Buscar

Execícios propostos Peças Tracionadas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Resolução dos exemplos 
de aplicação do Capítulo 6
6.10.1 Largura líquida e área líquida de elemento plano
Será determinada a largura líquida e a área líquida do elemento plano da Figura 6.14b, com as dimensões indica-
das a seguir, sabendo-se que esse elemento possui espessura de 8 mm. Os parafusos usados na ligação têm diâmetro 
de 19 mm (3/4").
NN
I
M
E
H
A
D
J
K
F
G
L
B
C
40 mm
40 mm
60 mm
60 mm
30 mm
30 mm
40 mm
80 mm
Elemento plano
a) Determinação da largura líquida
O diâmetro dos furos é:
dh = 19 + 3,5 = 22,5 mm = 2,25 cm
As possíveis linhas de ruptura, todas necessariamente passando pelos furos B e C, são mostradas na Figura 6.14c. 
Aplicando a Equação (6.1), os valores das larguras líquidas dessas linhas de ruptura são:
•	 linha de ruptura A-B-C-D:
26 2 2,25 21,50bn ( ) == – cm
•	 linhas de ruptura A-B-F-C-D e A-B-G-C-D:
26 3 2,25 8
2
4 × 12 4 × 6
82 23,25 cmbn ( )= − + + =
 
•	 linha de ruptura A-B-F-G-C-D:
26 4 2,25 2 8
4 × 6
22,33 cm
2
bn ( )= − +





 =
•	 linha de ruptura A-B-F-K-G-C-D:
26 5 2,25 2 8 2
4 × 34 × 6
22,75 cm
2 42bn ( )= − +





 +





 =
 
A menor largura líquida, e que deve ser adotada nos cálculos posteriores, é igual a 21,50 cm, correspondente à linha 
de ruptura A-B-C-D.
M06_FAKU__Sala_Virtual.indd 1 16/11/16 5:12 PM
2 Dimensionamento de elementos estruturais de aço e mistos de aço e concreto~~
b) Cálculo da área líquida
Como a chapa tem espessura de 8 mm (0,8 cm), obtém-se:
An = 21,50 × 0,8 = 17,20 cm
2
6.10.2 Alteração da linha de ruptura dominante do Subitem 6.10.1
No elemento plano do exemplo precedente, suponha que se queira substituir a distância de 80 mm entre as linhas 
de furação ABCD e EFGH para um valor tal que a linha de ruptura A-B-F-G-C-D prevaleça sobre A-B-C-D. Como 
se pode obter esse valor?
Solução
O valor que deve substituir a distância de 80 mm para que a linha de ruptura A-B-F-G-C-D prevaleça sobre 
A-B-C-D, representado por s1, pode ser obtido pela expressão:
< =26 4 2,25 2
4 × 6
21,50A-B-F-G-C-D,
1
2
b
s
bn,A-B-C-Dn ( )= − +







 ⇒ s1 < 7,35 cm
Logo, para que a linha de ruptura A-B-F-G-C-D prevaleça, s1 deve ser inferior a 7,35 cm.
6.10.4 Força axial resistente de cálculo em diversos perfis
Propõe-se agora obter o valor da força axial resistente de cálculo, Nt,Rd, para todas as barras tracionadas mostradas 
a seguir. As ligações são parafusadas, feitas com o uso de chapas (não mostradas), e os furos e as posições dos planos 
de cisalhamento estão indicados (existem dois planos de cisalhamento nos casos a e b e apenas um nos casos c e d). 
Os parafusos têm diâmetro de 24 mm e estão distanciados entre si de 80 mm (distância eixo a eixo de furos), na dire-
ção da força de tração, em cada linha de furação. O aço empregado possui resistência ao escoamento de 345 MPa e à 
ruptura de 450 MPa.
N
Plano de
cisalhamento
Plano de
cisalhamento
(a) W 310 x 97 (b) W 310 x 97
(c) U 152,4 x 12,2 (d) L 127 x 7,94
N
N
Plano de
cisalhamento
Plano de
cisalhamento
Plano de
cisalhamento
N
52 mm
Plano de
cisalhamento
Antigo 6.10.2
Página 127
M06_FAKU__Sala_Virtual.indd 2 16/11/16 5:12 PM
 Resolução dos exemplos de aplicação do Capítulo 6 3
a) Perfil W 310 x 97 ligado pelas faces externas das duas mesas
a1) Dimensões e área bruta da seção transversal
308 mm
9,9 mm
15,4 mm
305 mm
Ag = 123,6 cm
2
a2) Escoamento da seção bruta
123,6 × 34,5
1,10
3.877 kN,
1
N
A f
t Rd
g y
a
= γ = =
a3) Ruptura da seção líquida
,
2
N
A f
t Rd
e u
a
=
γ
,	com	γa2 = 1,35 e Ae = Ct An
 dh = 24 + 3,5 = 27,5 mm = 2,75 cm
 Furação com padrão uniforme ⇒ An = 123,6 – 4(2,75 × 1,54) = 106,66 cm
2
138,6 mm 308/2 = 154 mm
ec
9,9 mm
15,4 mm
305 mm
G
305 × 15,4 × 
305 × 15,4 + 138,6 × 9,9
15,4
2
+ 138,6 × 9,9 15,4 138,6
2
25,11 mmec
+






==
1 1= −
 
25,11
2 80
0,84 (valor entre 0,60 e 0,90)C
e
t
c
c�
= −
×
=
Ae = 0,84 × 106,66 = 89,59 cm
2
89,59 × 45
1,35
2.986 kN,Nt Rd = = 
a4) Conclusão
Prevalece o menor valor da força resistente de cálculo, considerando os dois estados-limites últimos. Portanto:
Nt,Rd = 2.986 kN
b) Perfil W 310 x 97 ligado pelos dois lados da alma
b1) Escoamento da seção bruta
Nt,Rd = 3.877 kN (igual ao caso anterior)
Antigo 6.10.4
Página 127
M06_FAKU__Sala_Virtual.indd 3 16/11/16 5:12 PM
4 Dimensionamento de elementos estruturais de aço e mistos de aço e concreto~~
b2) Ruptura da seção líquida
1,35,
N
A f
t Rd
e u= , com Ae = Ct An
Furação com padrão uniforme An = 123,6 – 2(2,75 × 0,99) = 118,16 cm
2
4,95 × 277,2 + 2 × 152,5 × 15,4
4,95 × 277,2 × 4,95
2
152,5
2
+ 2 × 152,5 ×15,4 ×
– 4,95 = 54,62 mmec =
Ct = 1 − 
54,62
2 × 80
ec
�c
= 1 − = 0,66 (valor entre 0,60 e 0,90)
G 308 mm277,2 mm
9,9/2 = 4,95 mm
15,4 mm
305/2 = 152,5 mm
Ae = 0,66 × 118,16 = 77,99 cm
2
77,99 × 45
1,35
2.600 kN,Nt Rd = =
b3) Conclusão
Prevalece o menor valor da força resistente de cálculo, considerando os dois estados-limites últimos. Portanto:
Nt,Rd = 2.600 kN
c) Perfil U 152,4 x 12,2 ligado pelo lado externo da alma
c1) Dimensões e área bruta da seção transversal
152,4 mmG Ag = 15,5 cm
2
13 mm
5,08 mm
8,7 mm
48,8 mm
c2) Escoamento da seção bruta
= =
1,10
15,5 × 34,5
1,10
486,14 kN,N
A f
t Rd
g y =
c2) Ruptura da seção líquida
1,35,
N
A f
t Rd
e u= , com Ae = Ct An
Furação com padrão uniforme ⇒ An = 15,5 – 2(2,75 × 0,508) = 12,71 cm
2
M06_FAKU__Sala_Virtual.indd 4 16/11/16 5:12 PM
 Resolução dos exemplos de aplicação do Capítulo 6 5
ec = 13 mm
1 1 13
2 × 80
0,92C
e
t
c
c�
= − = − = ⇒ Como esse valor é maior que 0,90, usa-se Ct = 0,90
Ae = 0,90 × 12,71 = 11,44 cm
2
11,44 × 45
1,35
381,33 kN,Nt Rd = = 
c3) Conclusão
Prevalece o menor valor da força resistente de cálculo, considerando os dois estados-limites últimos. Portanto:
Nt,Rd = 381,33 kN
d) Perfil L 127 x 7,94 ligado pela face externa de uma aba
d1) Dimensões e área bruta da seção transversal
34,7 mm
G
7,94 mm
Ag = 19,50 cm
2
127 mm
d2) Escoamento da seção bruta
= = 19,50 × 34,5
1,101,10
611,59 kN,N
A f
t Rd
g y =
d3) Ruptura da seção líquida
1,35,
N
A f
t Rd
e u= , com Ae = Ct An
Como a furação não possui padrão uniforme, deve-se rebater a cantoneira segundo a linha do esqueleto, transfor-
mando-a em um elemento plano, para obtenção das linhas de ruptura, da largura líquida e da área líquida:
2 × 127 – 7,94 = 246,06 mm
N
A
B
D
CE
40 mm
40 mm
40 mm
40 mm
52 mm
FiguRa 6.44
Etiqueta de controle 
NÃO fechar com 
estas marcações
M06_FAKU__Sala_Virtual.indd 5 16/11/16 5:12 PM
6 Dimensionamento de elementos estruturais de aço e mistos de aço e concreto~~
As possíveis linhas de ruptura passam pelo furo B, e, com as suas larguras líquidas, são:
•	 A-B-C ⇒ bn = 24,61 – 2,75 = 21,86 cm
•	 A-B-D-E ⇒ 24,61 2 2,75
4 × 5,2
19,88 cm4
2
bn ( )= − + =
Logo, a largura líquida bn a ser adotada é igual a 19,88 cm e
An = 19,88 × 0,794 = 15,78 cm
2
ec = 34,7 mm
1 1
34,7
2 × 80
0,78C
e
t
c
c�
= − = − = (valor entre 0,60 e 0,90)
Ae = 0,78 × 15,78 = 12,31 cm
2
12,31 × 45
1,35
410,33 kN,Nt Rd = =
d4) Conclusão
Prevalece o menor valor da força resistente de cálculo, considerando os dois estados-limites últimos. Portanto:
Nt,Rd = 410,33 kN 
6.10.5 Força axial resistente de cálculo em cantoneira
Uma cantoneira L 101,6 x 6,35, em aço ASTM A572 – Grau 50, estáligada a outra peça por três linhas de dois 
parafusos de diâmetro de 16 mm, duas linhas situadas em uma aba e uma linha na outra aba, como se vê na figura (a) 
a seguir (os furos indicam as posições dos parafusos). Será determinado: (1) o valor da força axial de tração resistente 
de cálculo; (2) o valor dessa força, supondo ligação soldada em apenas uma das abas da cantoneira, com soldas longi-
tudinais com comprimento de 150 mm, conforme a figura (b).
50 mm
30 mm
60 mm
50 mm
50 mm
50 mm
150 mm
N
N
Solda
a) Ligação parafusada nas duas abas
a1) Aço estrutural
ASTM A572 – Grau 50 ⇒ fy = 345 MPa = 34,5 kN/cm
2; fu = 450 MPa = 45,0 kN/cm
2
M06_FAKU__Sala_Virtual.indd 6 16/11/16 5:12 PM
 Resolução dos exemplos de aplicação do Capítulo 6 7
a2) Dimensões e área bruta da seção transversal
27,7 mm
G
Ag = 12,51 cm
2
101,6 mm
6,35 mm
a3) Escoamento da seção bruta:
,
1
N
A f
t Rd
g y
a
=
γ
12,51 × 34,5
1,10,
Nt Rd = = 392,36 kN 
a4) Ruptura da seção líquida
,
2
N
A f
t Rd
e u
a
=
γ
Ae = Ct An
Para o cálculo da área líquida An, como a furação não tem padrão uniforme, deve-se rebater a cantoneira segundo 
a linha do esqueleto, conforme se mostra a seguir:
N
101,6 - 50 - 30 = 21,6 mm
50 mm
101,6 - 60 = 41,6 mm
30 + 60 - 6,35 = 83,65 mm
2 x 101,6 - 6,35 = 196,85 mm
50 50 50
O diâmetro dos furos é:
dh = 16 + 3,5 = 19,5 mm = 1,95 cm
As possíveis linhas de ruptura, todas passando pelo furo B, com as suas larguras líquidas, são:
•	 A-B-C ⇒ bn = 19,685 – 1,95 = 17,735 cm
•	 A-B-F-G ⇒ 19,685 2 1,95
4 × 7,865
16,580 cm
52bn ( )= − + =
•	 D-E-B-C ⇒ 19,685 2 1,95
4 × 5
17,035 cm
52bn ( )= − + =
•	 D-E-B-F-G ⇒ 19,685 3 1,95 15,880 cmbn ( )= − + + =4 × 5
52
4 × 7,865
52
M06_FAKU__Sala_Virtual.indd 7 16/11/16 5:12 PM
8 Dimensionamento de elementos estruturais de aço e mistos de aço e concreto~~
A
C
D
G
BE
F
A
C
D
G
BE
F
A
C
D
G
BE
F
A
C
D
G
BE
F
O menor valor deve ser usado como largura líquida, ou seja, bn = 15,88 cm. Assim:
An = bn t = 15,88 × 0,635 = 10,08 cm
2
Como a ligação é feita pelas duas abas, Ct = 1,00, e:
Ae = 1,00 × 10,08 = 10,08 cm
2
Finalmente:
10,08 × 45
1,35
336 kN,Nt Rd = =
a4) Conclusão
Nt,Rd = 336 kN (o menor valor obtido com base nos dois estados-limites últimos).
b) Ligação soldada por apenas uma aba
b1) Escoamento da seção bruta:
Nt,Rd = 392,36 kN (igual ao da ligação parafusada)
b2) Ruptura da seção líquida:
1,35,
N
A f
t Rd
e u=
 Ae = Ct An
 An = Ag = 12,51 cm
2
1 1
2,77
15
0,82C
e
t
c
c
= − = − =
�
 (valor entre 0,60 e 0,90)
Logo:
Ae = 0,82 × 12,51 = 10,26 cm
2
e
10,26 × 45 
1,35
= 342 kN,Nt Rd =
b3) Conclusão
Nt,Rd = 342 kN (o menor valor obtido com base nos dois estados-limites últimos).
6.10.9 Verificação de banzo de treliça em perfil T 
Na treliça a seguir, submetida à força de cálculo gravitacional Pd indicada, os banzos AB e BCD são constituídos 
por um perfil T originado do corte de um perfil W 250 x 73 ao longo de seu eixo longitudinal, fabricado em aço com 
resistências ao escoamento e à ruptura de 345 MPa e 450 MPa, respectivamente. Sabendo-se que o nó B tem contenção 
contra deslocamento fora do plano da treliça, será verificado qual o valor máximo da distância s para que a linha de 
ruptura predominante passe por quatro furos e, com esse valor, se o banzo axialmente tracionado está adequadamente 
dimensionado (notar, pelo detalhe da furação, que apenas a mesa do T é conectada).
ec = 2,77 cm
G
M06_FAKU__Sala_Virtual.indd 8 16/11/16 5:12 PM
 Resolução dos exemplos de aplicação do Capítulo 6 9
40 mm
80 mm
40 mm
s s s
A
x
y
y
Seção transversal
do banzo AB
Parafusos com
diâmetro de 19 mm (3/4")
x
D
Mesa do T
x
y
y
Seção transversal
do banzo BCD
x
2 m
2 m
B
C x
x
y
y
D
A
Pd = 364 kN
3 m 3 m
a) Dimensões e propriedades geométricas relevantes da seção transversal
O perfil T originado do perfil W 250 x 73 possui as seguintes dimensões e propriedades geométricas principais:
112,3 mm
y1
8,6 mm
14,2 mm
254 mm
xx
y
y
= =
92,7
2
46,35 cm2Ag (metade da área total do W 250 x 73)
25,4 × 
25,4 × 1,42 + 0,86 × 11,23
1,42
2
+ 0,86 × 11,23 1,42 + 11,23
2
1
2
y =








2,05 cm=
25,4 1,42
12
25,4 1,42 2,05
1,42
2
0,86 11,233
12
3 2
I x += +× –
× ×







11,23
2
1,42 2,05 412,32 cm4
2
+ –+ 0,86 × 11,23 







 =
= =
412,32
46,34
2,98 cmrx
= =
3.880
2
1940 cm4I y (metade do momento de inércia em relação ao eixo y do W 250 x 73)
6,47 cmry = (igual ao raio de giração em relação ao eixo y do W 250 x 73)
b) Força axial solicitante de cálculo nos banzos AB e BCD
ΣFH(B) = 0 ⇒ NAB cos α + NBCD cos α = 0 ⇒ NAB = –NBCD
M06_FAKU__Sala_Virtual.indd 9 16/11/16 5:12 PM
10 Dimensionamento de elementos estruturais de aço e mistos de aço e concreto~~
ΣFV(B) = 0 ⇒ 364 – NAB sen α + NBCD sen α = 0
LAB = LBCD = 2 6 6,32 m
2 2+ = ⇒ sen α = 
2
6,32
0,316=
NAB = 
364
2 sen α
364
2 × 0,316
575,95 kN= = ⇒ NBCD = –575,95 kN
Portanto, AB é o banzo tracionado, e a força axial de tração solicitante de cálculo nesse banzo, 
Nt,Sd, é igual a 575,95 kN.
c) Valor máximo da distância s para que a linha de ruptura passe por quatro furos
40 mm
80 mm
40 mm
s s s
A
BE
F
C
D
São duas as linhas de ruptura possíveis: A-B-C-D e A-B-E-F-C-D. Tendo em vista que dh = 19 + 3,5 = 22,5 mm = 2,25 cm, 
as larguras líquidas, considerando apenas a mesa, são:
•	 para A-B-C-D: bn,A-B-C-D = 25,4 – 2(2,25) = 20,9 cm
•	 para A-B-E-F-C-D: 
 
= +25,4 4 2,25 2
4 × 4
16,4
8
2
bn, A-B-E-F-C-D
s 2s( )= − +








 
Igualando-se as duas larguras líquidas, chega-se à s = 6,00 cm.
d) Escoamento da seção bruta
kN575,95 46,35 × 34,5
1,10
1.454 kN, ,
1
N N
A f
t Sd t Rd
g y
a
≤ =
γ
⇒ < = ⇒ Atende!
e) Ruptura da seção líquida
, ,
2
N N
A f
t Sd t Rd
e u
a
≤ =
γ
16,4
8
16,4
6
8
20,9 cm
2 2
bn, A-B-E-F-C-D
s
= + = + = (igual ao valor de bn,A-B-C-D)
An = 20,9 × 1,42 + 11,23 × 0,86 = 39,34 cm
2
ec = y1 = 2,05 cm
1 1= −
2,05
2 × 6,00 0,83C
e
t
c
c
= − =
�
Ae = 0,83 × 39,34 = 32,65 cm
2
α
α
Pd = 364 kN
NAB
NBCD
M06_FAKU__Sala_Virtual.indd 10 16/11/16 5:12 PM
 Resolução dos exemplos de aplicação do Capítulo 6 11
N N= < = = kN575,95 32,65 × 45
1,35
1.088 kN ⇒ Atende!, ,t Sd t Rd
f) Esbeltez
t = < 300
max min
L
r
L
r
AB








rmin = rx = 2,98 cm
= =
632
2,98
212,08 300
L
r
AB
x
< ⇒ Atende!
6.10.10 Verificação de contraventamento em perfil H com recorte na ligação
As barras do contraventamento em Δ mostrado a se-
guir possuem comprimento de 5 m, e o perfil usado foi 
W 200 x 46,1, em aço ASTM A572 – Grau 50. Agora, pro-
cede-se à verificação da barra tracionada desse contraventa-
mento sabendo-se que a força axial de tração solicitante de 
cálculo é igual a 700 kN. O perfil é parafusado à chapa de nó 
pela alma, e, para tal, as partes das mesas situadas de um dos 
lados da alma foram eliminadas. Foram usadas duas linhas de 
parafusos na direção da força axial, cada uma com três para-
fusos de diâmetro de 19 mm (3/4"), distanciados, eixo a eixo, 
60 mm entre si.
a) Aço estrutural
ASTM A572 – Grau 50 ⇒ fy = 345 MPa = 34,5 kN/cm
2; 
fu = 450 MPa = 45,0 kN/cm
2
b) Dimensões e propriedades geométricas relevantes da seção transversal doperfil W 200 x 46,1
203
7,2
xx
y
y
11,0
203
Ag = 58,6 cm
2
rx = 8,81 cm
ry = 5,12 cm
c) Escoamento da seção bruta
700 kN
58,6 34,5
1,10
1.838 kN ⇒ Atende!, ,
1
N N
A f
t Sd t Rd
g y
a
≤ =
γ
⇒ <
×
=
M06_FAKU__Sala_Virtual.indd 11 16/11/16 5:12 PM
12 Dimensionamento de elementos estruturais de aço e mistos de aço e concreto~~
d) Ruptura da seção líquida
N
2
A f
t,Rd
e u
a
=
γ
Ae = Ct An
dh = 19 + 3,5 = 22,5 mm = 2,25 cm
No cálculo da área líquida, deve-se considerar a eliminação de uma parte das mesas, 
que transforma a seção transversal em U. Logo:
Ag = 2 ×10,51 × 1,1 + (20,3 – 2 × 1,1) 0,72 = 36,15 cm
2
An = 36,15 – 2 × 2,25 × 0,72 = 32,91 cm
2
− +0,7220,3 × +0,72
2
2 10,51 0,72 1,1 10,51 0,72
2
36,15
3,49 cm
2
ec
( )
=
−







= 
lc = 2 × 6 = 12 cm
1 1
3,49
12
0,71C
e
t
c
c
= − = − =
�
 (valor entre 0,60 e 0,90)
Ae = 0,71 × 32,91 = 23,37 cm
2
N N= <kN700
23,37 × 45
1,35
= 779 kN ⇒ Atende!, ,t Sd t Rd =
e) Esbeltez
= ≤ 300
máx min
L
r
L
r
t








rmin = ry = 5,12 cm
500
5,12
97,66
min
L
r
= = < 300 ⇒ Atende!
6.10.12 Verificação de barra redonda rosqueada de treliça
As treliças mostradas a seguir estão distanciadas entre si por 6 m, têm vão de 15 m e altura de 1,5 m, e suportam 
a cobertura de uma área de eventos. 
Eletroduto Barras redondas 
rosqueadas
Duto de ar- 
-condicionado
Dutos de
ar-condicionado
Barras redondas
rosqueadas 
203
ec
7,2
11,0
203 - 203/2 + 7,2/2 = 105,1 mm
M06_FAKU__Sala_Virtual.indd 12 16/11/16 5:12 PM
 Resolução dos exemplos de aplicação do Capítulo 6 13
Previu-se uma sobrecarga de cobertura de 0,25 kN/m2 e considerou-se, de modo aproximado, o peso próprio das te-
lhas (do tipo francesas), das terças, dos aparatos de iluminação e das próprias treliças como uma carga uniformemente 
distribuída no nível da cobertura de 0,75 kN/m2. Cada um dos dois dutos de ar-condicionado que se apoiam nos nós 
internos do banzo inferior, por sua vez, possui peso próprio de 0,30 kN/m. 
O trecho central do banzo inferior das treliças, cujo comprimento é de 6 m, foi constituído, por imposição arquite-
tônica, por duas barras redondas rosqueadas. Será verificado se essas barras, que têm diâmetro de 22,23 mm e foram 
produzidas com aço ASTM A36, são adequadas para uso normal da edificação. Para tanto, serão consideradas, por 
simplicidade, as ações permanentes agrupadas.
a) Aço estrutural
ASTM A36 ⇒ fy = 250 MPa = 25 kN/cm
2; fu = 400 MPa = 40 kN/cm
2
b) Força axial de tração solicitante de cálculo nas barras redondas rosqueadas
A carga permanente e a sobrecarga provocam tração nas barras redondas rosqueadas (barra BC da treliça). Essas 
ações, em valores de cálculo, estão mostradas a seguir, nas treliças internas, que são as mais solicitadas:
15 m
4,5 m 4,5 m6 m
qd
E
Pd Pd
1,5 m
VDVA
D
A
B C
• Carga permanente e sobrecarga na cobertura:
qd = (1,4 x 0,75 + 1,5 x 0,25)6 = 8,55 kN/m
• Carga permanente do ar-condicionado:
Pd = 1,4 x 1,8 = 2,52 kN
 
As reações de apoio, VA e VD, em valores de cálculo, são:
8,55 × 15 + 2 × 2,52
2
66,65 kN, ,V VA d D d= = =
Na treliça sob ação das cargas de cálculo, substituindo a barra BC (barras redondas) pela força axial solicitante 
de cálculo correspondente e estabelecendo o equilíbrio de momentos da parte da treliça ABE em relação ao nó E 
(Método das Seções), tem-se:
15 m
4,5 m
66,65 kN
NBC,Sd NBC,Sd
66,65 kN
4,5 m6 m
8,55 kN/m
E
2,52 kN 2,52 kN
1,5 m
D
A
B C
NBC,Sd = 167,90kN 
ΣM(E) = 0 ⇒ 66,65 × 7,5 − 2,52 × 3 − 8,55 × 7,5
2
− 1,5NBC,Sd = 0 2
=NBC Sd
167,90
2
= 83,95kN (em cada uma das duas barras), ,1
c) Escoamento da seção bruta
Sabe-se que cada barra redonda tem diâmetro comercial de 22,23 mm (2,223 cm), o que significa que possui área 
bruta (Ag) de 3,88 cm
2, conforme a Tabela A.6 do Apêndice A. Logo, tem-se:
kN83,95
3,88 × 25
1,10
88,18 kN ⇒ Atende!, ,1 ,
1
N N
A f
t Sd t Rd
g y
a
≤ =
γ
⇒ < = 
M06_FAKU__Sala_Virtual.indd 13 16/11/16 5:12 PM
14 Dimensionamento de elementos estruturais de aço e mistos de aço e concreto~~
d) Ruptura da parte rosqueada
0,75
1,35, ,1 , 2
N N
A f Ag fu
t Sd t Rd
e u
a
≤ =
γ
=
N N= < = =kN83,95
0,75
1,35
0,75 × 3,88 × 40
1,35
= 86,22 kN ⇒ Atende!, ,1 ,
A f
t Sd t Rd
g u
e) Conclusão
As duas barras redondas rosqueadas com diâmetro de 22,23 mm são adequadas para compor a barra BC da treliça 
de cobertura avaliada. 
Destaca-se aqui que existe ainda a ação do vento, que causa sucção na cobertura. No caso em foco, tal ação possui 
intensidade muito inferior à da carga permanente, o que impede que as barras redondas sejam submetidas à compres-
são (barras redondas não são utilizadas sob compressão, pois sua capacidade resistente a esse esforço é muito redu-
zida em decorrência de instabilidade global).
M06_FAKU__Sala_Virtual.indd 14 16/11/16 5:12 PM

Outros materiais