de torta, a água de 
lavagem pode não alcançar toda sua superficie, causando um deslocamento desigual. Porém, 
isto não apresenta nenhum problema quando permanece um espaçamento entre os bolos 
formados dentro de uma câmara, de forma que a água de lavagem é distribuída 
uniformemente em cima do bolo e alcança toda a sua superficie. 
As tortas podem ser descarregadas em caixas, que são transportadas em caminhão ou por um 
transportador de correias. 
 
6.26.26.26.2 Filtro de Pressão de Placa HorizontalFiltro de Pressão de Placa HorizontalFiltro de Pressão de Placa HorizontalFiltro de Pressão de Placa Horizontal 
Os Filtros de Placas Horizontais, a pressão, se aplicam comumente às indústrias de processos 
de química fina como antibióticos, pesticidas, ou pigmentos, quando a carga de impurezas 
insolúveis é baixa e o polimento é exigido para obter uma alta claridade do produto. 
Porém, nos anos recentes, eles podem ser vistos cada vez mais em indústrias mais pesadas, 
corno as de fertilizantes ou de metais preciosos, quando o produto é o bolo e são requeridas 
uma lavagem eficiente e baixa umidade. 
Os filtros de placas horizontais também são muito bem aceitos para manusear materiais 
inflamáveis, tóxicos e corrosivos, desde 
que eles sejam autoclavados e projeta 
dos para ambientes perigosos, quando 
se requer pressão alta e operação 
segura. Além disso, eles podem ser 
facilmente recobertos para aplicações 
onde temperaturas quentes ou frias 
precisam ser preservadas. 
Estas características não são possíveis 
nos filtros-prensa, que requerem a 
abertura das placas à atmosfera e um 
mecanismo intermitente externo para 
descarga do bolo ao término de cada 
ciclo. 
A estrutura do filtro consiste em uma 
pilha de placas, presas a um eixo oco 
montado dentro de um vaso de pressão, 
com cada prato recoberto com um 
meio filtrante adequado. 
 
 
 
A polpa é alimentada sob pressão no vaso e o bolo, retido pelo meio filtrante, formase no 
topo de cada prato, enquanto o filtrado passa através do eixo oco e segue para o processo. 
Os tamanhos do filtro podem variar, mas geralmente a área máxima de filtração é 60m2 e são 
projetados para uma pressão de operação de 6bar. 
 
 12
. . . . . . . . . 
 
Há várias aplicações, principalmente nas indústrias farmacêutica e de pintura, onde um filtro 
de papel especial é usado para cobrir os pratos em ambos os lados, e assim a área de filtração 
é dobrada. 
Os Filtros de Placas Horizontais são mais adequados às seguintes circunstâncias: 
� Quando se requer uma área física mínima para uma grande área de filtração. 
� Quando os líquidos são voláteís e não podem ser submetidos a vácuo. 
� Quando há um risco de perigo ambiental especialmente com bolos tóxicos, 
inflamáveis ou voláteis, mecanismos seguros de descarga podem ser incorporados . 
� Quando é requerida alta claridade do filtrado, por polimento da suspensão . 
� No tratamento de salmouras saturadas, que exigem temperaturas elevadas, o tanque 
pode ser recoberto com vapor . 
� Quando uma lavagem eficiente é requerida. 
� Quando o bolo é pesado e deve ser apoiado . 
� Quando o bolo tanto pode ser descarregado seco, ou como uma lama espessada. 
Eles devem ser selecionados com cuidado quando: 
� Quando o bolo não descarrega facilmente, o acesso ao meio filtrante, entre as 
placas para lavagem, é difícil. 
� Quando são usadas telas de malhas grossas, a etapa de filtração deve ser precedida 
por um prérevestimento para reter partículas finas. A pré-capa, com uma capa fina de 
diatomita ou perlita, não é uma operação simples e deveria ser evitada, sempre que possível. 
VantaqensVantaqensVantaqensVantaqens 
 
� A remoção da pilha de pratos, em filtros com acionamento pela base, é mais simples que 
nas máquinas dirigidas pelo topo, pois, nestas últimas, todo o mecanismo motriz tem que ser 
removido para permitir acesso à pilha. 
� Placas com as telas montadas no lado superior, ao invés de apoiadas nos dois lados, dão 
bom apoio para o bolo formado e então sempre são usadas em aplicações com bolos espessos 
e pesados. 
 
 
 
Desvantaqens Desvantaqens Desvantaqens Desvantaqens 
 
� Necessidade de um pé-direito alto, na edificação, para desmontar toda a pilha de placas. 
� Os mancais dos filtros acionados pelo topo e pelo fundo, suportam a pilha de placas 
giratórias e seu lacre é complexo, pois tem que resistir a pressão interna e as forças laterais 
impostas pela transmissão mecânica. Porém, as cargas laterais, em algumas máquinas, são 
eliminadas pelo uso de motores hidráulicos. 
� O esvaziamento do vaso entre a filtração do bolo, lavagem e escorrimento, requer 
monitoramento preciso da pressão dentro do vaso, para assegurar que o bolo esteja preso 
sobre as telas. 
 
6.36.36.36.3 Filtro de Tambor Rotativo Filtro de Tambor Rotativo Filtro de Tambor Rotativo Filtro de Tambor Rotativo 
O filtro a vácuo de Tambor Rotativo pertence ao grupo de alimentação inferior e é um dos 
filtros mais antigos em uso na indústria de processos químicos. 
 
 
 13
. . . . . . . . . 
 
 
 
 
Critérios De SeleçãoCritérios De SeleçãoCritérios De SeleçãoCritérios De Seleção 
� Polpas com sólidos que não tendem a sedimentar rapidamente e permanecerão em 
suspensão uniforme sob agitação delicada. 
� Tortas que não requerem períodos de secagem longos. 
� Quando um único estágio de lavagem for suficiente para remover os contaminantes 
residuais do bolo ou produzira recuperação máxima de filtrado, 
� Filtrado que geralmente não requer uma separação afiada entre o filtrado matriz e 
filtrado da lavagem, 
� Filtrados nos quais é aceitável com uma quantidade baixa de finos que passam pela 
malha do pano filtrante nos primeiros segundos da formação do bolo. Geralmente, e 
dependendo do tamanho da partícula e da permeabilidade do pano, o filtrado pode 
conter 1000 a 5000 ppm de insolúveis. 
 
 
 14
. . . . . . . . . 
 
 
6.46.46.46.4 Filtro de Mesa Filtro de Mesa Filtro de Mesa Filtro de Mesa 
Os Filtros de Mesa pertencem ao grupo de alimentação pelo topo e apresentam um cinto de 
borracha na borda, que gira junto com as celas, mas é removido da mesa logo após deixar a 
zona de lavagem final e secagem, e antes de alcançar a calha de descarga de bolo. 
 
 
 
 
O beiral fica então afastado da mesa e retoma logo que ela pasSa pela calha de água de 
lavagem e entra na zona de secagem do pano. Cilindros especiais desviam o beiral e uma 
tensão levantando o rolo assegura que o cinto fica apertado contra a mesa e sela a 
circunferência contra vazamentos. 
A área de filtração de Filtros de Mesa grandes é mais que 200m2 e tendo poucas partes 
móveis pode girar em um tempo de ciclo de 2 minutos. 
Estes filtros podem manipular bolos espessos e podem ser operados a altos níveis de vácuo. 
Critérios de Seleção Critérios de Seleção Critérios de Seleção Critérios de Seleção 
Os critérios para escolha de um Filtro de Mesa são: 
� Quando a etapa seqüencial do processo requer um bolo desaglomerado uma vez que o 
parafuso desintegra os torrões de sólido enquanto os transporta à periferia. 
� Quando os sólidos sedimentam rapidamente e não podem ser mantidos como uma 
mistura homogênea em filtros de alimentação pelo fundo ou lateral como os filtros de 
Tambor ou Discos. 
� Quando são requeridos tempos de ciclo muito pequenos para bolos de enxugamento 
rápido como polpas de fosfato. 
� Quando um filtrado claro é requerido desde o começo uma boa prática é formar um 
resíduo fino que serve como meio filtrante sobre o pano exposto. Isto é obtido ou por "saída 
de líquido turvo" que é reciclado ou, se sólidos sedimentam rapidamente, alocando uma 
porção da mesa depois do compartimento de secagem do pano e antes da entrada na zona de 
vácuo para agir como uma "piscina" de sedimentação. 
� Quando uma lavagem intensiva do bolo é requerida. 
� Quando uma grande área de filtração é requerida, mas um Filtro de Correia Horizontal 
não se ajusta no layout. 
 
 15
. . . . . . . . . 
 
� Quando o bolo tende a rachar sob vácuo, acessórios tais como uma aba (f1apper) ou rolo 
de pressão podem ajudar a lacrar as rachaduras, evitando assim a perda de vácuo. 
 
7.7.7.7. ELUTRIADORESELUTRIADORESELUTRIADORESELUTRIADORES 
O elutriador é um equipamento destinado à separação de sólidos em diferentes faixas de tamanho. 
Segue abaixo um esquema do equipamento: 
 
 
 
Onde: 
D= diâmetro de cada tubo Elutriador; 
Dp=diâmetro das partículas retidas no fundo do elutriador 
A=Área da seção reta do Elutriador 
u= velocidade do fluido ascendente 
vt= velocidade terminal das partículas descendente 
 
O equipamento consiste em um tubo ou um conjunto de tubos verticais em série, em ordem 
crescente de diâmetro do tubo. 
 
D4>D3>D2>D1 
 
A área da seção reta de cada tubo é equivalente a área de uma circunferência e pode ser calculada da 
seguinte forma: 
4
.
2
tuboDA pi=
 
 
 
 
 
 
 16
. . . . . . . . . 
 
A vazão do elutriador deve ser constante(Q=constante), logo se aumentarmos o diâmetro do tubo a 
velocidade do fluido(u) diminui e o diâmetro das partículas retidas no fundo do elutriador (Dp) 
também diminuirá. Portanto: 
 
Se D4>D3>D2>D1 e u1>u2>u3>u4 
temos: v4<v3<v2<v1 
 
Dada a vazão do fluido, obtém-se a velocidade do fluido em cada tubo: 
 
A
Q
u =
 
 
Os critérios para a separação de partículas no elutriador são que as partículas que tiverem velocidade 
terminal maior que a velocidade ascendente do fluido no tubo, serão recolhidas e arrastadas. Isto é: 
� Quando vt > u � partículas no fundo do elutriador 
� Quando vt < u � partículas levadas ao tubo seguinte 
� Quando vt = u � partículas em suspensão, pois a ∑ F = 0 
 
 
8 .8 .8 .8 . CÁLCULO DA VELOCIDADCÁLCULO DA VELOCIDADCÁLCULO DA VELOCIDADCÁLCULO DA VELOCIDAD E TERMINAL EM ELUTRIE TERMINAL EM ELUTRIE TERMINAL EM ELUTRIE TERMINAL EM ELUTRI ADORADORADORADOR ESESESES 
Normalmente o regime de escoamento dos fluidos é o regime de STOKES onde Rep <1, logo 
considerando-se a esfericidade (φ ) igual a 1, a velocidade será obtida pela lei de Stokes 
 
 
 
Quando φ ≠1, usa-se a correlação para converter o Dp em Dst (Sauter ou também Stokes) 
 
 
 
 
µ
ρρ
.18
).(. 2 ms
t
Dpg
v
−
=
µ
ρρ
.18
).(. 2 ms
t
Dstg
v
−
=
2
1
065,0
log*843,0 











=
φ
Dp
Dst
 
 17
. . . . . . . . . 
 
9.9.9.9. INTRODUÇÃO E OBJETIVINTRODUÇÃO E OBJETIVINTRODUÇÃO E OBJETIVINTRODUÇÃO E OBJETIVOSOSOSOS DE SEDIMENTADORESDE SEDIMENTADORESDE SEDIMENTADORESDE SEDIMENTADORES 
A separação dos sólidos de um líquido por Decantação por ação da gravidade possui vestígios para 
os primeiros dias de civilização. 
A prática normal nesses momentos era usar frascos ou poços principalmente para a clarificação dos 
líquidos extraídos, como vinho e azeite de contaminantes insolúveis. 
Os principais objetivos estão em concentrar uma suspensão de sólidos, conhecida como 
espessamento, ou purificar um líquido, também chamado de clarificação. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Esquema de um sedimentador 
 
10. FUNDAMENTOS DA SEDIMENTAÇÃO 
A sedimentação pode ser: natural (livre) ou forçada (quando se utiliza floculantes- substâncias com 
propriedades de aglomeração de partículas). 
O aumento do tamanho de partículas aumenta a velocidade de sedimentação. É possível aumentar o 
tamanho das partículas antes da decantação com adição de floculantes ou polieletrólitos. 
Os floculantes ou os polieletrólitos tem a função de se unir ao sólido em suspensão e formar uma 
partícula maior. Esta união se dá por meio das cargas elétricas de sinal contrário entre as partículas 
sólidas e o agente de floculação 
Os fatores que controlam a velocidade de decantação (vt): densidade do sólido( ), densidade do 
líquido( ) , diâmetro da partícula (Dp), forma das partículas e viscosidade do meio ( ) 
Lei de Stokes 
 
 
 
µ
ρρ
.18
).(. 2 −
=
s
t
Dpg
v
sρ
ρ
µ
 
 18
. . . . . . . . . 
 
11.11.11.11. CLASSIFICAÇÃO DE SEDCLASSIFICAÇÃO DE SEDCLASSIFICAÇÃO DE SEDCLASSIFICAÇÃO DE SEDIMENTADORESIMENTADORESIMENTADORESIMENTADORES 
 
As principais formas de classificação podem ser com relação ao seu funcionamento e à sua finalidade, 
como segue: 
Quanto ao seu regime de funcionamento, ele pode ser dividido em: 
 
� Descontínuos: Descontínuos: Descontínuos: Descontínuos: tanques cilíndricos com a solução em repouso por um certo tempo. 
Esses processos por bateladas necessitam de quatro passos: 
� Preenchendo a tanque com lama. 
� Deixando a pasta para uma determinada hora até que o sólido foi para a parte inferior do 
tanque. 
� Decantação do sobrenadante clarificado desde a parte superior do tanque. 
� Remoção do liquido acumulado no fundo do tanque. 
Este ciclo, dependendo das propriedades de sólidos e líquidos, pode exigir longa retenção e, portanto 
vários tanques devem estar incorporados no layout para operar em etapas seqüenciais. 
 
� Contínuos:Contínuos:Contínuos:Contínuos: tanques rasos de grande diâmetro, em que operam grades com função de remover a 
lama. A alimentação é feita pelo centro do tanque.Quanto à finalidade podem ser classificados: 
 
� Clarificadores:Clarificadores:Clarificadores:Clarificadores: fase de interesse é o líquido limpo. 
� Espessadores:Espessadores:Espessadores:Espessadores: fase de interesse é a zona de lama. 
 
 
5 .5 .5 .5 . TIPOS DE CLARIFICADORESTIPOS DE CLARIFICADORESTIPOS DE CLARIFICADORESTIPOS DE CLARIFICADORES 
11.111.111.111.1 CLARIFICADOR CONVENCIONALCLARIFICADOR CONVENCIONALCLARIFICADOR CONVENCIONALCLARIFICADOR CONVENCIONAL 
 
 
 19
. . . . . . . . . 
 
11.211.211.211.2 CLARIFICADOR DE CONTATOCLARIFICADOR DE CONTATOCLARIFICADOR DE CONTATOCLARIFICADOR DE CONTATO 
 
11.311.311.311.3 CLARIFICADOR DE SUCÇÃOCLARIFICADOR DE SUCÇÃOCLARIFICADOR DE SUCÇÃOCLARIFICADOR DE SUCÇÃO 
 
 
 
 
 
 
 20
. . . . . . . . . 
 
12.12 .12 .12 . TIPOS DE ESPESSADORESTIPOS DE ESPESSADORESTIPOS DE ESPESSADORESTIPOS DE ESPESSADORES 
12.1.12.1.12.1.12.1. ESPESSADORES CONVENCIONAISESPESSADORES CONVENCIONAISESPESSADORES CONVENCIONAISESPESSADORES CONVENCIONAIS 
Espessadores convencionais estão geralmente incorporados em aplicações industriais quando a 
densidade de lodo é alta e são exigidos torques significativos para carregar os sólidos resolvidos da 
periferia para a saída central por bombear fora. Igualmente, Espessadores são freqüentemente usados 
para armazenamento facilitar a alimentação contínua da jusante filtros ou centrífugas. 
 
 
 
 
Basicamente há dois grupos de Espessadores que difere no tipo de seus mecanismos motrizes: 
 
� Dirigido CentralmenteDirigido CentralmenteDirigido CentralmenteDirigido Centralmente 
 
Há dois métodos de apoiar o passeio pesado com seu cabo e braços de limpeza: 
 
a) O tipo ponte 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) O tipo coluna 
 
 
 
 
 
 
 
 
 
 
 21
. . . . . . . . . 
 
 
 
 
No tipo ponte uma estrutura posta através do tanque é sujeita verticalmente ao peso do mecanismo mais 
qualquer sólido que acumula dentro do tanque de braços e horizontalmente às forças de reação imposto 
pela densidade do lodo limpo. 
No tipo de coluna um aço central ou coluna concreta leva verticalmente a reação para o peso do 
mecanismo e horizontalmente a carga de torque. 
Também seleção pode ser influenciada por consideração de processo como a manipulação do lodo 
denso por um cone de descarga central, como no tipo de ponte, ou em um cocho circular como no 
espessador de tipo de coluna. 
 
 
� Dirigido Perifericamente.Dirigido Perifericamente.Dirigido Perifericamente.Dirigido Perifericamente. 
Alguns dos maiores espessadores no mundo com um diâmetro de 200 metros são do tipo de Tração ou 
Periféricos, como visto na figura a seguir. 
 
 
Este espessadores incorporam uma coluna central que serve como um pivô a um braço girar 
radialmente para a periferia do tanque. O fim exterior do braço tem uma carruagem com rodas 
motorizadas que são com guia por um rasto de circunferencial que movem a estrutura de braço inteira 
em uma trajetória circular para carregar os sólidos sedimentados para o centro. A ponte não é sujeita 
carga operacional e somente serve como um passeio por ter acesso a coluna do exterior. 
Espessadores de tração ou periféricos não têm dispositivo de levantamento, portanto não podem ser 
usados para armazenamento. 
 
 
12.1.12.1.12.1.12.1. ESPESSADORES DE ALTA VAZÃOESPESSADORES DE ALTA VAZÃOESPESSADORES DE ALTA VAZÃOESPESSADORES DE ALTA VAZÃO 
O espessadores de Alta vazão ficaram populares em meados 1980 e é relativamente novidade no mundo 
dos equipamentos de sedimentação. Os espessadores são um componente principal em um plano de 
planta e ocupam espaços grandes que podem ser economizados introduzindo máquinas de alto-vazão. 
Além disso, eles normalmente são posicionados longe do centro da planta assim permitir alimento de 
gravidade e assim economizar bombeando custos a distância deles/delas são influenciados pelo gradiente 
hidráulico para os fluxos grandes. Este fator determina a elevação da planta inteira e, por conseguinte tem 
um impacto significativo em investimento de capital. 
 
 22
. . . . . . . . . 
 
Entre outras vantagens está o volume menor do tanque assim acelera início ou paralisações de empresas 
e menos volume é requerido por armazenar o produto no evento que o tanque tem que ser esvaziado. 
Igualmente, espessadores de alto-vazão consomem menos floculantes substancialmente com economia 
de até 60%. 
Há operações onde o processo requer para um controle de temperatura constante ou eventualmente em 
lugar fechado instalação assim as economias no custo de construção e cobertura de tanques de 
espessamento convencionais podem provar ser outra possível solução selecionando um espessador de 
alta vazão. 
 
Na realidade, o conceito deste espessador inteiro depende de dois fatores principais: 
 
� Que as partículas sólidas respondam bem a floculação. 
� Que o processo suporte uma quantia permissível de floculante tanto no lodo (lama) como no 
clarificado para garantir o caso de superdosagem da alimentação. 
Também há outros fatores para considerar: 
 
� Que a solução de floculantes estará preparada em uma relação que trará contato intimamente o 
volume de solução pequeno com o fluxo grande do fluxo entrante. 
� Que a dosagem de floculante ou polieletrólito será controlada corretamente pelo fluxo entrante 
de forma que uma overdose não causará desintegração de floculante, algo que acontece em 
muitos exemplos. 
� Que o alimento lava ou tubo correrá diretamente ou com cotovelos de ráios longos que não 
quebrarão o floco frágil. 
� Que a densidade do lodo será tão alta quanto possível reduzir a carga nas instalações de 
disposição ou, se mais adiante processou, reduza o tamanho da jusante equipamento como filtros 
ou centrífugas. 
Em a maioria dos casos, se para estas exigências são satisfeitas e próprio trabalho de teste é terminado, 
espessadores de alto-vazão podem substituir espessadores convencional e dependendo da aplicação eles 
são capazes de entregar um processamento que é 5-10 vezes mais alto que com uma máquina 
convencional de tamanho igual. Isto incitou uma tendência a reajustar instalações existentes a uma 
economia significativa em investimento de capital quando o aumento de capacidade foi requerido. 
Espessadores de alto-vazão que são construídos como máquinas dedicadas estão disponíveis em 
tamanhos até 40 metros de diâmetro, mas o reajuste de espessadores convencional é freqüentemente 
maior em tamanho. A altura deles é derivada de trabalho de teste calculando tempo de retenção e a área 
reduzida como obtido para o processamento aumentado. 
 
 23
. . . . . . . . . 
 
 
 
 
 
 
 
Outros tipos de espessadores são: 
 
 
 
 
 24
. . . . . . . . . 
 
13.13.13.13. CICLONES CICLONES CICLONES CICLONES –––– OBJETIVOS E APLICAÇÕESOBJETIVOS E APLICAÇÕESOBJETIVOS E APLICAÇÕESOBJETIVOS E APLICAÇÕES 
 
É um processo destinado à separação gás-sólido empregando forças centrífugas. 
Usados, principalmente para separar poeiras de gases. O material particulado emitido nos processos 
industriais pode ser coletado previamente por meio de coletores centrífugos conhecidos como ciclones. 
Esses equipamentos coletam o particulado mais grosseiro e, portanto, funcionam como pré-coletores. As 
partículas menores são captadas por um equipamento principal que pode ser lavador, filtro de tecido ou 
precipitador eletrostático; 
São equipamentos do tipo centrífugo utilizam força centrífuga para realizar a separação. Ciclone é o 
nome genérico do coletor centrífugo onde as partículas são removidas do fluxo gasoso, pela ação da força 
centrífuga. Esses equipamentos, utilizados na separação de sólidos de maior tamanhos e elevados peso 
especificam de uma corrente gasosa, apresenta,na sua forma clássica, uma construção conecilíndrica; 
Nos ciclones, as forças externas (centrífugas) que atuam sobre as partículas com elevada velocidade 
tangencial, são várias vezes maiores que a força da gravidade. Por isso, são muitas vezes, mais eficientes 
que as câmaras de poeira, cuja força externa é a gravidade; 
O ciclone também é conhecido pelo seu uso na limpeza de gases a altas temperaturas, e tem sido 
considerado como um dos mais simples e econômicos separadores de material particulado, funcionando 
como pré-coletor, de modo a reduzir a carga de coleta no coletor principal. 
 
14.14.14.14. FUNCIONAMENTO DOS CICLONESFUNCIONAMENTO DOS CICLONESFUNCIONAMENTO DOS CICLONESFUNCIONAMENTO DOS CICLONES 
O Ciclone (Figuras 1 e 2), estabelece um movimento rotatório para o gás, de modo que a força centrífuga 
aplicada às partículas seja maior que as forças de coesão molecular e da gravidade, fazendo com que as 
mesmas sejam lançadas de encontro às paredes, retirando as da massa gasosa em escoamento. 
Ele é basicamente constituído por uma câmara cilíndrica com base cônica. A corrente gasosa entra 
tangencialmente a alta velocidade na câmara formando uma espiral descendente externa e uma espiral 
ascendente interna. O gás é descarregado axialmente pela saída, localizada no topo do ciclone. A 
aceleração centrífuga impulsiona as partículas contidas no gás contra a parede. A componente vertical da 
força e a gravidade forçam-nas para a parte inferior do ciclone, de onde elas vão para um local de 
armazenamento. 
A eficiência de coleta dos ciclones é afetada por fatores dimensionais, característicos do gás, e pelas 
propriedades do pó. 
 
 
 
 
 25
. . . . . . . . . 
 
 
 
 
 
 26
. . . . . . . . . 
 
 
Aplicáveis para remover partículas com diâmetro: 5μm< Dp < 200 μm ; Para partículas acima de 200 μm, 
recomenda-se usar a câmara de poeira, p. ex.; 
Principais usos:Principais usos:Principais usos:Principais usos: 
� Empregado em Spray dryers para separar as partículas secas dos gases (ar); 
� Limpeza de ar; 
� Remover partículas de tamanhos variados de gases; 
 
 
 
15.15.15.15. VANTAGENS E DESVANTAGENSVANTAGENS E DESVANTAGENSVANTAGENS E DESVANTAGENSVANTAGENS E DESVANTAGENS 
Vantagens:Vantagens:Vantagens:Vantagens: 
� São equipamentos compactos, de confecção simples e barata, fáceis de operar e de manter; 
� Não contém partes móveis que requerem manutenção; 
� O produto é seco e não requer processo de remoção posterior; 
� Podem ser montados no topo ou nos lados de estruturas, diminuindo o problema de necessidade 
de altura; 
� Altas eficiências na sua faixa de diâmetro de separação; 
� Independem da variação da temperatura; 
� Baixa potência consumida. 
Desvantagens:Desvantagens:Desvantagens:Desvantagens: 
 
 27
. . . . . . . . . 
 
� Baixas eficiências de coleta em partículas menores que 5μm; Sensíveis a variações na taxa de fluxo 
de poeira a ser tratada; 
� Sensíveis a carga de pó (concentração de pó), possibilidade de entupimento pela presença de altas 
concentrações de pó, principalmente os de menor diâmetro, mais higroscópicos e mais pegajosos; 
� Pode apresentar problema de abrasão. 
 
 
16.16.16.16. INTRODUÇÃO E OBJETIVINTRODUÇÃO E OBJETIVINTRODUÇÃO E OBJETIVINTRODUÇÃO E OBJETIVOSOSOSOS DA MOAGEMDA MOAGEMDA MOAGEMDA MOAGEM 
Consiste, de uma forma simples, na quebra de partículas sólidas em partículas menores. Pode Consiste, de uma forma simples, na quebra de partículas sólidas em partículas menores. Pode Consiste, de uma forma simples, na quebra de partículas sólidas em partículas menores. Pode Consiste, de uma forma simples, na quebra de partículas sólidas em partículas menores. Pode 
também ser chatambém ser chatambém ser chatambém ser chamado de Cominuição.mado de Cominuição.mado de Cominuição.mado de Cominuição. 
O objetivo mais comum é aumentar a área externa de contato de forma que o processamento do 
material aconteça mais rapidamente. 
Pode também ser utilizadas para a produção de partículas dentro de especificações de tamanho das 
partículas bem definidas. 
Com freqüência, a moagem é utilizada para homogeneização de sólidos, pois com a diminuição do 
tamanho das partículas a mistura deve ser mais íntima e eficiente. 
 
 
 
17.17.17.17. PROPRIEDADES DOS SÓLIDOSPROPRIEDADES DOS SÓLIDOSPROPRIEDADES DOS SÓLIDOSPROPRIEDADES DOS SÓLIDOS 
Dentre as propriedades dos sólidos relacionados ao processo de cominuição, destacamos os seguintes 
aspectos: 
� Dimensão Linear: diâmetro, aresta, etc.; 
� Área Superficial: área exterior das partículas, mais os poros internos abertos; 
� Distribuição dos Tamanhos das Partículas: quantidade proporcional de cada tamanho 
individual na totalidade do material pulvurulento; 
� Tamanho Limite: maior ou menor dimensão ou área escolhida como parâmetro de controle; 
� Moabilidade: medida da taxa de moagem do material num determinado moinho (ton/h que 
passam na peneira nº ‘x’ ); 
� Objetivo da investigação da moabilidade: avaliar o tamanho e o tipo do moinho necessário 
para produzir a tonelagem desejada no processo e a potência necessária à operação; 
� Dureza de um material: é um critério de sua resistência ao esmagamento. É uma indicação 
bastante conveniente do caráter abrasivo do material, é o fator que determina o desgaste do 
equipamento de moagem. Escala Moh varia de 1 a 10; 
� Materiais moles: (1) Talco, tortas secas de filtros-prensa, pedras sabão, ceras, agregados de 
sais cristalinos; (2) Gesso, sal de rocha, sais cristalinos em geral, carvão mole; (3) Calcita, 
mármore, calcário friável, baritas, giz, enxofre; 
� Materiais de dureza média: (4) Fluorita, fosfato mole, magnesita, calcário (5) Apatita, fosfato 
duro, calcário duro, cromita, bauxita; (6) Feldspato, ilmenita, ortoclásio, hornblendas; 
� Materiais duros: (7) Quartzo, granito; (8) Topázio; (9) Corindo, safira, esmeril; (10) 
Diamante; 
 
 
18.18.18.18. MECANISMOS DE FRAGMEMECANISMOS DE FRAGMEMECANISMOS DE FRAGMEMECANISMOS DE FRAGMENTAÇÃONTAÇÃONTAÇÃONTAÇÃO 
Fatores que afetam as características de moagem de um material: 
� Combinação com a água; 
� Higroscopicidade; 
� Sensibilidade às variações de temperatura; 
� Exemplos: 
 
 28
. . . . . . . . . 
 
� Sal de Glauber perde água de cristalização a uma temperatura relativamente baixa e 
entope o equipamento; 
� Resinas e gomas ficam moles e plásticas acima de uma temperatura crítica; 
� Certos materiais podem queimar-se ou chamuscar-se; 
� Outras substâncias químicas são instáveis e podem explodir; 
� Alguns pigmentos mudam de cor em temperaturas elevadas ou sob ação de forças 
mecânicas; 
 
 
 
Os sólidos podem ser reduzidos de tamanho através de vários tipos de solicitações mecânicas, 
industrialmente são utilizados apenas quatro: 
1. COMPRESSÃO 
2. IMPACTO 
3. ATRITO 
4. CORTE 
A FRATURA DOS SÓLIDOS CRISTALINA OCORRE SEGUINDO AS SUPERFÍCIES DE A FRATURA DOS SÓLIDOS CRISTALINA OCORRE SEGUINDO AS SUPERFÍCIES DE A FRATURA DOS SÓLIDOS CRISTALINA OCORRE SEGUINDO AS SUPERFÍCIES DE A FRATURA DOS SÓLIDOS CRISTALINA OCORRE SEGUINDO AS SUPERFÍCIES DE 
CLIVAGEM, QUANDO SUBMETIDOS A UM ESFORÇO QUE ROMPA AS LIGAÇÕES ECLIVAGEM, QUANDO SUBMETIDOS A UM ESFORÇO QUE ROMPA AS LIGAÇÕES ECLIVAGEM, QUANDO SUBMETIDOS A UM ESFORÇO QUE ROMPA AS LIGAÇÕES ECLIVAGEM, QUANDO SUBMETIDOS A UM ESFORÇO QUE ROMPA AS LIGAÇÕES ENTRE NTRE NTRE NTRE 
OS NÓS DA REDE CRISTALINA.OS NÓS DA REDE CRISTALINA.OS NÓS DA REDE CRISTALINA.OS NÓS DA REDE CRISTALINA. 
Caso não ocorra, o limite de elasticidade do material não será ultrapassado. 
Entende-se que o mecanismo de fragmentação das partículas sólido aconteça com a aplicação de 
esforços que causam inicialmente o aparecimento de fissuras no material. A concentração dos esforços 
além de um valor crítico acarreta em um crescimentorápido e ramificação das fissuras, ocorrendo a 
ruptura. 
Experimentalmente é comprovado que fatores como a distribuição granulométrica das partículas e o 
modo de aplicação de carga são fundamentais e extremamente importantes na moagem. 
A observação destes fatores leva a conclusão que o consumo de energia para produzir partículas 
pequenas deve ser muito maior que para fragmentar sólidos grosseiros 
Uma grande variedade de equipamentos é oferecida pelo mercado, inclusive com uma diversidade 
muito grande de modelos construtivos e conceitos funcionais. Este fato leva a uma liberdade muito 
grande na escolha do equipamento adequado para o processo, ficando por conta da experiência do 
projetista responsável. 
Esta liberdade traz alguns conceitos incorretos, principalmente em nomenclatura. Moagem tornou-se 
um termo universal para a fragmentação de sólidos, mesmo quando se trata de casos típicos de 
britamento. 
As máquinas que efetuam fragmentação grosseira são chamadas de britadoresbritadoresbritadoresbritadores, e as que dão produtos 
mais finos são chamadas de moinhosmoinhosmoinhosmoinhos. 
 
 29
. . . . . . . . . 
 
A seguir está uma das várias delimitações de sub-divisões em que são diferenciados os equipamentos e 
processos. 
 
 
18.1.18.1.18.1.18.1. SELEÇÃO DE EQUIPAMSELEÇÃO DE EQUIPAMSELEÇÃO DE EQUIPAMSELEÇÃO DE EQUIPAMENTOSENTOSENTOSENTOS 
A operação de Fragmentação exige a análise de alguns aspectos para a seleção do seu equipamento, 
tais como: 
� Razão de Redução dos trituradores:Razão de Redução dos trituradores:Razão de Redução dos trituradores:Razão de Redução dos trituradores: razão entre as malhas na entrada e na saída; 
� Desgaste na MoagemDesgaste na MoagemDesgaste na MoagemDesgaste na Moagem provocado por materiais duros, partículas grosseiras, movimentos 
rápidos nos moinhos; como prevenção procura-se a utilização de materiais mais duros e 
substituíveis(postiços) na construção dos moinhos; 
� Segurança:Segurança:Segurança:Segurança: 
o Risco de explosão em materiais não metálicos (enxofre, amido, pó de madeira, poeira 
de cereais, dextrina, carvão, piche, borracha dura e plásticos); 
o Incêndios podem ser iniciados por: 
� Descargas de eletricidade estática; 
� Fagulhas de chamas; 
� Combustão espontânea; 
� Pós metálicos são inflamáveis; 
� Combustão favorecida pela moagem em moinho de bola, de martelo ou de 
disco, pois favorecem o aumento da temperatura; 
As precauções tomadas são: 
o Isolamento do moinho; 
o Emprego de material não centelhante nas construções; 
o A tendência ao faiscamento do aço inoxidável é menor do que do aço ordinário ou 
forjado; 
o Uso de separadores magnéticos para separação de partículas magnéticas do material 
de moagem; 
o Reduzir o teor de oxigênio do ar, presente nos moinhos: uso de gás inerte ou gás de 
combustão; 
o Respiros de segurança nos moinhos e; 
o Construções com ventilação apropriada; 
 
� Trabalho necessário à moagemTrabalho necessário à moagemTrabalho necessário à moagemTrabalho necessário à moagem: o trabalho necessário para moer uma dada quantidade de 
material é constante para a mesma razão de redução, independente do tamanho original; 
� Eficiência da moagemEficiência da moagemEficiência da moagemEficiência da moagem: a eficiência energética de uma operação de moagem é definida por 
comparação entre a energia consumida e uma quantidade ideal de energia; 
Até 0,01µ80 mesh*Coloidais 
200 mesh0,2cm a 0,5cmFinos
Moinhos
0,1 a 0,5cm0,5 cm a 5 cmSecundários 
0,5cm a 5 cm10cm a 1,5mPrimários 
Britadores 
Produto Alimentação
Até 0,01µ80 mesh*Coloidais 
200 mesh0,2cm a 0,5cmFinos
Moinhos
0,1 a 0,5cm0,5 cm a 5 cmSecundários 
0,5cm a 5 cm10cm a 1,5mPrimários 
Britadores 
Produto Alimentação
 
 
 30
. . . . . . . . . 
 
o Taxa de produção diminui com o aumento da umidade; 
o Às vezes, pequena quantidade de água pode ser melhor que a secura total; 
o A granulometria (Finura) que se deseja do material interfere diretamente na taxa de 
produção; 
� Taxa de produção diminui como aumento da finura; 
 
 
Moagem seca X Moagem úmida: 
� Moinho de bolas tem grande aplicação na moagem úmida; 
� Quando a presença de líquidos não é prejudicial, a moagem em fase líquida é preferível a 
moagem seca; 
� Na moagem seca as forças superficiais provocam o recobrimento e amortecimento das bolas, 
com a utilização menos eficiente da energia; 
� Fator que interfere na opção por moagem úmida; 
� Custo ou viabilidade da posterior secagem; 
� Viabilidade da utilização do produto úmido; 
� Tamanho limite que se pode atingir na moagem úmida é em geral menor que na moagem 
seca, graças às ações físico-químicas do líquido que impede a aglomeração das partículas finas. 
� Agentes dispersantes: aumentam a taxa de moagem pelo enfraquecimento das partículas ou 
pelo impedimento da sua aglomeração ou por evitar o recobrimento das bolas, nos moinhos 
a bolas; 
� Moagem úmida: o próprio fluido pode atuar como auxiliar de moagem; 
� A água é excelente auxiliar porque tem elevada polaridade; 
 
 
Moagem combinada com outras operações 
� Mistura a seco 
� Condicionar o ar 
� Transferência de calor 
� Etapas do processamento 
� Separar componentes da mistura (depuração, concentração ou beneficiamento); 
 
Moagem combinada com classificação: 
� Quando o processo de moagem é contínuo, se requer o uso de classificadores para avaliar 
qual será a porção de produto que segue para outros processos e qual parte retorna 
novamente para a alimentação do moinho (carga circulante); 
� O principal objetivo deste tipo de processo é a economia gerada; 
� Outra vantagem é a obtenção de um produto com distribuição mais uniforme de tamanho, 
comparada com a obtida em processos descontínuos; 
 
 31
. . . . . . . . . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Moinho de martelos em circuito fechado, com classificador pneumático. 
 
 
 
 
 
 
20.20.20.20. EQUIPAMENTOSEQUIPAMENTOSEQUIPAMENTOSEQUIPAMENTOS 
Britadores de mandíbulas: 
 
 32
. . . . . . . . . 
 
 
A alimentação passa entre duas mandíbulas 
pesadas, uma fixa e outra móvel. O material 
vai passando lentamente por um espaço cada 
vez menor, triturando-se ao deslocar-se. 
 
 
 
Desempenho: são usados para o 
esmagamento primário de materiais 
duros e usualmente são secundados 
por outros tipos de moinhos. Os 
modelos menores são empregados 
como máquinas de estágio único. 
 
 
Britador de 
mandíbulas 
Blake 
 
 
O maior tamanho das partículas do produto é aproximadamente igual a distância entre a parte inferior das 
mandíbulas. 
 
 
Britadores giratórios: 
 
 
 33
. . . . . . . . . 
 
 
Britador giratório primário, com suspensão de cruzeta. 
Efetua a maior parte das triturações de minérios duros e de minerais em grande escala. 
Alto custo de revestimento interno contra desgaste; 
Operação intermitente, por isso a demanda de potência é elevada; 
Desempenho: consiste em um pilão cônico que oscila no interior de uma cuba cônica maior, o almofariz. 
Os ângulos dos cones fazem com que a largura do espaço entre as duas peças diminua para o fundo das 
faces de trabalho. 
Os britadores primários têm um ângulo de cone agudo e pequena razão de redução; 
Os secundários têm ângulo mais aberto, com isso o produto mais fino pode espalhar-se ao longo de uma 
área de passagem mais extensa, e o desgaste também diminui; 
Desempenho: a taxa de trituração depende da dureza do material e da fração da alimentação que tem as 
dimensões do produto final. 
Britadores primários aceitam material diretamente de caminhões ou vagões; 
 
Moinhos de rolos: 
Possuem muito desgaste por isso estão caindo em desuso; 
 
Podeoperar com material molhado ou peguento, inclusive com pedras misturadas com lama ou argila; 
Neste aspecto supera o triturador de mandíbulas e o giratório; 
Mais convenientes para este moinho são os materiais moles, como calcários, rocha fosfática, etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Moinhos a impacto: 
o Compreendem as britadeiras a martelos e as giratórias a impacto; 
 
 34
. . . . . . . . . 
 
o BRITADOR A MARTELOS: a ação de trituração ocorre pelo impacto entre eles e batentes 
fixos (bigornas); 
 
 
 
 
 
 
 
 
 
 
 
 
Britador a martelos 
 
o ROTORES BRITADORES: o rotor é um cilindro a que está fixa uma barra rígida de aço. 
� A ação de moagem pode ocorrer no impacto com esta barra ou na colisão com as 
paredes da máquina; 
� Sofre desgaste menor e requer menos potência; 
 
 
 
 
 
 
 
 
 
 
 
 
 
Britador a impacto com dois rotores. 
Moinhos com tambor rotativo: 
São os moinhos de bolas, de seixos, de barras, tubulares e com seções; 
Elementos de moagem: bolas de aço, pedra ou porcelana, ou barras de aço; 
Moinho de bolas: usam bolas grandes para produzir um material relativamente grosso. Versátil e fácil 
de operar; 
 
 35
. . . . . . . . . 
 
Moinho tubular: usa esferas menores e leva a um produto mais fino; 
Moinho tubular em seções: é uma combinação dos 2 anteriores; 
Moinhos de barras: fornecem material mais uniforme e granulado comparado com os demais moinhos 
rotativos, tornando mínima a fração de finos, que às vezes, pode ser inconveniente. 
Moinho de seixos: moinho tubular com seixos de pedra ou de cerâmica como elemento de moagem e 
é revestido por cerâmica, normalmente. Versátil e fácil de operar; 
Moinho de pedras: moinho autógeno em que o elemento de moagem são fragmentos grandes, 
provenientes de uma etapa precedente no processo total de moagem; 
 
Moinhos de bolas: 
Na sua forma mais simples consiste em um tambor cilíndrico rotativo com dimensões regulares, que, em 
funcionamento é preenchido parcialmente com bolas. O material a moer é alimentado no tambor, junto 
com as bolas, e à medida que ele gira, as bolas caem sobre o material, promovendo a fragmentação 
 
 
 
 
 
 
 
 
Moinho de bolas. 
 
Mesmo sendo especialmente projetadas, em poucas semanas as bolas deve estar com alto desgaste, 
diminuindo de tamanho e prejudicando a capacidade e funcionamento do moinho. 
 
Chama-se velocidade crítica a rotação de um moinho, na qual a força centrífuga desenvolvida mantém 
as bolas encostadas na parede do moinho sem cair, impossibilitando a moagem. 
A moagem pode ser feita em circuitos abertos ou fechados. 
Na moagem em circuito aberto, o material passa uma só vez pelo moinho, pois já atinge a especificação 
de granulometria desejada. 
A moagem em circuito fechado existe um classificador que separa as partículas mais finas das mais 
grossas que o tamanho final desejado. As mais grossas retornam ao moinho para sofrer nova moagem, 
enquanto as mais finas são separadas através de sistema pneumático acoplado a um ciclone. 
A moagem em circuito fechado consegue tamanhos mais finos que o aberto, em virtude do controle de 
granulometria ser mais rígido. 
 
 36
. . . . . . . . . 
 
o Fatores para determinar o tamanho das bolas: 
� Granulação do material que está sendo moído; 
� Custo da manutenção da carga de bolas; 
� Alimentação mais grossa exige bolas maiores que uma alimentação fina; 
 
 
 
 
 
 
 
 
 
 
 
Descarga contínua num moinho de bolas 
 
12.12.12.12. DESTILAÇÃODESTILAÇÃODESTILAÇÃODESTILAÇÃO 
 
 A Evaporação consiste na concentração de uma solução pela vaporização do solvente na 
ebulição, mas suspende-se o processo antes de o soluto principiar a precipitar-se da solução; 
É uma separação de componentes por efeito térmico, na qual se obtém dois produtos de diferentes 
composições físico-químicas. 
Um processo no qual uma mistura de duas ou mais substâncias, no estado líquido ou vapor, é separada 
em seus componentes, com uma determinada pureza, através de um processo térmico (aplicação ou 
remoção de calor). 
O processo da Destilação está baseado no fato de que o vapor de uma mistura em ebulição será mais rico 
nos componentes que têm pontos de ebulição mais baixos. 
A Destilação é, assim, um processo clássico da Engenharia Química sendo um dos métodos mais 
indicados para separar misturas líquidas nos seus componentes. O termo destilação origina-se na palavra 
latina "destillare" que significa pingar ou gotejar vagarosamente no sentido descendente. Essa 
denominação ocorre devido ao visível gotejamento do produto originado em qualquer processo de 
destilação, no qual o líquido original tenha sido vaporizado e, então, re-condensado. 
A separação por destilação pode ser realizada de diversos modos, uns mais simples, outros mais 
complexos, dependendo do tipo de mistura que se deseja separar e do grau de separação adequado. Desse 
modo a destilação pode ser classificada de diversas maneiras. Em escala industrial existem diferentes 
 
 37
. . . . . . . . . 
 
equipamentos, chamados de "colunas de destilação", indicados para cada caso. O projeto dessas colunas 
baseia-se em: 
 
a)Princípios Termodinâmicos 
 
b)Análise dos fatores que influenciam a operação dos equipamentos e visam, sempre, alcançar a 
separação desejada de modo eficaz. 
 
O desempenho de uma coluna de destilação é determinada por muitos fatores, tais como: 
� As condições da alimentação: 
� Estado (líquido, vapor, vapor-líquido, etc); 
� Composição; 
� Existência de traços de componentes que podem alterar significantemente os característicos do 
equilíbrio líquido-vapor da mistura, etc.. 
� As condições de fluxo dentro da coluna; 
� Características das partes internas (pratos ou recheios). 
 
Embora exista um senso comum do que a destilação signifique, alguns aspectos importantes, do ponto 
de vista industrial, devem ser evidenciados. São eles, como observados por Ming T. Tham : 
� Destilação é a técnica de separação mais comum, em termos industriais; 
� Ela consome quantidades enormes de energia, tanto nas necessidades de aquecimento quanto nas 
de resfriamento; 
� Destilação pode contribuir com mais de 50% dos custos de operação. 
� O melhor modo para reduzir custos operacionais de unidades existentes, é melhorar sua eficiência e 
operação através de otimização e controle do processo. 
 
Para atingir esta melhoria, é essencial uma compreensão completa dos princípios da destilação e de 
como são projetados os sistemas de destilação. 
Uma aplicação importante de destilação é a produção de álcool e bebidas alcoólicas, aplicação conhecida há 
muito tempo. Aplicações mais recentes incluem a obtenção de frações de petróleo nas refinarias e as 
separações necessárias das misturas oriundas de inúmeras reações que ocorrem na indústria química. 
A destilação pode ser classificada sob diversos aspectos. A seguir serão apresentadas algumas 
possibilidades. 
1) Classificação pelo número de componentes da mistura: 
a. Binária - quando a mistura é composta somente por dois componentes. Exemplo: mistura 
de água e álcool. 
 
 38
. . . . . . . . . 
 
b. Multicomponente - quando existem, na mistura, três ou mais componentes. Um exemplo 
clássico de mistura multicomponente é o petróleo 
 
2) Classificação pelo número de estágios: 
a. Ou e em único estágio 
b. Múltiplos estágios 
 
3) Classificação pelo modo de operação: 
a. Operação em batelada 
b. Operação contínua 
Neste ponto pode-se combinar as duas últimas classificações anteriores e: 
A operação em batelada ou contínua podeser: 
� Em um único estágio; 
� Em múltiplos estágios. 
A operação em único estágio ou em múltiplos estágios pode estar funcionando: 
� Em bateladas; 
� Continuamente. 
 
4) Classificação pelo tipo de mistura: (comportamento do equilíbrio líquido-vapor). 
a. Destilação simples aquela baseada nas diferenças de volatilidade relativa dos componentes. 
Alguns autores designam "simples" a destilação que se baseia apenas em 
fornecimento/retirada de energia [uso de agente energético de separação] 
 
 
b. Destilação complexa a que utiliza recursos adicionais, além dos citados na "simples", tais 
como: adição de agentes mássicos de separação (solventes, por exemplo), alteração de 
pressão de operação em regiões da coluna, uso de reagentes e catalisadores para provocar 
reação (destilação reativa). 
 
5) Outras possibilidades de classificação: 
a. A destilação em balão munida de condensador pode ser chamada destilação diferencial. 
b. " Flash" é a destilação em único estágio, em batelada ou contínua é de (condensação ou 
vaporização parciais). 
 
� Termos importantes para serem conhecidos: 
 
 39
. . . . . . . . . 
 
a. Fracionamento: ato de separar uma alimentação (chamada de carga) em destilado (que é o 
produto de topo) e produto de fundo, ou em mais frações (retiradas laterais, caso de refino 
de petróleo). 
b. Coluna fracionadora: é a denominação de uma coluna básica, contínua, com uma 
alimentação, com produtos de topo e fundo. Ou seja, aquela que efetua fracionamento. 
Nela, a seção da coluna acima da alimentação. É chamada de retificação (analogia com 
absorção), a parte abaixo é conhecida como de esgotamento ("stripping"). 
 
 
 
 
 
Coluna de Destilação ContínuaColuna de Destilação ContínuaColuna de Destilação ContínuaColuna de Destilação Contínua 
As colunas que têm operação contínua processam uma corrente de alimentação contínua. Interrupções 
no processo ocorrem somente para o equipamento sofrer manutenção ou quando se verifica algum 
problema, seja no processo de destilação em si ou em algum processo vizinho. Esse tipo de coluna pode 
processar altas quantidades de material e são, em termos industriais, mais comuns do que as que operam 
em batelada. 
 
 
 
 
 
 40
. . . . . . . . . 
 
ColunColunColunColuna de Destilação em Bateladaa de Destilação em Bateladaa de Destilação em Bateladaa de Destilação em Batelada 
 
São as colunas que operam em batelada, ou seja, a coluna é carregada com uma certa quantidade de 
material (mistura líquida), chamada de batelada e o processo de destilação é realizado. Quando a tarefa 
desejada chegou ao fim, uma nova batelada de alimentação é introduzida. 
 
 
 
Classificações das Colunas de DestilaçãoClassificações das Colunas de DestilaçãoClassificações das Colunas de DestilaçãoClassificações das Colunas de Destilação 
As colunas contínuas podem ser classificadas de acordo com: 
1) A natureza da alimentação que estão processando, 
a. coluna binária - a alimentação contém somente dois componentes 
b. coluna multi-componente -a alimentação contém mais do que dois componentes. 
 
2) O número de correntes de produto que dela são extraídas, 
a. coluna multi-produto - aquela que possui mais retiradas do que os produto de topo e de 
fundo. 
 
3) A existência de uma alimentação extra (com um ou mais componentes diferentes dos da 
alimentação principal) adicionada para auxiliar a separação, 
 
 41
. . . . . . . . . 
 
a. destilação extrativa - onde a alimentação extra aparece na corrente de produtos de fundo 
b. destilação azeotropica - onde a alimentação extra aparece na corrente de produtos de topo. 
 
4) O tipo de partes internas: 
a. colunas de bandejas - onde as bandejas, de vários tipos possíveis, são usadas para represar o 
líquido descendente e, assim, promover um melhor contato entre este e o vapor que 
ascende ao topo, ocasionando maior eficiência na separação 
b. colunas de recheio - onde, em vez de bandejas, as colunas são cheias (recheadas) com peças 
sólidas (recheio) de várias formas. Esse recheio providencia um melhor contato entre o 
líquido e o gás. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42
. . . . . . . . . 
 
 
 
 
 
 
 
 
Escoamentos do vapor e do líquido em colunas de pratosEscoamentos do vapor e do líquido em colunas de pratosEscoamentos do vapor e do líquido em colunas de pratosEscoamentos do vapor e do líquido em colunas de pratos 
 
A Figura abaixo (a,b e c) mostram três esquemas, com visões diferentes, para o escoamento e direção de 
fluxo dos fluídos que circulam nos pratos e em colunas de destilação. 
 
 
Cada coluna tem dois condutores, um de cada lado, chamado de canal de descida ("downcomer"). O 
líquido cai pelo downcomer por gravidade, de um prato para o outro, localizado imediatamente abaixo 
dele. O fluxo contracorrente em cada prato é mostrado nas Figuras (b,c).Um dique localizado na 
extremidade superior do downcomer é projetado de modo que seja assegurada, no prato, uma altura 
adequada de líquido para permitir que o vapor que passa pelos borbulhadores (ou válvulas ou malhas) entre 
em contato íntimo com o líquido. 
A área disponível para a passagem do vapor em cada prato é chamada de área ativa do prato.O vapor 
(mais quente) transfere calor ao líquido (mais frio) e, com isso, parte do vapor condensa - justamente os 
componentes com pontos de ebulição maiores e é incorporado ao líquido - e parte do líquido evapora - 
aquela formada dos componentes com pontos de ebulição menores a qual passa para a fase vapor que 
sobe. Este contato contínuo líquido-vapor ocorre em cada prato e promove a separação entre os 
componentes menos voláteis dos mais voláteis que é, em suma, o objetivo da destilação. 
 
 43
. . . . . . . . . 
 
Uma coluna de destilação é um complexo sistema de escoamento. Na base da coluna, vapor com uma 
pressão suficientemente elevada, tem que ser gerado para poder vencer o peso da coluna de líquido em 
cada prato, da base até o topo da coluna. Por outro lado, o líquido escoa do topo para o fundo, na mesma 
direção do gradiente positivo de pressão, devido a diferença de densidade. O escoamento de interno de 
vapor e de líquido numa coluna de destilação deve ser tal que favoreça o contato entre as fases, daí a 
necessidade de colocar anteparos na coluna. Nas Figuras a seguir observamos como um prato perfurado e 
um com borbulhador, respectivamente, promovem a mistura entre as fases líquida de vapor 
Escoamento de líquido e vapor através de um prato perfurado. 
 
 
 
 
 44
. . . . . . . . . 
 
 
 
Escoamento de líquido/vapor através de um prato com borbulhador 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45
. . . . . . . . . 
 
Bandejas ou PratosBandejas ou PratosBandejas ou PratosBandejas ou Pratos 
 
Os termos "bandejas" ou "pratos" são equivalentes em se tratando da denominação das partes internas 
de uma coluna de destilação. Existem muitos tipos de pratos, mas os mais comuns são os apresentados a 
seguir: 
 
 
 
 
 
 
 
 
 
 
 46
. . . . . . . . . 
 
 
Pratos com borbulhadoresPratos com borbulhadoresPratos com borbulhadoresPratos com borbulhadores 
 
Um prato com borbulhadores está esquematizado na Figura abaixo. 
 
Esse prato tem orifícios onde se erguem pequenas "chaminés" cobertas, cada uma, com um "capacete". 
A vista lateral de um borbulhador expandido em suas duas partes está esquematizado na Figura a seguir: 
 
 
 47
. . . . . . . . .

Outros materiais