Prévia do material em texto
Equações Diferenciais - 20201.A Avaliação On-Line 4 (AOL 4) – 1. Pergunta 1 /1 O Wronskiano é utilizado para determinar se um conjunto de funções diferenciáveis são linearmente dependentes ou independentes, em um dado intervalo. Caso o Wronskiano seja diferente de zero em algum ponto do intervalo, as funções são linearmente independentes. Determine a matriz do teorema e a dependência linear das seguintes equações: f1(x) = sen2x e f2(x) = 1 – cos2x Considerando essas informações e o conteúdo estudado sobre o teorema Wronskiano, é correto afirmar que: Correta a matriz é [sen2x, 1 – cos2x] [2.senx.cosx 2.sen2x] linearmente dependente. 2. Pergunta 2 /1 Em cálculo, em específico no ramo de equações diferenciais, um problema de valor sobre o contorno é um sistema de equações diferenciais contendo um conjunto de restrições adicionais, as chamadas condições de contorno ou condições de fronteira. Ache o problema inicial dada a função: Y = ¼ sen(4x) Y(0) = 0 Y’(0) = 1 Considerando essas informações e o conteúdo estudado sobre problema de valor inicial, é correto afirmar que: Correta (E) a equação diferencial correspondente é y” + 16y = 0. Resposta correta 3. Pergunta 3 /1 De uma maneira geral, podemos afirmar que a independência linear é quando nenhum elemento de um conjunto for combinação linear de outro, ou seja, pode-se afirmar que um subconjunto é linearmente dependente se, e somente se, pelo menos um elemento do conjunto é combinação linear dos demais. Determine a matriz do teorema e a dependência linear das seguintes equações: f1(x) = ex f2(x) = xex f3(x) = x2.ex Considerando essas informações e o conteúdo estudado sobre o teorema Wronskiano, é correto afirmar que: Correta 1. a matriz é: [ex xex x2.ex ] [ex xex + ex x2.ex + 2xex ] [ex xex + 2ex x2.ex + 4xex + 2ex] linearmente independente. 4. Pergunta 4 /1 Uma equação diferencial ordinária envolve derivadas de uma função de uma só variável independente, enquanto as equações diferenciais parciais de uma função de mais de uma variável independente, sendo o termo diferencial em comum, referente às derivadas ou diferenciais de uma função desconhecida. Considerando o texto apresentado e o conteúdo estudado sobre equações diferenciais ordinárias não homogêneas, dada a equação y” + 9y = 27, é correto afirmar que uma solução particular que admita é: Correta (C) yp = 3 5. Pergunta 5 /1 Uma solução particular para uma equação homogênea pode ser a soma de uma função complementar com qualquer outra solução particular, como, por exemplo, a soma de uma combinação linear com qualquer outra solução particular, ou seja, o resultado pode ser dado como: y = função complementar + qualquer outra solução particular. Dada que a solução geral para a equação não homogênea a seguir é y = c1.ex + c2.e2x + c3.e3x, por substituição, determine sua solução particular e apresente a solução geral. Considerando essas informações e o conteúdo estudado sobre equações não homogêneas, é correto afirmar que a solução geral para y’’’ – 6y’’ + 11y’ – 6y = 0 é: Correta (B) y = y = c1.ex + c2.e2x + c3.e3x – 11/12 – 1/2x. 6. Pergunta 6 /1 Dadas as equações dependentes linearmente no intervalo [0, ∞], determine qual função mantém a dependência do conjunto de funções a seguir: f1(x) = (x)1/2 + 5 f2(x) = -1.[(x)1/2 + 5x]. Considerando essas informações e o conteúdo estudado sobre dependência linear, é correto afirmar que: Correta (C) a função que mantém a série dependente é 5 [x -1]. 7. Pergunta 7 /1 Equações diferenciais envolvem derivadas de uma função desconhecida. Já a equação Diferencial Ordinária (EDO) envolve especificamente as derivadas relativas a uma única variável independente, por vezes representando o tempo. Ache o problema inicial dada a função: Y = sen(4x) Y(0) = 0 Y(π/2) = 0 Considerando essas informações e o conteúdo estudado sobre problema de valor inicial, é correto afirmar que: Correta a equação diferencial corresponde a y” + 16y = 0. Resposta correta 8. Pergunta 8 /1 Uma equação não homogênea é aquela em que a função g(t) na equação: y” + p(t)y’ + q(t)y = g(t) não é nula. Qualquer função denominada yp, que satisfaça a equação acima é tida como uma solução particular da equação não homogênea. Considerando o texto apresentado e o conteúdo estudado sobre equações não homogêneas, dada a equação y” + 9y = 27, é correto afirmar que a solução particular que admite a equação é: Correta (B) yp = 3 Mostrar outras opções 9. Pergunta 9 /1 É possível calcular o determinante de qualquer matriz, desde que a mesma seja quadrada, ou seja, que o número de linhas corresponda ao número de colunas (ou seja, uma matriz de ordem n x n). Seu determinante é dado pela subtração entre o somatório do produto dos termos da diagonal principal e do somatório do produto dos termos da diagonal secundária. Determine a matriz do teorema e a dependência linear das seguintes equações: f1(x) = eax cos(bx) e f2(x) = eaxsen(bx). Considerando essas informações e o conteúdo estudado sobre o teorema Wronskiano, é correto afirmar que: D a matriz é [eax cos(bx) eaxsen(bx)] [-b eaxsen(bx) + a.eax cos(bx) b.eax cos(bx) + a. eaxsen(bx)] linearmente independente. Resposta correta 10. Pergunta 10 /1 Uma equação linear homogênea é uma equação que possui os termos independentes iguais a zero, por exemplo, 4x + 8y - z = 0 é uma equação homogênea, portanto, podemos concluir que um sistema linear será considerado homogêneo se todas as suas equações tiverem os seus termos independentes iguais a zero. Considerando o texto apresentado e o conteúdo estudado sobre equação linear homogênea, dada a função y = x2, é correto afirmar que a equação diferencial linear homogênea que admite tal solução é: Correta (C) igual a x2y” – 3xy’ + 4y...