Buscar

TRABALHO APLICAÇÃO EDO

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

ESTADO DO MATO GROSSO
SECRETÁRIA DE ESTADO DE CIÊNCIA E TECNOLOGIA
UNIVERSIDADE DO ESTADO DE MATO GROSSO
CAMPUS UNIVERSITÁRIO DE SINOP
FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS
CURSO DE ENGENHARIA ELÉTRICA
ACADÊMICOS:
ELLYAKIN JESSE SANTOS FIGUEIREDO
 ELTON FERNANDES DOS SANTOS
MATHEUS FRANCO DE SOUZA
Trabalho
De
Cálculo III
SINOP
2015
ELLYAKIN JESSE SANTOS FIGUEIREDO
 ELTON FERNANDES DOS SANTOS
MATHEUS FRANCO DE SOUZA
Cálculo Diferencial Integral III
Trabalho de Cálculo Diferencial e Integral III apresentado como requisito parcial a obtenção do grau de bacharel em Engenharia Elétrica pela Universidade do Estado de Mato Grosso.
Orientadora: Profº. Mrs. Polyanna Possani da Costa
SINOP
2015
INTRODUÇÃO
A modelagem matemática está presente em diversos aspectos do cotidiano, tendo aplicações práticas em áreas como engenharia, medicina, química e biologia entre outras. A equações diferencias ordinárias (EDO’s) destacam comportamentos fenômenos da natureza, taxas de crescimento, vibrações, circuitos elétricos	entre os mais diversos aspectos. Justo relatarmos que as EDO’s foram fruto de estudo avançado do cálculo diferencial integral através de Newton e outros estudiosos moldaram as equações diferencias.
	Partindo como ponto de estudo das EDO’s no campo da engenharia elétrica, estudaremos aplicação de circuitos elétricos denominados RLC, circuito formado pelo conjunto de componentes como resistor, indutor e capacitor, através deste circuito conseguimos visualizar as oscilações de Neper e ressonância, resolvendo a equação característica da solução homogênea, neste circuito modelamos a taxa de variação da tensão com a equação diferencial ordinária de segunda ordem linear não homogênea.
DESENVOLVENDO A EDO.
As EDO’s podem ser usadas para modelar diversos fenômenos ocorrente em um circuito RLC, como tensão corrente e carga para qualquer componente presente no circuito. Nesse caso vamos analisar a resposta a um degrau do circuito na figura abaixo.
	A resposta a um degrau, é a representação da tensão em um circuito quando um capacitor está sendo carregado, logo só se faz presente quando a fonte de tensão é constante. O processo inverso, denomina-se resposta natural do circuito, em que a análise é análoga. Porém antes deve-se tomar conhecimento sobre o comportamento de cada componente presente no circuito.
	Um capacitor consiste em dois os mais condutores isolado entre si por meio de dielétricos, tendo como principal função armazenar energia potencial elétrica na forma de campo elétrico durante um intervalo de tempo, figura abaixo é apresentado de uma forma didática, a construção de um capacito.
	 A capacidade elétrica ou capacitância é dado pela razão entre a quantidade de carga armazenada entre os condutores do capacitor pela diferencia de potencial existente entre os mesmos. A capacitância é medida em Farads, como essa unidade é relativamente grande geralmente são utilizados seus submúltiplos, microfarad, nanofarad e picofarad. 
Q quantidade de carga. 
C capacitância 
 V tensão.
Por definição, a corrente, que passa por um capacitor é igual a variação da carga, derivando a equação assim pode-se obter as seguintes relações
	O indutor, também conhecido por hoke ou reator, é um dispositivo elétrico passivo geralmente constituído, por uma bobina de metal condutor, e um núcleo de material ferromagnético, como na figura abaixo. A indutância é um parâmetro dos circuitos lineares que relaciona a tensão induzida por um campo magnético variável à corrente responsável pela tal, sendo uma grandeza física medida em Henry(H). A tensão entre os terminais de um indutor é proporcional ao produto da indutância e a taxa de variação da corrente que o atravessa.
Em que V (t) é a diferencia de potencial nos terminais da bobina, L a indutância e I a corrente.
	Os resistores são componentes que oferecem oposição a passagem de corrente em circuito elétrico, esse fato é denominado de resistência elétrica ou impedância, tendo como unidade de media o ohm. Os resistores causam uma queda de tensão porem, a corrente elétrica que entra em um terminal é exatamente a mesma que sai, ou seja, não provoca queda de corrente, sendo assim é possível utilizar resistor para limitar uma corrente num circuito.
	A relação entre tensão, corrente e resistência é dado pela lei de Ohms em que:
 Resistência.
V Tensão. 
I Corrente. 
A segunda Lei de Kirchhoff ou Lei das Malhas afirma que percorrendo uma malha (qualquer caminho condutor fechado) num certo sentido, partindo e chegando ao mesmo ponto, a soma algébrica das diferenças de potencial. É nula.
Buscamos encontrar a tensão presente no capacitor em um determinado instante de tempo, usando a lei das malhas temos:
 Tensão no resistor.
 Tensão no capacitor.
 Tensão no indutor.
 Tensão da fonte
Substituído 
Temos uma EDO de segunda ordem não homogênea, para resolvermos basta encontrarmos a solução homogênea mais uma solução particular em que a solução homogênea referencia-se a resposta transitória e a particular resposta permanente, logo solução será do tipo.
Tendo como a EDO:
Solução homogênea:
Polinômio característico:
A partir da equação de segundo grau obtém-se:
 
Os índices dentro das raízes são correspondentes a frequência de ressonância e frequência de Neper: 
Frequência de ressonância α = 
Frequência de Neper 
Frequência de Neper: corresponde ao fator de amortecimento ou coeficiente de amortecimento medido em (rads/s)
Frequência de ressonância:
Temos três casos possíveis para solução dessa equação, em que é definido a seguinte forma.
Se temos o caso superamortecido, em que as raízes da equação do polinômio característico são diferentes e reais.
Se temos o caso criticamente amortecido, em que as raízes do polinômio característico são iguais e reais.
Se temos o caso sub-amortecido em as raízes do polinômio são complexas conjugas.
	 A solução particular e os problemas de valor iniciais são análogos para todos os casos.
Solução Particular
Sendo uma constante qualquer e a tensão da fonte sempre constante, a derivada primeira e segunda, em relação ao tempo é igual a zero
Substituindo as derivadas na EDO: temos que:
Logo a solução particular é 
PROBLEMA DE VALOR INICIAL P.V.Is
Como a EDO é de segunda ordem temos que encontrar dois (P.V.Is), supondo que no instante t =0 não há tensão no circuito, capacitor encontrasse totalmente descarregado tendo.
Para encontramos o segundo P.V.I, aplicamos as leis das malhas para corrente no circuito:
Substituindo temos:
Como a tensão no instante t = 0 é 0:
Derivando:
	Supondo que a corrente inicial seja 0 temos que: 
Exemplo circuito para o caso superamortecido, ()
	A solução geral 
Supondo condições iniciais de constantes.
	
	5 Volts
	
	1F
	
	
	
	1 H
	
	0 segundos
	
	0 segundos
Substituindo na equação abaixo:
Temos que:
Logo a é:
Aplicando o P.V.I 
Derivando:
Segundo P.V.I 
Solução para os respectivos P.V.Is:
	Quando a tensão no capacitor se iguala a da fonte os demais componentes tende se comportar como um curto, e o capacitor entra em um regime de circuito aberto, logo a tensão no capacitor quando tempo aumenta é igual à da fonte, em que podemos ver no gráfico abaixo. 
Exemplo para o caso criticamente amortecido ()
 Solução Homogênea. 
Tendo como a EDO: 
Solução homogênea da EDO: é:
A partir da equação de segundo grau obtém-se:
 	Então a solução da EDO homogênea é:
Solução Geral
Tendo a solução homogênea e particular basta soma-las para obter a solução da EDO.
Aplicando o P.V.I
	
	5 Volts
	
	1F
	
	
	
	1H
	
	0 segundos
	
	0 segundos
Aplicando o PVI na raiz da equação temos:
Substituindo o na solução final temos:
Agora, devemos encontrar os valoresdas constantes e . Para isso, devemos derivar a solução final e aplicar no P.V.I:
Portanto a solução geral para obter a tensão do capacitor em relação ao tempo é:
Nesse caso o coeficiente de amortecimento α é igual a 1, assim a tensão no capacitor de iguala a da fonte em um intervalo de tempo muito curto r quase se oscilações, representado no gráfico abaixo
Exemplo para o caso sub-amortecisdo ()
Solução Homogênea 
Procurando a solução homogênea através da equação do segundo grau temos que 
	Vamos atribuir essa divisão por dois em ambos os membros, contudo iremos colocar esses dois dentro da raiz 
	Logo a Solução homogênea será
Solução Geral
Problema do Valor Inicial
Atribuindo os seguintes valores para as variáveis, e substituindo na EDO
	R
	2 Ω
	C
	1/2 F
	L
	1 H
	V0
	5 Volts
	
	0 segundos
	
	0 segundos
 
Logo encontramos lambda 
Temos que as duas raízes da equação são
Portanto como possuem parte imaginaria a solução homogênea correspondente a EDO será 
Como possuimos o valor de basta substituirmos na solução particular
Logo a função que modela a tensão do capacitor é
V (t) = 
Iremos agora resolver o problema do valor inicial
P.V.I 
Aplicando na função temos que 
Logo 
Fazendo a derivada da função de tensão temos
Aplicando V’(0) =0 
Substituindo por -5 , descobrimos a segunda constante.
Solução P.V.I 
V (t) = 
	Nesse caso a frequência de ressonância é maior que a frequência de Neper, logo o processo de carregamento do capacitor tende a sofrer pequenas oscilações, em que é apresentado no gráfico abaixo. 
CONCLUSÃO
REFERENCIAS 
Imagem capacitor. Disponível em http://www.rogercom.com/CursoOnlineLPT/Modulo01/CapacitorArmadura.gif
Imagem indutor. Disponível em http://iccel.com.br/img/indutores_bastao_2.jpg
Lei da Kirchooff. Disponível em http://www.colegioweb.com.br/leis-de-kirchhoff/segunda-lei-de-kirchhoff-ou-lei-das-malhas.html#ixzz3rlq8VGlQ
	
REFERÊNCIAS 
Vera C. Orientações do trabalho. Cálculo Diferencial e Integral II- UNEMAT, Sinop,2015.
Sistema de álgebra computacional Maxima. Disponível em:< http://maxima.sourceforge.net/pt/index.html>. Acesso em 6 Jul. 2014.
Winplot. Disponivel em :< http://www.gregosetroianos.mat.br/softwinplot.asp>. Acesso em 6 Jul. 2014.

Continue navegando