Buscar

apostila-pratica orgânica

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 53 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 53 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 53 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

INSTITUTO FEDERAL DE EDUCAÇÃO,CIÊNCIAS 
E TECNOLOGIA DO PIAUÍ 
 
 
 
 
 
 
 
Química Orgânica Experimental 
 
 
 
 
 
 
 
 
 
 
 
 
 
Prof. MSc. Francisco das Chagas de Melo Brito 
 
 
 
 
 
2019/2 
 2 
 
 
Relação das Práticas – 2o Período/2019 
 
1) Segurança em Laboratórios Químicos 03 
2) Equipamentos Básicos de Laboratório 06 
3) Ponto de Fusão 08 
4) Solubilidade 10 
5) Recristalização 13 
6) Destilação Simples 15 
7) Destilação por Arraste a Vapor 16 
8) Extração do produto Natural Lapachol 18 
9) Separação de Pigmentos por Extração 20 
10) Separação de Pigmentos de Folhas Verdes por Cromatografia 
em Camada Delgada de Sílica Gel (CCD) 
22 
11) Separação de Pigmentos Foliares por cromatografia em Papel 24 
12) Separação de Pigmentos Foliares por Cromatografia no Giz 25 
13) Cromatografia em coluna 27 
14) Extração por Solventes Quimicamente Ativos 29 
15) Extração do LCC 31 
16) Extração do ÁCIDO LAURICO 33 
17) Propriedades Físicas e Químicas dos ALCANOS E ALCENOS 35 
18) Caracterização de Grupos Funcionais 37 
19) Propriedades do ÁLCOOL ETÍLICO 39 
20) Propriedades dos Glicídios 41 
21) Síntese da ASPIRINA 43 
22) Preparação da ACETANILIDA 45 
23) Análise dos Espectros de I.V. 47 
24) Preparação e Propriedades dos SABÕES 48 
25) Preparação do CICLO-HEXENO 50 
26) Preparação do ACETATO DE BUTILA 52 
27) Preparação do CLORETO DE T-BUTILA 53 
 
 
 3 
AULA N
O
 1 
SEGURANÇA EM LABORATÓRIOS QUÍMICOS 
 
RISCOS MAIS COMUNS: 
 Uso de substâncias TÓXICAS, CORROSIVAS, INFLAMÁVEIS, EXPLOSIVAS, 
VOLÁTEIS, ETC... 
 Manuseio de material de vidro; 
 Trabalho a temperaturas elevadas; 
 Trabalho a pressões diferentes da atmosférica; 
 Uso de fogo; 
 Uso de eletricidade. 
 
RISCOS QUÍMICOS: 
1- Formas de Agressão por Produtos Químicos: 
 Inalação 
 Absorção cutânea 
 Ingestão 
 
2- Limites de Tolerância: 
 
 A ação e efeito dos contaminantes dependem de fatores como: 
 Tempo de exposição; 
 Concentração e caracteristicas físico-químicas do produto; 
 Suscetibilidade pessoal; 
 E outras... 
 
3- Medidas Básicas de Segurança: 
 
 A- Medidas relativas às instalações 
 B- Medidas relativas às operações específicas 
 C- Medidas relativas ao pessoal 
 
A- MEDIDAS RELATIVAS ÀS INSTALAÇÕES: 
 
 LABORATÓRIO: Localização 
 Instalações elétricas e hidráulicas 
 Tubulações para gases 
 Capelas 
 Armazenagem de produtos 
  TABELAS 
 
 PREVINIR E CONTORNAR EMERGÊNCIAS: 
 Proteção contra incêndios 
 Chuveiros de emergência 
 Lavadores de olhos 
 Sinalização de segurança: Cores adequadas, cartazes, placas, etc... 
 
 
 
 4 
B- MEDIDAS RELATIVAS ÀS OPERAÇÕES ESPECÍFICAS: 
 
 Manuseio de produtos químicos: Pesquisar propriedades químicas, físicas e 
toxicológicas (FICHAS E TABELAS) 
 Rotulagem 
 Operações envolvendo produtos voláteis e tóxicos 
 Operações com vidrarias 
 Despejos de resíduos 
 
C- MEDIDAS RELATIVAS AO PESSOAL: 
 
 Uso de equipamentos de proteção individual (EPI): 
 Avental 
 Protetores faciais 
 Óculos 
 Máscaras para gases, etc... 
 Luvas 
 
 Treinamentos periódicos 
 Normas pessoais de segurança. 
 
ACIDENTES MAIS COMUNS EM LABORATÓRIOS E PRIMEIROS SOCORROS 
 
QUEIMADURAS 
 Superficiais: quando atingem algumas camadas da pele. 
 Profundas: quando há destruição total da pele. 
 
A) QUEIMADURAS TÉRMICAS - causadas por calor seco (chama e objetos 
aquecidos) 
A1) Tratamento para queimaduras leves - pomada picrato de 
butesina, paraqueimol, furacim solução, etc. 
 
A2) Tratamento para queimaduras graves - elas devem ser cobertas 
com gaze esterilizada umedecida com solução aquosa de 
bicarbonato de sódio a 1%, ou soro fisiológico, encaminhar logo à 
assistência médica. 
 
B) QUEIMADURAS QUÍMICAS - causadas por ácidos, álcalis, fenol, etc. 
 
B1) Por ácidos: lavar imediatamente o local com água em abundância. 
Em seguida, lavar com solução de bicarbonato de sódio a 1% e, 
novamente com água. 
B2) Por álcalis: lavar a região atingida imediatamente com água. 
Tratar com solução de ácido acético a 1% e, novamente com 
água . 
B3) Por fenol: lavar com álcool absoluto e, depois com sabão e água. 
 
ATENÇÀO: Não retire corpos estranhos ou graxas das lesões - Não fure as 
bolhas existentes. 
Não toque com as mãos a área atingida. - Procure um médico com brevidade. 
 5 
C) QUEIMADURAS NOS OLHOS 
Lavar os olhos com água em abundância ou, se possível, com soro 
fisiológico, durante vários minutos, e em seguida aplicar gazes 
esterilizada embebida com soro fisiológico, mantendo a compressa, até 
consulta a um médico. 
 
ENVENENAMENTO POR VIA ORAL 
 
A droga não chegou a ser engolida. Deve-se cuspir imediatamente e lavar a boca com 
muita água. Levar o acidentado para respirar ar puro. 
A droga chegou a ser engolida. Deve-se chamar um médico imediatamente. Dar por via 
oral um antídoto, de acordo com a natureza do veneno. 
 
INTOXICAÇÃO POR VIA RESPIRATÓRIA 
 
Retirar o acidentado para um ambiente arejado, deixando-o descansar. 
Dar água fresca. Se recomendado, dar o antídoto adequado. 
 
 ATENÇÃO: "A CALMA E O BOM SENSO DO QUÍMICO SÃO AS MELHORES 
PROTEÇÕES CONTRA ACIDENTES NO LABORATÓRIO". 
 
 
BIBLIOGRAFIA: 
. 
GONÇALVES, D;WAL, E; ALMEIDA, R.R. Química Orgânica Experimental. São Paulo: 
MacGraw-Hill, 1988. 269p. 
 
SAVARIZ, M. Manual de Produtos Perigosos: Emergência e Transporte. 2 ed. Porto Alegre: 
Sagra - DC Luzzatto. 1994. 264p. 
 
SCHVARTSMAN, S. Produtos Químicos de Uso Domiciliar: Segurança e Riscos 
Toxicológicos 
 2ed. São Paulo: ALMED, 1988. 182p. 
 
SEGURANÇA E SAÚDE NO TRABALHO. 8ed. São Paulo: IOB, 1997.360p. 
 
STELLMAN, J.M.; DAUM. S.M. Trabalho e Saúde na Industria II : Riscos Físicos e Químicos 
e Prevenção de 
 Acidentes. 1ed. São Paulo: E.P.U. e EDUSP, 1975. 148p. 
 
 
 
 
 
 
 
 6 
AULA N
O
 2 
EQUIPAMENTOS BÁSICOS DE LABORATÓRIO 
 
OBJETIVOS 
 Familiarizar o aluno com o equipamento de uso mais freqüente em laboratório. 
 Desenvolver no aluno habilidades para o manuseio e a conservação de 
equipamentos de uso rotineiros, em laboratório. 
 
PROCEDIMENTO: 
 Identifique cada um dos materiais de sua bancada indicando (se houver) 
capacidade e utilidade. 
 Descreva as propriedades dos reagentes encontrados no laboratório indicando: cor, 
estado físico, ponto de fusão (ou ebulição), peso molecular e estrutura. 
 
A) MATERIAL DE VIDRO 
 
 Tubo de ensaio  Vidro de relógio 
 Tubo capilar  Tubo de vidro 
 Termômetro  Junta de vidro esmerilhado 
 Tubo de Thiele  Balão de destilação 
 2- Pipeta volumétrica  Proveta 
 Pipeta  1- Pipeta graduada 
 Kitassato  Pesa filtro 
 Funil  Funil de separação 
 Frasco conta-gotas  Frasco para reagentes 
 Dessecador  Erlenmeyer 
 Cálice graduado  Condensador 
 Balão de fundo redondo  Balão Kjeldahl 
 Bureta  Balão de fundo chato ou de Florence 
 Béquer  Bastão de vidro 
 Balão volumétrico 
 
B) MATERIAL DE PORCELANA 
 
 Cadinho  Funil de Buchner 
 Cápsula  Triângulo 
 Gral e pistilo 
 
C) OUTROS MATERIAIS 
 
 Suporte universal  Anel de ferro 
 Bico de gás (Bunsen)  Espátula 
 Escova para lavagem ou Cepilho  Furador de rolhas 
 Tela de amianto  Trompa 
 Tripé  Garra Pinças 
 Pêra de borracha  Pisseta 
 
 
 7 
D) EQUIPAMENTOS ROTINEIROS: 
 
 Banho-maria ou banho de água  Chapa elétrica (aquecedora) 
 Manta elétrica  Bomba de vácuo 
 Centrífuga  Agitador magnético 
 Estufa 
 
BIBLIOGRAFIA: 
 
FELICÍSSIMO, A.M.P. et al; Experiências de Química. 1ed. São Paulo: Moderna, 1979, 
241 p. 
GONÇALVES, D.;WAL E.;ALMEIDA R.R.; Química Orgânica 
Experimental.1ed.McGrawHill,1988,269p. 
SOARES, B. G.; Química Orgânica.: Teoria e Técnicas de Preparação, Purificação e 
Identificação de Compostos Orgânicos. 1 ed. Rio de Janeiro: Guanabara, 1988, 
322p. 
VOGEL, A. I.; Química Analítica Qualitativa. 5ed. São Paulo: MestreJou, 1981, 665 p. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8 
AULA N
O
 3 
DETERMINAÇÃO DO PONTO DE FUSÃO 
 
I - MATERIAL E REAGENTES : 
Bico de bunsen Agitador p/ banho Tripé 
Tela de amianto Espátula Base de ferro 
Termômetro -Naftol Tubos capilares 
Tubo de vidro Ácido benzóico Vidro de relógio 
Béquer de 100 mL Mistura de -naftol e ácido benzóico (1:1) 
Rolha de cortiça Óleo nujol ou vaselina 
 
II PROCEDIMENTO EXPERIMENTAL: 
 a) Preparo do tubo capilar: 
 Ligar o bico de bunsen. 
 Aqueçer na chama do bico de bunsen, uma das extremidades do tubo capilar 
fazendo um movimento de rotação nesse tubo, até que apareça um pequeno nódulo 
- NESSE MOMENTO O CAPILAR DEVERÁ ESTAR FECHADO. 
 b) Situação problema: 
 Determinar o ponto de fusão do -naftol, do ácido benzóico e da mistura de 
ácido benzóico e -naftol na proporção 1:1. Resfriar um pouco o banho antes de 
nova determinação. 
 c) Colocação da amostra dentro do tubo capilar: 
 1. Colocar a amostra que se quer determinar o ponto de fusão em um vidro de 
relógio, iniciando com o -naftol. Pulverizar com a espátula. 
 2. Manter o tubo capilar o mais horizontal possível, empurrar sua extremidade 
aberta de encontro à amostra utilizando-se da espátula, para ajudar a acomodar a 
amostra no tubo. 
 3. Tomar um tubo de vidro grande, colocando-o em posição vertical encostando-
o no chão do laboratório. 
 4. Soltar o capilar do extremo superior do tubo de vidro até o chão, com a ponta 
fechada voltada para baixo. REPETIR ESTA OPERAÇÃO ATÉ QUE SE FORME UMA 
CAMADA COMPACTA DA AMOSTRA NO FUNDO DO TUBO CAPILAR 
(aproximadamente 1 cm). 
 d) Determinação do Ponto de Fusão: 
 1. Introduzir um termômetro em rolha furada até a metade do mesmo. 
 2. Prender no termômetro, o tubo capilar que já deverá está com a amostra a ser 
determinada o ponto de fusão, utilizando uma liga, tomando cuidado de deixar a 
amostra o mais perto possível do bulbo do termômetro. 
 3. Adaptar uma garra à base de ferro e fixar o termômetro. 
 4. Encher o béquer de 100 mL até a marca de 70 mL com óleo ou vaselina. . 
 9 
 5. Colocar o agitador do banho de óleo dentro do béquer, e a seguir o 
termômetro com o capilar. A DISTÂNCIA ENTRE O BULBO DO TERMÔMETRO E O 
FUNDO DO BÉQUER DEVE SER DE APROXIMADAMENTE 1 cm. 
 6. Aqueçer lentamente o banho de óleo com bico de bunsen agitando 
constantemente o óleo. Próximo ao ponto de fusão a temperatura do banho deve 
aumentar de 2 a 3 graus por minuto. 
 7. Registrar a temperatura na qual aparece a primeira gota de líquido e a 
temperatura na qual desaparece o restante da porção sólida. Essa faixa de 
temperatura representa o ponto de fusão para a substância pura usada. 
 
IV - QUESTIONÁRIO : 
 1. Que se entende por ponto de fusão? Com que finalidade é usado? 
 2. Procurar na bibliografia indicada o ponto de fusão do -naftol, do ácido 
benzóico. Comparar com os resultados obtidos. 
 3. Por que se recomenda que a determinação do ponto de fusão seja realizada 
inicialmente com o -naftol e não com o ácido benzóico? 
 4. Tendo em vista a estrutura molecular do -naftol, do ácido benzóico, 
apresentar uma explicação para as diferenças de seus pontos de fusão. 
 5. De acordo com o ponto de fusão pesquisado, qual deveria ser a temperatura 
em que o ácido benzóico passaria do estado líquido para o sólido ou seja qual seria o 
ponto de solidificação o ácido benzóico? 
 
V - BIBLIOGRAFIA: 
1. VOGEL, A. I., Química orgânica: análise orgânica qualitativa. 3. ed, Rio de Janeiro, 
Ao Livro Técnico SA, 1981. v. 1. 
2. Phisical Chemistry HANDBOOK, 57 th Edition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 10 
AULA N
O
 4 
SOLUBILIDADE 
 
I. MATERIAL E REAGENTES 
- Éter etílico - Estante com 10 tubos de ensaio 
- Solução de NaHCO3 a 5% - 4 Provetas de 10 mL 
- Solução de NaOH a 5% - 4 Pipetas de 1 mL 
- Solução de HCl a 5% - 3 Pipetas de 5 mL ou 10 mL 
- Ácido fosfórico 85% - Pisseta 
- Ácido sulfúrico concentrado - Espátula 
 
II. PROCEDIMENTO 
 Colocar 0,2 mL de soluto, amostra no 1, em tubo de ensaio limpo e seco. 
Adicionar 3 mL e solvente na ordem indicada pelo esquema, começando com a água. 
Agitar vigorosamente e verificar se foi solúvel pela formação de mistura homogênea no 
primeiro caso e heterogênea no segundo. Se a amostra for solúvel neste solvente 
colocar uma nova quantidade de 0,2 ml do soluto, amostra no 1, em um novo tubo de 
ensaio e adicionar 3 mL de éter. Dependendo da solubilidade no éter, a amostra 
poderá ser enquadrada no grupo  ou  
Observação: Quando a amostra for sólida usar aproximadamente 0,1 g para 3,0 mL do 
solvente. Proceder da mesma maneira com as demais amostras até determinar o grupo 
a que pertencem. As amostras 1, 2, 3 e 4 não tem N e nem S. A amostra 5 tem N e S. 
 
GRUPO I - Compostos Solúveis em água e éter 
Compostos de baixo massa molar, gealmente compostos monofuncionais com cinco 
átomos de carbono ou menos: álcoois, aldeídos, cetonas ácidos, éteres, fenóis, 
anidridos, aminas, nitrilas, fenóis polihidroxilados. 
 
GRUPO II - Compostos solúveis em água, mas insolúveis em éter 
Compostos de massa molar moderada com até seis carbonos e dois ou mais grupos 
polares: glicois, álcoois polihidroxilados, ácidos hidroxilados, aldeídos e cetonas 
polihidroxilados (açúcares), algumas amidas, aminoácidos, compostos di e poliamino, 
amino álcoois, ácidos sulfônicos ácidos sulfínicos e sais. 
 
GRUPO IIIA- Compostos solúveis em solução de hidróxido de sódio a 5% e 
bicarbonato de sódio a 5% 
Ácidos carboxílicos e sulfônicos, geralmente com 10 carbonos ou menos, tribromofenol 
simétrico, 2,4-dinitrofenol e o ácido pícrico. 
 
GRUPO IIIB - Compostos solúveis em solução de NaOH a 5% e insolúveis em solução 
de NaHCO3 a 5%. 
Ácidos, fenóis, imidas, alguns nitroderivados primários e secundários, oximas, 
mercaptanas e tiofenóis, ácidos sulfônicos e sulfínicos, sulfúricos e sulfonamidas, 
algumas cetonas e 3-cetoésteres. 
 
GRUPO IV - Compostos insolúveis em água e solúveis em HCl a 5% 
Aminas primárias, arilalcoilaminas e amidas alifáticas secundárias, aminas alifáticas e 
algumas arilalcoilaminas terciárias, hidrazinas. 
 
 11 
GRUPO VA VB E VI - Incluem compostos neutros que não apresentam enxofre e 
nitrogênio. 
 
GRUPO VA - Compostos neutros, insolúveis em água mas solúveis em ácido sulfúrico 
concentrado e ácido fosfórico a 85% 
Álcoois, aldeídos, metilcetonas e ésteres que tem menos do que nove átomos de 
carbono, lactonas e ésteres. 
 
GRUPO VB - Compostos neutros solúveis em H2SO4 concentrado e insolúveis em 
H3PO4 a 85%. 
Cetonas, ésteres, hidrocarbonetos insaturados. 
 
GRUPO VI - Compostos e insolúveis em água e também em outros solventes chaves. 
Hidrocarbonetos alifáticos saturados, hidrocarbonetos parafínicos cíclicos, 
hidrocarbonetos aromáticos, derivados halogenados destes compostos e ésters 
diarílicos. 
 
GRUPO VII - Compostos insolúveis em água em HCl a 5% e NaOH a 5% 
Compostos neutros que contém enxofre e nitrogênios; halogênios podem também estar 
presentes, nitrocompostos, amidas, nitrilas, aminas, nitroso, azo e hidrazo e outros 
produtos intermediários de redução de nitroderivados, sulfonas sulfonamidas de 
aminas secundárias, sulfetos, e outros compostos contendo enxofre. 
 
III - QUESTIONÁRIO 
1. Qual o significado da expressão “semelhante dissolve semelhantes”? 
2. Benzeno anilina, querosene, não se dissolvem em água. Por outro lado ácido acético 
e etanol se dissolvem. Por que? 
3. Por que a anilina é insolúvel em água e solúvel em solução de HCl a 5%? 
4. O ácido benzóico é solúvel tanto em solução aquosa de NaOH a 5% quanto em 
NaHCO3 a 5% o p-cresol por sua vez é solúvel apenas na HaOH a 5% enquanto que o 
ciclo-hexanol não é solúvel em NaOH, nem em NaHCO3. Como se explicam estes 
fatos? 
5. Que se entende por calor de solução? 
 
IV - BIBLIOGRAFIA 
1. SOLOMONS, T. W. G. Química orgânica. Rio de Janeiro, LTC, 1983. v. 1, 2 e 3. 
2. VOGEL, A. I. Química orgânica: análise orgânica qualitativa. 3 ed.Rio de Janeiro, 
Ao Livro Técnico, S.A. 1981, v. 3. 
 
 
 12 
AMOSTRA
H2O*
Insolúvel Solúvel
Éter*
Solúvel
Grupo I
Insolúvel
 Grupo II
NaHCO3* 5%
InsolúvelSolúvel
NaOH* 5%
Solúvel
Grupo IIIA
Insolúvel
Grupo IIIB
HCl* 5%
Presença
de N e S
Ausência de N e S
H2SO4* conc.
Solúvel
Solúvel
Grupo IV
Insolúvel
Insolúvel
Grupo VI
H3PO4* 85%
Solúvel
Grupo VA
Insolúvel
Grupo VB
Grupo VII
 
 
 
ESQUEMA PARA CLASSIFICAÇÃO DO GRUPO DE SOLUBILIDADE 
 
 
 
ATENÇÃO! Os solventes estão mercados com asteriscos no esquema. O ácido 
sulfúrico e fosfórico são corrosivos, muito cuidado quando usá-los. Não os aspire, 
meça-os com proveta. 
 
 
 
 13 
AULA N
O
 5 
RECRISTALIZAÇÃO 
I - MATERIAIS E REAGENTES 
- Ácido benzóico - Bastão de vidro - Base de ferro 
- Enxofre - Tela de amianto - Tripé de ferro 
- Mistura 1:1 de ácido benzóico e enxofre - Bico de Bunsen - Balança analítica 
- Béquer de 250 e 100 mL - Proveta de 100 mL - Placa de Petri 
- Funil de vidro sem haste - Papel de filtro - Anel de ferro 
- Funil de vidro com haste 
II - PROCEDIMENTO EXPERIMENTAL 
1. Colocar aproximadamente 0,5 g de ácido benzóico em um béquer de l00 mL. 
2. Adicionar aproximadamente 15 mL de água fria e misturar bem. Observar. 
3. Aqueçer a mistura e observar. 
3.1. O ácido benzóico é solúvel em água fria? E em água quente? 
4. Repitir estes 3 ítens, usando enxofre ao invés de ácido benzóico. 
4.1. O enxofre é solúvel em água fria? E em água quente? 
5. Pesar 2 g de uma mistura de enxofre + ácido benzóico (1:1) em um papel 
manteiga e transferir para um béquer de 250 mL. 
6. Adicionar 100 mL de água destilada fria. Misturar bem. 
7. Aqueçer a mistura usando o bico de bunsen agitando-a de quando em quando 
com um bastão de vidro. 
8. Quando começar a ebulição, colocar o funil de vidro sem haste, emborcado 
sobre o béquer. ISSO É FEITO PARA AQUECER O FUNIL. 
8.1. Por que o funil deve ser aquecido? 
9. Enquanto isso, preparar um papel de filtro pregueado, para filtragem da solução 
a quente. Consultar seu professor ou monitor. 
10. Preparar a montagem para filtração. 
11. Colocar o papel de filtro no funil, sem adaptá-lo com água. 
12. Retirar a mistura em ebulição e filtrar imediatamente. 
13. Recolher o filtrado em outro béquer de 250 mL. 
14. Observar que substância ficou retida no papel de filtro. 
15. Após a filtração se completar, deixar o béquer com o filtrado em repouso, 
observar o que acontece quando a solução vai se esfriando, (para acelerar o 
resfriamento colocar na geladeira). 
16. Preparar a montagem para uma nova filtração, desta vez uma filtração simples, 
em funil com haste e sem usar o papel de filtro pregueado. Pesar antes o papel 
de filtro. 
17. Filtrar a mistura com os cristais formados, ítem 15. Lavar com pequena 
quantidade de água fria. 
17.1. Por que se deve usar água fria e em pequena quantidade? 
18. Estender o papel de filtro sobre um placa de petri e secar os cristais na estufa a 
uma temperatura de aproximadamente 100 oC. 
 14 
19. Depois de seco pesar os cristais. 
20. Anotar o peso encontrado e calcular a % de ácido benzóico recuperado. O 
segundo filtratado da etapa 17, tem a denominação de água mãe. A partir dessa 
água-mãe poder-se-á ter mais cristais concentrando-se essa solução por 
evaporação e deixando esfriar. 
III - QUESTIONÁRIO 
1. Que se entende por recristalização? 
2. Descrever todas as etapas de uma recristalização. 
3. A recristalização é uma operação física ou química? Por que? 
4. Citar algumas características que um solvente deve apresentar para que seja 
empregado na recristalização. 
5. Por que é mais indicado que a solução seja esfriada espontaneamente, após 
aquecida? 
6. Citar os métodos usados para acelerar a cristalização de uma determinada 
substância. 
7. Como é possível determinar o grau de pureza de uma substância cristalina? 
8. Procurar no seu ambiente, situações em que processos de purificação são 
utilizados. Descrever esses processos. 
IV. BIBLIOGRAFIA 
01. OHLWILER, O. A., Química inorgânica. São Paulo, Edgard Blucher Ltda. 1971. 
02. VOGEL, A. I., Química orgânica: análise orgânica qualitativa, 3 ed., Rio de 
Janeiro, Ao livro Técnico S.A., 1981. v. 1. 
03. SOARES, G. S.; SOUZA, N. A.; PIRES, D. X., Química orgânica: teoria e 
técnicas de preparação, purificação e identificação de compostos orgânicos, Rio 
de Janeiro, Guanabara S. A. 1988. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15 
AULA N
O
 6 
DESTILAÇÃO SIMPLES 
I. MATERIAL E REAGENTES: 
Manta para balão de 250 mL Balão de 250 mL Termômetro 200o 
Pedrinhas de porcelana Condensador de Liebig Tolueno 
Papel milimetrado Pisseta c/ água Ciclo-hexano 
Proveta de 100 mL Mangueira 
 
II - PROCEDIMENTO: 
 Preparar 150 mL de uma solução de ciclohexano em tolueno*, transferir para um 
balão de 250 mL e adicionar algumas pedras de porcelanas. Montar uma aparelhagem 
para destilação simples e destilar lentamente a solução, de tal modo que a 
velocidade de destilação seja constante e não mais que uma gota do destilado 
por 3 segundos. Recolher o destilado em uma proveta graduada. Anotar a 
temperatura inicial de destilação, quando as primeiras gotas do destilado alcançarem o 
condensador. Continuar a destilação, anotando a temperatura a cada 5 mL do 
destilado. A partir destes dados construir um gráfico, em papel milimetrado, lançando 
na abscissa o volume do destilado após intervalos de 5 mL e, na ordenada, a 
temperatura de destilação observada naquele ponto. Comparar com o gráfico obtido na 
destilação fracionada. 
O melhor gráfico é obtido se cada 15o corresponde a 5 cm de papel milimetrado e 
cada 5 mL corresponde a 1 cm. 
*Observação: Cada grupo trabalhará com uma solução de ciclo-hexano em tolueno 
com concentração molar diferente (10%, 30%, 50% e 70%) 
 
III. QUESTIONÁRIO: 
1. Por que a destilação simples não é usada na separação de líquidos de ponto de 
ebulição relativamente próximos? 
2. Por que no início da destilação, o balão deve estar cheio a dois terços de sua 
capacidade ? 
3. Por que é perigoso aquecer um composto orgânico em um aparelhagem totalmente 
fechada? 
4. Qual a função da pedra de porcelana porosa, pedra pomes ou bolinhas de vidro em 
uma destilação? 
5. Por que a água do condensador deve fluir em sentido contrário à corrente dos 
vapores? 
6. Em que casos se utiliza condensador refregerado a ar. Justifique. 
7. Por que misturas azeotrópicas não podem ser separadas por destilação? 
8. Diferenciar destilação simples de destilação fracionada. 
I. BIBLIOGRAFIA: 
1. SOARES, B.G.; SOUSA, N.A.; PIRES, D.X. Química orgânica: teoria e técnicas de 
preparação, purificação e identificação de compostos orgânicos. Rio de Janeiro, 
Guanabara. 1988. 
2. VOGEL, A.I. Química orgânica: análise orgânica qualitativa. 2. ed. Rio de Janeiro 
Ao Livro Técnico S. A., 1981. V. 1. 
 
 16 
AULA N
O
7 
DESTILAÇÃO POR ARRASTE A VAPOR 
I. MATERIAL E REAGENTES: 
- Balão de 125 250 e 500 mL - Rolhas de cortiça 
- Condensador de Liebig - Tela de amianto 
- Erlenmayer de 125 e 250 mL - Funil 
- Funil de separação de 125 mL - Manta elétrica 
- Flores de camomila ou cascas de laranja - Pedras de porcelana 
- Anel de ferro - Tripé de ferro 
- Bico de Bunsen - Tubos de vidro 
- Furador de rolhas - Algodão 
 
II - PROCEDIMENTO: 
 Transferir 20-40 g de flores de camomila, cravinho, erva doce, canela (pau) ou 
cascas de laranja para um balão de 250 mL, conectado à aparelhagem para destilação 
à vapor. Adicionar água até um terço da capacidade do balão. Colocar pedras de 
porcelana. Aquecer o balão (500 mL) gerador de vapor previamente preparado, 
colocando água até dois terços de sua capacidade e adicionando pedras de porcelana. 
Manter aquecido, com o uso de uma manta, o balão de destilação mesmo depois que 
começar a passar o destilado. Usar chama pequena. Recolher em erlenmeyer a 
mistura destilada. Interromper a destilação quando cessar a extração do óleo essencial 
ou seja, quando destilar somente aágua. Terminada a destilação, tirar a rolha do 
gerador de vapor e desconectar o balão de destilação. Transferir o hidrolato (destilado) 
para um funil de separação e recolher a camada de óleo em frasco tarado. Pesar e 
determinar o rendimento. 
 Observação: Caso não haja formação bem definida da camada de óleo, extrair 
três vezes com diclorometano. Reunir as fase orgânicas em erlenmeyer de 125 mL. 
Adicionar aproximadamente 2 g de sulfato de sódio anidro. Agitar, esperar alguns 
minutos e filtrar utilizando funil com algodão. Recolher o filtrado em balão de fundo 
redondo de 125 mL. Remover o diclorometano em evaporador rotativo, sem aquecer o 
banho. Transferir para frasco tarado. Pesar e determinar o rendimento. 
 
III. QUESTIONÁRIO: 
1. Por que o ponto de ebulição da mistura em uma destilação a vapor é menor do que 
o ponto de ebulição de cada componente puro? 
2. Que propriedades deve ter uma substância para ser “arrastável” por vapor? 
3. Quais as vantagens de uma destilação a vapor? 
4. Quando se deve utilizar a destilação a vapor? 
5. Quais os constituintes principais do óleo essencial obtido neste experimento? 
6. Por que não se deve aquecer o banho durante a remoção do do diclorometano? 
7. Por que o diclorometano é geralmente, o solvente indicado para a extração de óleos 
essenciais de hidrolatos? 
 
IV. BIBLIOGRAFIA: 
1. SOARES, B.G.; SOUSA, N.A. da; PIRES, D.X. Química orgânica: teoria e técnicas 
de preparação purificação e identificação de compostos orgânicos. Rio de Janeiro, 
Guanabara, 1988. 
 17 
2. VOGEL, A. I. Química orgânica: análise orgânica qualitativa. 2. ed., Rio de Janeiro, 
Ao Livro Técnico S. A., 1981. 
3. ALLINGER, N. L.; CAVA, M. P.; JONG, D. C. de; et al. Química orgânica. 2. ed., Rio 
de Janeiro, Guanabara Dois. 1976. 
4. SANTOS, C.A. M; TORRES, K.R.; LEONART, R., Plantas medicinais: herbarium, 
flora et scientia. São Paulo: Ícone. 1988 
5. ROBBERS, J. E.; SPEEDIE, M. K.; TYLER, V. E. Farmacognosia biotecnologia São 
Paulo: Editorial Premier, 1997. 
6. SOUSA, M. P.; MATOS, M. E. O.; MATOS, F.J. A.; MACHADO, M. I. L.; 
CRAVEIRO, A. A. Costituintes químicos ativos de plantas medicinais brasileiras. 
Fortaleza, EUFC, 1991. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 18 
AULA N
O
 8 
EXTRAÇÃO DO PRODUTO NATURAL LAPACHOL 
 
No presente experimento são utilizados materiais de custo baixo, encontrados 
facilmente em lojas comuns. Pode ser executado na sala de aula ou no laboratório. Ao 
realizá-lo, o aluno executa um conjunto de operações importantes na química, 
(extração, filtração, cristalização), as quais, associadas ao conhecimento sobre 
propriedades ácido-base, permitem uma compreensão sobre os processos de extração 
e purificação do lapachol, um produto natural. 
 
1. MATERIAIS E REAGENTES 
Material Local de aquisição 
- Serragem de Ipê Solicitar em qualquer serraria que seja 
reservado o pó da serra. 
- NaOH (soda cáustica) Supermercados 
- HCl (ácido muriático) Lojas de material para piscina, de construção 
ou mesmo supermercados 
- Etanol (álcool etílico) Farmácias ou supermercados 
- Béquer de 1 L Vidro de maionese de 500 g ou jarra de 
plástico de 1 L 
- Papel de filtro Papel de filtro para café ou pano fino 
- Bastão de vidro 
- Funil de vidro 
Nome comercial entre parenteses 
 
II. PROCEDIMENTO EXPERIMENTAL 
Colocar em um béquer de 2 L (jarra de vidro ou plástico) cerca de 100 g de 
serragem de ipê e adicionar 800 mL de uma solução aquosa 1% de hidróxido de sódio. 
Agitar periodicamente a solução, vermelho-intensa, do sal sódico do lapachol, com um 
bastão de vidro ou madeira, por 30 minutos (pode ser deixada também por uma noite). 
Remover os resíduos insolúveis por filtração em papel (filtro de café) ou pano (pano de 
prato ou saco de farinha de trigo). Adicionar lentamente ao filtrado uma solução de HCL 
6 mol/L (pode-se utilizar ácido muriático dissolvido a 50% em água). À medida que o 
ácido vai sendo adicionado, a cor vermelha da solução vai desaparecendo e começa a 
surgir na superfície o lapachol de cor amarelo-opaca. Quando toda a cor vermelha tiver 
desaparecido, pesar um papel de filtro e filtrar novamente a mistura, preferencialmente 
a vácuo, tendo o cuidado de lavar o precipitado com água destilada. Deixar secar o 
material sólido (~1,5 g) ao sol ou em dessecador. Determinar o rendimento bruto do 
lapachol. 
Opicional: recristalizar o lapachol em béquer de 100 mL, com 20 mL de etanol a 
quente, usando banho-maria ou chapa aquecedora. O rendimento é condicionado à 
espécie de ipê utilizada. 
 
Coloque cerca de 0,05 g de lapachol em dois tubos de ensaio. Em um deles 
coloque 1 mL de solução saturada de carbonato de sódio e no outro solução de 
bicarbonato de sódio 5%. Anote suas observações. 
 
 19 
III. QUESTIONÁRIO 
1. Pesquisar a estrutura do lapachol e suas atividades farmacológicas. Em qual dos 
grupos de produtos naturais existentes, o mesmo é classificado? 
2. Escrever a equação da reação do lapachol com o hidróxido de sódio e com 
carbonato de sódio. 
3. O lapachol mudou de cor utilizando-se: 
a) carbonato de sódio (Na2CO3) 
b) bicarbonato de sódio (NaHCO3)? 
4. O sal de sódio do lapachol é uma substância diferente do lapachol? 
5. O lapachol poderia ser usado como um indicador ácido-base. 
6. Citar alguns exemplos de plantas que você conhece e que são usadas pela 
comunidade para fazer chás ou qualquer outra função de interesse social, bem 
como suas respectivas indicações de uso popular. 
 
IV. BIBLIOGRAFIA 
1. FERREIRA, L. G. Revista Brasileira de Farmácia, 1975, set./out., 156. 
2. FERREIRA, V. F. Química Nova na Escola, 1996, 4, 36. 
3. LIMA, V. A.; BATTAGIA. M.; GUARACHO, A.; INFANTE, A. Química Nova na 
Escola, 1995, 1, 34. 
4. BRUNETON, J. Elementos de fitoquímica y de farmacognosia. Zaragoza, Editorial 
Acribia, S.A., 1991. 
5. SOUSA, M. P.; MATOS, M. E. O.; MATOS, F.J. A.; MACHADO, M. I. L.; 
CRAVEIRO, A. A. Costituintes químicos ativos de plantas medicinais brasileiras. 
Fortaleza, EUFC, 1991. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20 
AULA N
o
 9 
SEPARAÇÃO DE PIGMENTOS VEGETAIS POR EXTRAÇÃO 
 
I - INTRODUÇÃO 
 As folhas dos vegetais contêm vários pigmentos, em particular: clorofilas, 
xantofilas e carotenos. Como apresentam estruturas diferentes, diferem em suas 
características de solubilidade e, portanto, podem ser extraídos, simultaneamente, por 
uma mistura de solventes e posteriormente separados entre si mediante a utilização de 
solventes seletivos. 
 
II - MATERIAL E REAGENTES 
- Éter de petróleo - Erlenmeyers de 125 mL (03) 
- Metanol - Erlenmeyers de 50 mL (03) 
- Solução de KOH em MeOH - Funil de Büchner 
- Solução saturada de NaCl - Funil de separação 
- HCl concentrado - Papel de filtro 
- Nitrito de sódio - Kitasato 
- Solução de ácido sulfúrico (1:4) 
 
III - PROCEDIMENTO EXPERIMENTAL 
 Triturar três ou quatro folhas de espinafre, ou de uma planta similar (que não 
esteja seca) em um almofariz e transferir para um erlenmeyer de 125 mL com o auxílio 
de uma mistura de 45 mL de éter de petróleo (p.e. 60 a 70 C ), 5 mL de éter etílico e 
15 mL de metanol. Deixar esta mistura em repouso por 30 minutos e em seguida filtrar, 
lavando-se o resíduo com um pouco da mistura extratora. Recolher o filtrado em um 
funil de separação e lavar com água. OBSERVAÇÃO: Não agitar demasiadamente 
pois poderá formar emulsão. Deixar o funil em repouso para separar a camada aquosa 
inferior. Retirar 10 mL da solução do extrato e adicionar 5 mL de uma solução a 10% 
de hidróxido de potássio em metanol e observar que na interface se forma uma 
camada escura (devida a saponificação das clorofilas  e ). A seguir adicionar 10 mL 
de água, agitar a mistura e anotar as cores da camada metanol-água. Separar a 
camada orgânica superior e lavar com 10 mL de água e em seguida com 10 mL de 
uma solução saturada de cloreto de sódio. Depois extrair a xantofila, adicionando à 
fase orgânica com um volume igual de metanol a 92%. Separara fase metanólica e 
repetir uma vez mais a extração com metanol a 92%. Na fase orgânica precipitam os 
carotenos. Observar as cores de cada um dos extratos. 
 
IV - PROVAS COLORIDAS 
 Xantofila: Adicionar a 4 mL da solução metanólica, 2 mL de ácido clorídrico 
concentrado e observar as mudanças de cores (verde brilhante, a seguir lentamente a 
azul pavão, depois púrpura e finalmente, incolor). 
 Carotenos: Adicionar 2 mL do extrato em éter de petróleo a uma mistura de 0,1 
g de nitrito de sódio e 3 mL de solução de ácido sulfúrico (1:4). 
 
 
 
 
 21 
V - QUESTIONÁRIO 
1. Escrever a reação de saponificação das clorofilas a e. b. 
2. Por que os carotenos permaneceram na fase orgãnica, isto é não foram extraídos 
pelo metanol? 
3. Que são xantofilas ? Dê exemplo. 
4. O que são carotenos? Dê exemplo. 
5. BOBBLIO, F. O. e BOBBLIO, P.A. "Introdução à Química de Alimentos". 1992, 2. 
ed. Livraria Varela, São Paulo. 
 
V - BIBLIOGRAFIA 
1. DOMINGUEZ, J.X.S. Experimentos de química orgânica, Mexico, Ed. Limusa, 1980. 
2. FINLAY,. H.S.; WADDINGTON, D.J. Organic chemistry through experiment. 
London, Mills & Bonn LTDA, 1977. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22 
AULA N
O
 10 
SEPARAÇÃO DE PIGMENTOS DE FOLHAS VERDES POR 
CROMATOGRAFIA EM CAMADA DELGADA DE SÍLICA GEL (CCD) 
 
I - MATERIAIS E REGENTES 
- Éter de petróleo (p.e. 80 –100 oC) ou hexano - Béquer de 50 mL 
- Etanol - Erlenmeyer de 25 mL 
- Acetona - Proveta de 10 mL 
- Clorofórmio - Papel de filtro 
- Sulfato de sódio anidro - Placa de Petri 
- Folhas de espinafre ou chanana - Cubetas ou béquer de 100 mL 
- Almofariz - Placas de sílica gel 
- Pipeta de Pasteur - Capilares 
- Funil de separação de 60 mL 
 
II - PROCEDIMENTO EXPERIMENTAL 
a) Preparação do extrato 
Colocar em um almofariz 5-10 folhas de espinafre e alguns mililitros de uma 
mistura de 2:1 de éter de petróleo (fração de p.e. 80 -100o C) ou hexano e etanol. 
Triturar bem as folhas. Utilizando uma pipeta de Pasteur, e uma bolinha de algodão, 
filtrar o extrato, transferindo-o para um funil de separação. Adicionar, igual volume 
de água. Girar lentamente o funil, pois a agitação brusca pode causar a formação 
de emulsão. Separar e descartar a fase aquosa. Repetir esta operação de lavagem, 
por mais duas vezes, sempre descartando a fase aquosa. Transferir a solução de 
pigmentos para um Erlenmeyer e adicionar aproximadamente 2 g de sulfato de 
sódio anidro. Após alguns minutos, utilizando uma pipeta de Pasteur, decantar a 
solução de pigmentos do sulfato de sódio, transfirindo para um béquer. Se a 
solução não estiver fortemente colorida de verde escuro, concentrar parte do éter 
de petróleo, usando uma suave corrente de ar. 
b) Aplicação da amostra na placa 
Utilizando um capilar, aplicar duas ou três porções da solução de pigmentos 
sobre uma placa de sílica (2,5 x 7,5 cm) a 1,0 cm de uma das extremidades. Evitar 
a difusão da mancha de forma que seu diâmetro não deva ultrapassar a 2 mm 
durante a aplicação da amostra. Deixar o solvente evaporar. 
c) Desenvolvimento do cromatograma 
Preparar uma cuba colocando uma tira de papel de filtro de 4x5 cm e 5 mL de 
clorofórmio. Esperar o tempo suficiente para que ocorra a completa saturação. 
Colocar cuidadosamente a placa na cuba, evitando que o ponto de aplicação da 
amostra mergulhe no solvente. Quando o solvente atingir cerca de 0,5 cm do topo 
da placa, remover a placa e marcar a frente do solvente (linha de chegada da fase 
móvel). Deixar secar ao ar e observar o número de manchas coloridas. Copiar a 
placa com as substâncias separadas (cromatograma), obedecendo fielmente a 
distância entre o ponto de aplicação e a frente do solvente, bem como a distância 
percorrida por cada substância, iniciando pelo ponto de aplicação até o centro de 
maior concentração da mancha. 
 Preparar uma nova cuba usando como eluente uma mistura de CHCl3 e acetona 
(9:1). Esperar que ocorra a saturação completa e efetuar um novo desenvovimento 
da placa, tendo o cuidado de não deixar que a frente do solvente atinja a mancha 
 23 
amarela de maior fator de retenção (Rf), obtida na primeira eluição. Copiar o 
cromatograma. 
Observação: As manchas observadas no cromatograma, são normalmente 
identificadas, em ordem decrescente de valores de Rf, como carotenos (duas 
manchas laranja), as xantofilas (quatro manchas amarela) clorofila a (azul 
esverdeada) e clorofila b (verde). 
 
III - QUESTIONÁRIO 
1. Pesquisar estruturas das clorofilas a e b, xantofilas e carotenos. 
2. Qual é o estado físico da fase móvel e da fase estacionária na cromatografia em 
camada delgada (CCD)? 
3. Qual é o mecanismo de separação da cromatografia em camada delgada de 
sílica gel? 
4. Com que finalidade a solução de pigmentos é lavada com água? 
5. Por que o sulfato de sódio anidro é adicionado à solução de pigmentos? 
6. Que se entende por fator de retenção (Rf)? 
7. Dois componentes A e B, foram separados por CCD. Quando a frente do 
solvente atingiu, 6,5 cm, acima do ponto de aplicação da amostra, a mancha de 
A, estava a 5 cm, a de B a 3,6 cm. Calcular o Rf de A e de B. Desenhar esta 
placa, obedecendo o mais fielmente possível as distâncias fornecidas. O que se 
pode concluir sobre a resolução das manchas, nesta separação? 
 
IV - BIBLIOGRAFIA 
1. ROBERTS, R. M.; GILBERT, J. C.; RODEWALD, L. B. WINGROVE, A. S., 
Modern experimental organic chemistry, 4th ed, Phyladelphia Saunders College 
Publishing,1985. 
2. COLLINS, C. H.; BRAGA, G. L.; BONATO, P. S., Introdução a métodos 
cromatográficos, 6. ed, Campinas, Editora da UNICAMP, 1995. 
3. DEGANI, A. L. G., CASS, Q. B.; VIEIRA, P. C. Química Nova na Escola, 1998. 7, 
21. 
4. BOBBLIO, F. O.; BOBBLIO, P.A. Introdução à química de alimentos. 2. ed. São 
Paulo: Livraria Varela. 1992. 
 
 
 
 
 
 
 
 
 
 
 24 
AULA N
O 
11 
SEPARAÇÃO DE PIGMENTOS FOLIARES POR CROMATOGRAFIA EM 
PAPEL 
 
I - MATERIAIS E REAGENTES 
- Folhas de espinafre ou chanana - Proveta de 100 mL 
- Éter de petróleo (65-110o) ou hexano - Cubeta 
- Álcool metílico - Capilares 
- Papel absorvente - Papel de filtro 
- Almofariz - Pinça 
- Béquer de 250 mL - Tesoura 
 
II - PROCEDIMENTO EXPERIMENTAL 
 Mergulhar cerca de 1g de tecido de folhas frescas (espinafres) durante alguns 
minutos em água a ferver, para matar as células. Retirar o material foliar e absorver o 
excesso de água com papel absorvente. Triturar num almofariz usando várias 
quantidades sucessivas de 10 a 15 ml de uma solução de éter de petróleo e álcool 
metílico a 50:1. Triturar muito bem e depois de juntar a última porção da mistura de éter 
de petróleo e álcool metílico, continue a triturar até restarem apenas alguns mililitros de 
solvente. Decantar cerca de 1 ml deste extrato de pigmento para dentro de uma cubeta 
e introduzir nele uma tira de papel de filtro ligeiramente mais estreita que o diâmetro do 
tubo. Observar o desenvolvimento de bandas coradas. A clorofila b é adsorvida mais 
fortemente do que a clorofila a, os carotenos não são fortemente retidos na fase 
estacionária, acompanham o solvente e concentram-se no topo da tira. A medida que o 
solvente se evaporar marcar a posição das bandas, identificá-las e colar o 
cromatograma no seu relatório. 
 
III - QUESTIONÁRIO 
1. Pesquisar a estrutura das clorofilas e carotenos e justificar a cor observada par 
estas substâncias. 
2. Qual é o estado físico da fase móvel e da fase estacionária na cromatografia em 
papel? 
3. Qual é o mecanismo de separação da cromatografia em papel? 
4. Como se define o Rf (fator ou tempo de retenção)? 
5. Com base na estrutura molecular, explicar a ordem de Rf observada para as 
clorofilas a, b e carotenos na cromatografia em papel. 
 
IV - BIBLIOGRAFIA 
01- COLLINS, C. H.; BRAGA, G. L.; BONATO, P. S., Introdução a métodos 
cromatográficos. 6. ed, Campinas, Editora da UNICAMP,1995. 
02- DEGANI, A. L. G.; CASS, Q. B.; VIEIRA, P. C. Química Nova na Escola, 1998. 
7, 21. 
03- BOBBLIO, F. O.; BOBBLIO, P.A. Introduçãoà química de alimentos, 2. ed. São 
Paulo, Livraria Varela, 1992. 
 
 
 
 25 
AULA N
O 
12 
SEPARAÇÃO DE PIGMENTOS FOLIARES POR CROMATOGRAFIA NO 
GIZ 
 
I. MATERIAIS E REAGENTES: 
Algodão Erlenmeyer Giz 
Argola de ferro Cubeta Clorofórmio 
Haste de ferro Funil comum Éter de petróleo 
Tubo capilar Funil de separação Folhas verdes cortadas 
 
II. PROCEDIMENTO EXPERIMENTAL 
1. Preparação do extrato: Realizar previamente em casa. 
Coletar um punhado (± 10 g) de capim ou folhas de outra planta qualquer e com o 
auxilio de uma tesoura cortar em pequenos pedaços. Colocar em um vidro bem 
limpo. Adicionar um pouco (± 50 mL) de etanol (álcool etílico) ou acetona, tampar e 
deixar por mais 24 horas. 
 
2. Partição do extrato e aplicação da amostra no giz (fase fixa): Realizar no 
laboratório. 
Utilizando um funil de vidro, filtrar sobre o algodão o extrato preparado previamente. 
Colocar o filtrado em um funil de separação, adicionar ± 10 mL de água e em 
seguida 30 ml de éter de petróleo e agitar levemente, deixar em repouso para 
separação das duas fases. Abrir a torneira, separar a fase inferior e descartar. 
Concentrar o extrato de éter de petróleo que deve conter os pigmentos foliares e 
utilizando um tubo capilar aplicar de 5 a 10 gotas deste extrato em uma barra de 
giz, a uma distância de 1 cm da extremidade que apresenta maior diâmetro. As 
gotas devem ser superpostas no mesmo local tendo o cuidado de evitar 
espalhamento após a aplicação de cada gota. 
 
3. Corrida da amostra 
Colocar 5 mL da mistura éter de petróleo-clorofórmio 20% (fase móvel) em uma 
cubeta. Introduzir o giz no interior da cubeta até que a extremidade mais próxima da 
aplicação mergulhe no solvente; evitar no entanto, que o nível do solvente atinja o 
ponto de aplicação da amostra. Quando o solvente atingir aproximadamente 1 cm 
do topo do giz, remover o giz da cubeta e marcar a frente do solvente (linha de 
chegada da fase móvel). 
 
4. Análise do cromatograma 
Analisar o cromatograma, considerando que: 
- A clorofila é azul-esverdeada; 
- o caroteno é alaranjado 
- a xantofila é amarela 
 
4.1 - Medir a distância do ponto de partida até a frente do solvente e a distância 
percorrida por cada substância, medida desde o ponto de aplicação até a 
zona de maior concentração da mancha. 
 
 
 
 26 
4.2 - Calcular o fator de retenção (Rf) de cada pigmento e registrar o 
cromatograma no relatório. 
 
Rf1 = dr1/dm 
 dm = distância percorrida pela fase móvel 
 dr1 = distância percorrida pela substância. 
 
Observação: A distância percorrida pela amostra é medida desde o seu ponto 
de aplicação até o centro da zona de distribuição da mancha, enquanto que para a fase 
móvel se mede até o extremo máximo de seu caminho percorrido. 
III. QUESTIONÁRIO: 
1. O que é cromatograma? 
2. Citar três tipos de cromatografias, indicando a fase fixa e a fase móvel. 
3. Que tipo de cromatografia foi utilizada neste experimento ? 
4. Pelos valores dos Rf, comparar a polaridade da clorofila, da xantofila e do 
caroteno. Relacionar com suas respectivas estruturas. 
 
IV. BIBLIOGRAFIA: 
1. COLLINS, C. H.; BRAGA, G. L.; BONATO, P. S., Introdução a métodos 
cromatográficos. 6. ed , Campinas, Editora da UNICAMP, 1995. 
2. DEGANI, A. L. G.; CASS, Q. B.; VIEIRA, P. C., Química Nova na Escola, 1998. 
7, 25. 
3. BOBBLIO, F. O.; BOBBLIO, P.A. Introdução à química de alimentos. 2. ed. São 
Paulo: Livraria Varela, 1992. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27 
AULA N
0
 13 
CROMATOGRAFIA EM COLUNA 
 
I – MATERIAIS E REAGENTES 
Coluna para cromatografia Etanol 
Alumina em pó Alaranjado de metila 
Pipeta de 5 mL Azul de metileno 
Conta-gotas Água 
Ácido Acético Sílica Gel 
 
II - PROCEDIMENTO EXPERIMENTAL 
 
A) EMPACOTAMENTO DA COLUNA: Prepare uma coluna para cromatografia 
utilizando alumina básica como fase fixa, da seguinte maneira: em um erlenmeyer, 
coloque 15 a 20 g de alumina em clorofórmio (ou diclorometano), até obter uma pasta 
fluida, homogênea e sem bolhas de ar incluídas. Encha a terça parte da coluna 
cromatográfica com o mesmo solvente e derrame, então, a pasta fluida de alumina, de 
modo que ela sedimente aos poucos e de forma homogênea. Caso haja bolhas de ar 
oclusas na coluna, golpeie-a suavemente, de modo a expulsá-las. Controle o nível do 
solvente abrindo ocasionalmente a torneira da coluna. Terminada a preparação, o nível 
de solvente (eluente) deve estar 1 cm acima do topo da coluna de alumina. 
 
B) SEPARAÇÃO DOS COMPONENTES DE UMA MISTURA: Distribua 
homogeneamente sobre o topo da coluna de alumina, com auxílio de uma pipeta ou 
conta-gotas, 1 a 3 mL de uma solução etanólica de alaranjado de metila e azul de 
metileno. Após a adsorção pela coluna, proceda a eluição com etanol, vertendo 
cuidadosamente o solvente pelas paredes internas da coluna, tomando cuidado para 
não causar distúrbios ou agitação na coluna. Ao mesmo tempo, abra a torneira para 
escoar o solvente. 
 Elua todo o azul de metileno com etanol. Elua, primeiro com água, o alaranjado 
de metila retido na coluna e em seguida com uma solução aquosa de ácido acético. 
 Repita o mesmo procedimento acima utilizando sílica gel como fase fixa da 
coluna. Observe que a ordem de eluição se inverte, isto é, o alaranjado de metila sai 
com etanol enquanto o azul de metileno fica retido na coluna. 
 
III - QUESTIONÁRIO 
1- Cite os principais tipos de forças que fazem com que os componentes de uma 
mistura sejam adsorvidos pelas partículas do sólido: 
2- Cite as características do solvente para lavar ou arrastar os compostos adsorvidos 
na coluna cromatográfica: 
3- Fale sobre o princípio básico que envolve a técnica de cromatografia: 
4- Por quê se deve colocar papel filtro na parede da cuba cromatográfica? 
5- Se os componentes da mistura, após a corrida cromatográfica, apresentam manchas 
incolores, qual o processo empregado para visualizar estas manchas na placa 
cromatográfica? 
6- O que é e como é calculado o Rf ? 
7- Quais os usos mais importantes da cromatografia de camada delgada? 
8- A alumina, ou óxido de alumínio, tem ação básica e interage fortemente com 
espécies ácidas; por sua vez, a sílica gel interage com espécies básicas devido a 
 28 
natureza ácida do óxido de silício. Baseado nessas informações, explique o 
comportamento distinto dos dois corantes empregados quando se usa alumina ou sílica 
como fase fixa. A estrutura dos dois produtos está apresentada abaixo: 
 
 
NN
SO3H
NCH3
CH3
Alaranjado
de metila
Azul de Metileno
N
S N
CH3
CH3
N
CH3
CH3 CI
+
 
 
 
IV. BIBLIOGRAFIA: 
1. VOGEL, A.I. Química orgânica: análise orgânica qualitativa. Rio de Janeiro, Ao Livro 
Técnico S. A, 1985. V. 1. 
2. DEGANI, A. L. G.; CASS, Q. B.; Química Nova na Escola, 7, 21, 1998 
3. SOLOMONS, T.W. G., Química orgânica, Rio de Janeiro: LTC, 1983. v. 3. 
4. COLLINS, C. H.; BRAGA, G. L.; BONATO, P.S.; Introdução a Métodos 
Cromatográficos, 6a ed., Ed. UNICAMP, Campinas, 1995. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 29 
AULA N
O 
14 
EXTRAÇÃO POR SOLVENTES QUIMICAMENTE ATIVOS 
 
1. MATERIAIS E REAGENTES: 
- Solução de HCl 10% - Funil de separação de 250 mL 
- Solução de NaHCO3 10% - Funil de Buchner 
- Solução de NaOH 10% e 30% - Funil 
- HCl concentrado - Papel de filtro 
- Sulfato de sódio anidro - Proveta de 50 e 100 mL 
- Xileno - Kitassato 
- -naftol - Trompa d' água 
- Ácido benzóico - Balão de 125 mL 
- Anilina - Bastão de vidro 
- Etiquetas - Pisseta com água destilada 
- Éter etílico - Espátula 
- Diclorometano - Tesoura 
- Erlenmeyer de 125 mL (04) - Frasquinhos para amostra 
- Cubetas para cromatografia - Béquer 
 
II. PROCEDIMENTO EXPERIMENTAL: 
 Pesar 1 g de cada um dos seguintes compostos: xileno, -naftol, ácido benzóico 
e anilina. Juntar os quatro compostos em um erlenmeyer de 125 mL e dissolver em 100 
mL de éter etílico. (CUIDADO: o éter é inflamável). Passar esta solução, que aqui 
denominaremos "solução etérea", para um funil de separação e proceder as extraçõescom solventes conforme as indicações abaixo. A cada adição de um novo solvente 
extrator, observar sempre a localização, no funil de separação, das camadas 
etérea e aquosa. 
1. Extrair a solução etérea com solução de HCl a 10%, três vezes, com porções de 30 
mL. CUIDADO: abrir a torneira do funil após cada agitação. Combinar as frações 
aquosas em erlenmeyer de 125 mL etiquetado e reservar para ser usado 
posteriormente. 
2. Extrair a solução etérea com solução de NaHCO3
 a 10% , três vezes, com porções 
de 30 mL. Combinar as frações aquosas em erlenmeyer de 125 mL etiquetado e 
reserve para ser usado posteriormente. 
3. Extrair a solução etérea com solução de NaOH a 10% , três vezes, com porções de 
30 mL. Combinar as frações aquosas em erlenmeyer de 125 mL etiquetado e 
reservar para ser usado posteriormente. 
4. Lavar a solução etérea do funil de separação com água, secar com Na2SO4, filtrar 
para um balão de 125 mL previamente tarado. Evaporar o éter em evaporador 
rotatório ou banho-maria. 
5. Neutralizar com NaOH 30% a fase aquosa obtida no ítem 1 e extrair com éter 
etílico (3 x 30 mL). Juntar estas fases etéreas e evaporar o solvente em banho-
maria ou em evaporador rotatório. 
6. Neutralizar com HCl concentrado, DEVAGAR e com agitação branda a fase aquosa 
obtida no ítem 2. Recuperar o precipitado por filtração à vácuo. 
 30 
7. Neutralizar com HCl concentrado a fase aquosa obtida no ítem 3. Recuperar o 
precipitado por filtração a vácuo. 
8. Secar todos os compostos sólidos entre papéis de filtro e depois em dessecador à 
vácuo. Pesar todos os compostos e calcular a percentagem de material recuperado. 
9. Efetuar cromatografia em camada delgada (CCD) de sílica da mistura (xileno+ácido 
benzóico+-naftol+anilina) e dos compostos individuais, recuperados da extração). 
Utilizar como eluente diclorometano 100% e como revelador vapores de iodo. 
. 
 OBSERVAÇÃO: Se desejar purificar, o ácido benzóico pode ser recristalizar em 
água e o -naftol em etanol-água ou água. 
 
III. QUESTIONÁRIO: 
1. Em que consiste a extração por solventes quimicamente ativo? 
2. Que composto foi extraído nos itens 1, 2 e 3? Escrever as reações envolvidas em 
cada separação incluindo também, as dos ítens 5, 6 e 7. 
3. Que composto foi recuperado da solução etérea (item 4)? 
4. Dispondo-se de éter etílico, soluções aquosas de NaOH (10%), NaHCO3 (10%), HCl 
(10%), e concentrado, esquematizar, através de fluxograma, todas as etapas 
necessárias para separar uma mistura de ciclo-hexanol, ciclo-hexilamina, p-cresol e 
ácido benzóico. 
5. Citar algumas aplicações da extração por solventes quimicamente ativos. 
 
IV. BIBLIOGRAFIA: 
1. VOGEL, A.I. Química orgânica: análise orgânica qualitativa. Rio de Janeiro, Ao Livro 
Técnico S. A, 1985. V. 1. 
5. SOARES, B.G.; SOUSA, N.A.; PIRES, D.X. Química orgânica: teoria e técnicas de 
preparação, purificação e identificação de compostos orgânicos. Rio de Janeiro, 
Guanabara, 1988. 
6. SOLOMONS, T.W. G., Química orgânica, Rio de Janeiro: LTC, 1983. v. 3. 
7. CHAVES, M.H. Química Nova, 1997, 20(5), 560. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31 
AULA N
O 
15 
EXTRAÇÃO DO LCC E SUA APLICAÇÃO NA OBTENÇÃO DE RESINAS 
TIPO FENOL-FORMOL 
 
I - MATERIAIS E REAGENTES 
- Castanhas de caju - Solução de sulfato cérico 
- Hexano - Iodo 
- Clorofórmio - Aparelhagem Soxhlet 
- Acetato de etila - Béquer de 100 mL 
-Ácido acético - Provetas de 10 mL 
- Formaldeído - Papel de filtro 
- Acetona - Funil 
- Hidroxido de sódio (2,2 mol/L) - Cuba cromatográfica 
- Xileno ou tolueno - Placas cromatográficas de sílica 
- Pedras de porcelana - Balão de fundo redondo de 250 mL (03) 
 
II- EXTRAÇÃO DO LCC 
 Coletar cerca de 100 castanhas; 
 Separar as cascas; 
 Cortar em pequenos pedaços e pesar; 
 Colocar em aparelhagem Soxhlet; 
 Extrair com hexano durante 6 horas; 
 Evaporar o solvente; 
 Pesar o LCC obtido; 
 Realizar cromatografia em camada delgada, utilizando sílica gel G como fase 
estacionária, CHCl3/AcOEt:/H3CCOOH (95:5:2) como eluente iodo e/ou 
sulfato cérico com revelador. 
 Comparar os resultados com a literatura. 
 
Observações: 
1) O volume do solvente é 2,5 vezes a capacidade do extrator. 
2) Adicionar o solvente no extrator Soxhlet, sobre a amostra, até que o 
volume atinja o nível do sifão e esperar a sinfonagem, interrompendo a adição. 
Repetir este procedimento e adicionar mais uma porção de solvente até à 
metade da capacidade do extrator. Conectar o condensador e ligar o sistema. 
 
II- OBTENÇÃO DA RESINA CARDOL-FORMOL 
 Pesar cerca de 8,0 g do LCC em um béquer de 100 mL; 
 Aquecer o LCC à cerca de 45C, em banho-maria; 
 Adicionar aproximadamente 4,0 mL de formaldeído e 4,0 mL de hidróxido de 
sódio 2,2 mol/L, sob agitação; 
 Acompanhar a reação de 10 em 10 minutos, durante 30 minutos, por 
Cromatografia em Camada Delgada (CCD), utilizado placas de sílica gel 
como adsorvente e CHCl3/AcOEt/H3CCOOH (95:5:2) como eluente; 
 Observar o desaparecimento da mancha na placa cromatográfica do 
constituinte mais polar, o cardol; 
 32 
 Comparar estes cromatogramas com o material de partida (LCC); 
 Extrair com acetona, os constituintes que não reagiram, durante 6 h; utilizando 
aparelhagem Soxhlet; 
 Filtrar, pesar a resina cardol-formol e calcular o rendimento; 
 Evaporar a acetona e reservar o resíduo não reagente. 
 
III - OBTENÇÃO DA RESINA CARDANOL-FORMOL 
 Pesar o resíduo não reagente; 
 Adicionar formaldeído e solução de hidróxido de sódio, mantendo a proporção 
resíduo/formaldeído/NaOH igual a 1:2:0,35 mol; 
 Adicionar o solvente: xileno ou tolueno; 
 Acompanhar a reação de hora em hora por cromatografia em CCD; 
 Observar, ao final da reação, o desaparecimento da mancha relativa ao 
cardanol; 
 Extrair com acetona, em aparelhagem Soxhlet, cerca de 6 horas, o ácido 
anacárdico que não reagiu; 
 Filtrar e pesar a resina cardanol-formol e calcular o rendimento; 
 Evaporar a acetona e pesar o ácido anacárdico. 
 
IV- QUESTIONÁRIO 
1. Citar vantagens e desvantagens da extração em Soxhlet. 
2. Qual o significado da sigla LCC? 
3. Pesquisar a estrutura e composição dos principais constituintes do LCC. 
4. Apresentar justificativa para os fatores de retenção (Rf) observados para os 
constituintes principais do LCC. 
5. Com que finalidade é adicionado ácido acético na eluição dos componentes do 
LCC? 
6. Justificar a ordem de reatividade dos componentes do LCC para a formação das 
resinas cardol-formol e cardanol-formol. Por que o ácido anacárdico não polimeriza? 
 
V - BIBLIOGRAFIA 
1. CITÓ, A. M. G. L.; MOITA NETO, J. M.; LOPES, J. A. D. Química- Boletim da 
Sociedade Portuguesa de Química, 1998, 68, 38 
2. LIMA, S. G.; MACEDO, A. O. A.; CITÓ, A. M. G. L.; MOITA NETO, J. M.; LOPES, J. 
A. D. Anais Assoc. Bras. Quim., 1997, 46(3), 220. 
3. Bliblioteca Virtual do Estudante Brasileiro (http://www.bibvirt.futuro.usp.br), 1998 Frutas do 
Brasil-Acervo Caju. 
4. MOTHÉ, C. G.; MILFONT Jr., W. N. Revista de Química Industrial, 1994, 695, 15. 
5. GONSALVES, A. M. D. A. R.; COSTA, A. M. B. S. R. C. S.; COSTA, M. F. G. S. 
Rev. Port. Quím., 1980, 22, 97. 
6. TYMAN, J. H. P.; JOHNSON, R. A.; MUIR, M.; ROKHGAR, R. JAOCS, 1989, 66(4), 
553. 
 
 
 
 
 
 
 
http://www.bibvirt.futuro.usp.br)/
 33 
AULA N
O 
16 
EXTRAÇÃO DO ÁCIDO LÁURICO 
 
CONSTANTES FÍSICAS: Agulhas incolores, P.F. 44o C; P.E. 225o C/100 mm; 176oC/15 
mm; arrastável por vapor d’água. 
SOLUBILIDADE: Insolúvel em água; solúvel em éter etílico e benzeno. Solubilidade 
em etanol: 26% a 0o C; 134% a 21o C 
APLICAÇÕES: Intermediário químico 
 
 A matéria prima utilizada para a obtenção de ácido láurico será o óleo de 
babaçu. A composição percentual dos ácidos graxos no produto de hidrólise deste óleo 
é a seguinte: 
Ácido laurico H3C(CH2)10COOH 44-46% 
Ácido mirístico H3C(CH2)12COOH 15-20% 
Ácido oléico H3C(CH2)7CH=CH(CH2)7COOH 12-18% 
Ácido palmítico H3C(CH2)14COOH 6-9% 
Ácido caprílico H3C(CH2)6COOH 4-7% 
Ácido cápricoH3C(CH2)8COOH 3-8% 
Acido esteárico H3C(CH2)16COOH 3-6% 
Ácido linoléico H3C(CH2)4CH=CHCH2CH=CH(CH2)7COOH 1-3% 
I - MATERIAIS E REAGENTES 
- Óleo de babaçu - Balão de fundo redondo de 250 mL 
- Álcool etílico - Condensador de refluxo 
- Hidróxido de potássio - Becker de 500 mL 
- H2SO4 concentrado - Funil de decantação de 500 mL 
- Papel indicador de pH - Proveta de 50 mL 
- Na2SO4 anidro - Erlenmeyer de 250 mL 
 
II - PROCEDIMENTO EXPERIMENTAL 
 A uma solução de 6 g de KOH em 60 mL de álcool etílico, em balão de fundo 
redondo de 250 mL provido de condensador de refluxo, adicionar 30 g de óleo de 
babaçu e alguns fragmentos de porcelana. Depois de refluxar por 2 horas, transferir 
para um becker de 500 mL, resfriar e adicionar 180 ml de água, misturando com 
cuidado, para não formar espuma. 
 Acidular com solução fria de 6 mL de H2SO4 concentrado (d: 1,84) em 20 mL de 
água, até pH 4 (o que é necessário para que se liberte completamente um ácido 
orgânico de seu sal alcalino). Verificar o final da reação com papel indicador de pH. 
Transferir a um funil de decantação de 500 mL e separar a camada aquosa da massa 
de ácido sobrenadate, que é então lavada por duas vezes, com 30 mL e água morna e 
cada vez, agitando cautelosamente em movimentos circulares, para evitar a formação 
de emulsão. 
 O ácido láurico bruto assim obtido é separado cuidadosamente da fase aquosa. 
Se apresentar aspecto turvo, remover a unidade agitando com alguns fragmentos de 
Na2SO4 anidro. Pesar para o cálculo do rendimento bruto. 
 
 34 
III - REAÇÃO E CONFIRMAÇÃO. 
 A presença de ácido graxo no produto bruto pode ser confirmada pela adição, 
em tudo de ensaio, de solução aquosa a 10% de Na2CO3. Há formação de espuma, por 
agitação, pela formação de solução de sabão. 
 
REAGENTES: 
 Usando a composição média do óleo de babaçu e a massa molecular de seus 
componentes, podemos calcular de forma aproximada a massa molecular média de 
seus ácidos graxos (MMA): 
 
 [(45x200+17x228+15x282+7x256+5x172+5x144+4x284+2x280)] 
 = 
_______________________________________________________________________________ 
(45+17+15+7+5+5+4+2) 
 
 Considerando que o triacilglicerol é formado a partir de uma molécula de glicerol 
e três moléculas de ácidos graxos, podemos calcular a massa molecular média dos 
triacilgliceróis (MMT) contidos no óleo de babaçu e, a partir daí, o número de moles, em 
média, (NM) contidos em 30 g do óleo de babaçu: 
 
MMT = 38+(3.MMA) e NM = 30/MMT = 0,043 
 
 O número de moles de KOH utilizado foi 6/56= 0,11 mol , ou seja, 
aproximadamente 3 vezes o NM. 
 
IV - QUESTIONÁRIO: 
1. Que se entende por: a) solvólise? b) hidrólise? c) alcóolise? 
2. Escreva a equação, mostrando o mecanismo, para obtenção de ácidos graxos a 
partir do óleo de babaçu, e calcule o rendimento teórico de ácido láurico. 
3. O que é saponificação? Escreva a equação para esta reação e compare com a 
equação da reação de obtenção do ácido láurico. 
4. O que é esterificação? Escreva o mecanismo para esta reação. 
5. Que processo de separação deve ser usado para purificar o ácido láurico? 
6. Descreva como é feita, normalmente, a determinação da composição percentual e a 
identificação dos ácidos graxos de um triglicerídeo. 
 
V - BIBLIOGRAFIA 
1. VOGEL, A.I. Química orgânica: análise orgânica qualitativa. 2. ed. Rio de Janeiro, Ao 
Livro Técnico S.A., 1980. v.1. 
2. MANO, E.B.; SEABRA, A. P. Práticas de química orgânica. 3. ed. São Paulo, 
EDART, 1987. 
3. SOLOMONS, T.W.G. Química orgânica, Rio de Janeiro, LCT, 1983. v.3. 
4. VIANNI, R.; BRAZ-FILHO, R. “Acidos graxos naturais: importância e ocorrência em 
alimentos”. Química Nova, 1996 19(4), 181. 
5. MORETTO, E. FATT, R. Tecnologia de óleos e gorduras vegetais na indústria de 
alimentos. São Paulo, Livraria Varela, 1998. 
 
 
 
 35 
AULA N
O 
17 
PROPRIEDADES FÍSICAS E QUÍMICAS DOS ALCANOS E ALCENOS 
I. MATERIAL E REAGENTES: 
Gasolina (C5-C10) Tetracloreto de carbono (CCl4) Espátula 
Querosene (C12-C15)) Ácido sulfúrico concentrado Bastão de vidro 
Parafina (C21-C40) Sol. de NaOH - diluído Vidro de relógio 
Vaselina (C18-C30) Sol. de KMnO4 a 0,5% Pipeta de 5 e 10 mL 
Hexano Água de bromo Proveta de 5 mL 
Ciclo-hexano Tubos de ensaio Pipeta de Pasteur 
Ciclo-hexeno Suporte p/tubos de ensaio 
II. PROCEDIMENTO: 
ALCANOS 
 Colocar 1 mL de gasolina, 1 mL querosene e 1 mL vaselina em tubos de ensaio 
(uma substância em cada tubo). Em um vidro de relógio colocar um pouco de 
parafina. 
 a) Propriedades físicas: 
 1. Examinar as amostras das substâncias acima comparando-as quanto ao odor, 
viscosidade e volatilidade. 
 2. Comparar quanto a inflamabilidade tocando com o bastão de vidro em cada 
uma e levando à chama do bico de Bunsen (cuidado não aproxime a chama dos 
recipientes contendo as amostras). 
 O que você observa em relação a cada uma das propriedades físicas acima, a 
medida que aumenta o número de átomos de carbono nos alcanos? 
 3. Colocar 1 mL de ciclo-hexano em um tubo de ensaio e adicionar 2 mL de 
água. Observar se há dissolução. Caso contrário comparar as densidades. 
 4. Repetir o ítem 3, usando 1 mL de CCl4, ao invés de água. Observar 
5. Repeta os ítens 3 e 4, usando gasolina ao invés de ciclo-hexano. Anotar suas 
observações. 
b) Ação da Solução permanganato de potássio: 
 Colocar 1 mL de hexano em um tubo de ensaio e adicionar 2 mL de solução de 
KMnO4 a 0,5%. Agitar levemente por um pouco de tempo. Observar se ocorre 
alguma reação. 
 c) Ação da Solução de água de bromo: 
 Colocar 1 mL de hexano em 2 tubos de ensaio e adicionar 1 mL de água de 
bromo. Agitar bem os tubos e guardar um deles em lugar escuro. Expor o outro tubo 
ao sol (ou segurar perto de uma lâmpada elétrica forte 150-220 W). comparar os 2 
tubos após 15 minutos. 
 
ALCENOS 
a) Ação da água de bromo: 
 Colocar 2 mL de água de bromo em um tubo de ensaio e adicionar ciclo-hexeno 
gota a gota, agitando. Fazer este teste na capela e observar se ocorre alguma 
reação. 
 36 
b) Ação do permanganato de potássio: 
 Colocar 1 mL de solução de KMnO4 a 0,5% em um tubo de ensaio e adicionar 
algumas gotas de solução diluída de NaOH. Adicionar o ciclo-hexeno, gota a gota, 
agitando. Fazer este teste na capela e registrar o resultado. 
c) ação do ácido sulfúrico concentrado: 
 Colocar 1 mL de ciclo-hexeno em um tubo de ensaio e adicionar 3 gotas de 
H2SO4 concentrado. Observe o que acontece. Houve formação de algum 
precipitado? 
 Aguardar 5 minutos e a seguir adicionar 3 mL de água. Anotar suas 
observações. 
 Baseado nos resultados obtidos, formular as reações químicas que ocorreram. 
Consultar a bibliografia recomendada. 
III. QUESTIONÁRIO 
1. Quais os tipos de reações que ocorrem com os alcanos? Exemplificar. 
2. Quais os tipos de reações que ocorrem com os alcenos? Exemplificar 
3. O que se pode concluir a respeito da reatividade dos alcanos e alcenos. 
Exemplificar. 
4. Por que os alcanos podem ser usados como solventes orgânicos na realização de 
medidas, reações e extrações de materiais. 
5. Escrever e equação da reação que ocorre quando um alceno é tratado com uma 
solução de bromo em tetracloreto de carbono. Comparar com a reação ocorrida 
quando se usa água de bromo ao invés de Br2/CCl4. 
6. Indicar reações que poderiam ser usadas para distinguir um alcano de um alceno. 
Explicar com um exemplo. 
IV. BIBLIOGRAFIA 
1. VOGEL, A. I. Química orgânica: análise orgânica qualitativa. 2. ed, Rio de Janeiro 
Ao Livro Técnico S. A, 1981. v. 1. 
2. ALLINGER, N. L.; CAVA, M. P.; JONGH, D. C. et al. Química orgânica. 2. ed, Rio de 
Janeiro, Guanabara Dois, 1978. 
3. SOLOMONS, T.W.G. Química orgânica. Rio de Janeiro, LCT, vol. 2. 1983. 
 
 
 
 
 
 
 
 
 
 
 37 
AULA N
O 
18 
CARACTERIZAÇÃO DE GRUPOS FUNCIONAIS 
 
I. MATERIAL E REAGENTES: 
- Conta gotas (3) - Reagente de LUCAS - Álcool t-butílico 
- Pipeta de 5 mL (8) - Iodeto de potássio-iodo - Glicose 
- Tubo de ensaio (8) - Nitrato de prata 5% - Acetona 
- Hidróxido de amônio10% - Metanol - Álcool etílico 
- NaOH 5% e 10% - Formol 
 
II. PROCEDIMENTO EXPERIMENTAL: 
a) Teste de Lucas: 
Adicionar 3 a 4 gotas de álcool t-butílico a 30 gotas do reagente de LUCAS em 
um tubo de ensaio. Agitar a mistura vigorosamente. Deixar em repouso e observar o 
que acontece. Repetir o mesmo processo, usando álcool etílico. 
 
b) Teste de Tollens: 
- Preparação do reagente de TOLLENS: 
Em um tubo de ensaio, colocar 2 mL de uma solução a 5% de AgNO3. Em 
seguida adicionar uma gota da solução a 10% de NaOH. Agitar o tubo e juntar 
solução de NH4OH a 10%, gota a gota, com agitação, até que o precipitado de 
hidróxido de prata se dissolva totalmente, obtendo-se uma solução transparente. 
Agitar o tubo e deixar em repouso por 10 minutos. 
- Substâncias a serem testadas: formol, acetona, e glicose. 
Em um tubo de ensaio muito limpo, colocar 0,5 mL (aproximadamente 10 
gotas) de formol e adicionar 0,5 mL do reagente de TOLLENS recentemente 
preparado. Repetir o processo usando acetona e depois e glicose. (Quando a 
amostra for sólida usar aproximadamente 10 mg). 
 
c) Teste do Iodofórmio: 
Substâncias a serem testadas: álcool etílico, metanol e acetona. 
Em um tubo de ensaio, colocar 2 mL de água, 5 gotas de álcool etílico e 0,5 mL 
do reagente iodeto de potássio-iodo. Adicionar solução a 5% de hidróxido de sódio 
até que a solução fique amarela clara. Agitar e esperar cerca de 2-3 minutos. Se não 
ocorrer nenhuma modificação, aquecer o tubo a 60oC. Registar suas observações. 
Repetir o processo usando metanol e depois acetona. 
 
Observações: 
1. O reagente iodeto de potássio-iodo é preparado, dissolvendo-se 10 g de iodeto 
de potássio e 5 g de iodo em 50 mL de água. 
2. O reagente de LUCAS é preparado, dissolvendo-se 22,7 g de cloreto de zinco 
anidro em 17,5 g de ácido clorídrico concentrado com resfriamento 
 
III. QUESTIONÁRIO: 
1. O que é reagente de LUCAS ? 
2. Até quantos carbonos na molécula de álcool, o teste de LUCAS deve ser 
utilizado? Por que? 
 38 
3. O que é reagente TOLLENS ? Como se identifica que este teste foi positivo? 
4. Que tipo de substância dar teste positivo com o reagente de TOLLENS ? 
5. Que tipo de grupamentos podem ser identificados através da reação do 
iodofórmio? Por que os compostos que contém o grupo -CHOHCH3 apresentam 
teste positivo? 
6. Escreva a equação e o mecanismo da reação de formação do iodofórmio. 
 
IV. BIBLIOGRAFIA: 
1. VOGEL, A. I. Química orgânica: análise orgânica qualitativa. 2. ed., Rio de 
Janeiro, Ao Livro Técnico S.A., 1980. v.1 e 3. 
2. SOLOMONS, T.W. G. Química orgânica. LCT, Rio de Janeiro. 1985. v. 2. 
3. MORRISON, R. T.; Boyd, R. N. Química orgânica. 12. ed, Lisboa Fundação 
Gulbekiam. 1996. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39 
AULA N
O 
19 
PROPRIEDADES DO ÁLCOOL ETÍLICO 
 
I. MATERIAL E REAGENTES: 
 - Bico de Bunsen - Pinça de madeira - Tubo em U 
 - Béquer de 100 mL - Cadinho de porcelana - Vidro de relógio 
 - Proveta de 10 ml - Sol. de KMnO4 a 10% - Álcool etílico 
 - Pipeta de 5 e 10mL - Tubos de ensaio - Ácido acético 
- Proveta de 25 e 50 mL - Sol. de K2Cr2O7 1 M - Gasolina 
- Bastão de vidro - Triângulo de porcelana 
 
II. PROCEDIMENTO EXPERIMENTAL: 
1. Em uma proveta de 50 mL, colocar 20 mL de água. Adicionar 20 mL de álcool 
etílico, medido em outra proveta. Agitar com um bastão de vidro. Registrar o volume 
final observado e explicar o resultado obtido. 
2. Repetir o item a, usando gasolina ao invés de água. 
3. Colocar cerca de 5 mL de álcool etílico em um béquer. Juntar um pequeno pedaço 
de sódio (fornecido pelo professor) cobrir o béquer com vidro de relógio. Observar. 
4. Colocar cerca de 2 mL de solução de K2Cr2O7 em um tubo de ensaio. Juntar cerca 
de 1 mL de H2SO4 1:1 e em seguida 5 gotas de álcool etílico. Observar. 
5. Colocar uma gota da solução de KMnO4 em um tubo de ensaio. Juntar 3 mL de 
H2SO4 1:1 e em seguida 5 gotas de álcool etílico. Agitar, aquecer com chama 
pequena, até ebulição. Observar se ocorre alguma modificação. 
6. Colocar 5 mL de álcool em um cadinho de porcela. Inflamar o álcool. Esperar que 
todo álcool se queime. Deixar o cadinho esfriar e observar se ficou resíduo no 
cadinho. 
7. Colocar 5 mL de etanol em um tubo de ensaio e adicionar lentamente 2 mL de 
H2SO4 concentrado. Em seguida, juntar 5 mL de ácido acético, adaptar um tubo em 
U e aqueçer em bico de Bunsen, fazendo passar os vapores do produto formado 
por um tubo de ensaio contendo água destilada. Observar o odor. 
* BASEADO NOS RESULTADOS, FORMULAR AS REAÇÕES QUÍMICAS QUE 
OCORRERAM. 
III. QUESTIONÁRIO: 
1. O etanol que é muito solúvel em água, também é adicionado à gasolina dos carros. 
Como você explica isto? 
1. Quais os principais tipos de reações que ocorrem com os álcoois ? Exemplificar. 
2. Pesquisar a solubilidade dos álcoois em água e mostrar sua relação com a estrutura. 
3. Qual o produto da oxidação de um álcool secundário com o K2Cr2O7? 
4. Descrever métodos usados industrialmente na preparação do álcool etílico 
5. O que se entende por álcool absoluto? E álcool anidro ? 
6. Por que a oxidação dos álcoois com K2Cr2O7 não é um método eficiente na 
preparação de aldeídos de alto peso molecular ? 
 40 
7. A causa de muitos acidentes nas estradas é o uso de bebidas alcóolicas pelos 
motoristas. O instrumento popularmente conhecido com “bafômetro” apesar de 
prático e eficiente ainda é pouco utilizado. Este instrumento tem como função, nos 
tipos mais simples (descartáveis), detectar se o nível de álcool está acima ou abaixo 
do limite legal (0,8 g/mL de sangue). Qual é o princípio químico deste instrumento? 
Explicar. Escrever a equação da reação química que ocorre. 
8. No início do experimento, ítens a e b foram preparadas duas misturas: álcool/água e 
álcool/gasolina. Descreva procedimentos que poderiam ser empregados para 
separar os componentes destas misturas. 
 
IV. BIBLIOGRAFIA: 
1. VOGEL, A. I. Química orgânica: análise orgânica qualitativa. 2. ed., Rio de Janeiro 
Ao Livro Técnico S. A., 1981. 
1. ALLINGER, N. L.; CAVA, M. P.; JONGH, D. C. et al. Química orgânica. 2. ed, Rio de 
Janeiro, Guanabara Dois, 1978. 
2. BRAATHEN, C. Química Nova na Escola, 1997, 5, 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41 
AULA N
O 
20 
PROPRIEDADES DOS GLICÍDIOS 
 
I - MATERIAIS E REAGENTES: 
Ácido clorídrico conc. e 2,0 M Solução de amido Béquer de 50 mL 
Reagente de Fehlling A e B Solução de iodo Pipeta de 5 mL 
Solução de hidróxido de sódio 5% Papel indicador de pH Pipeta de Pasteur 
Solução de glicose a 2% Bico de Bunsen Proveta de 10 mL 
Solução de sacarose a 5% Pinça de madeira Tubos de ensaio 
Solução de maltose a 2% Tripé de ferro 
 
II - PROCEDIMENTO: 
 
 Propriedades da GLICOSE 
Colocar 2 mL do reagente de Fehling A e 2 mL do reagente de Fehling B em um tubo 
de ensaio. Agitar. Juntar 1 mL de solução de glicose, aquecer e observar. Caso haja 
reação escrever a equação. 
 
Propriedades da SACAROSE 
- Colocar 2 mL do reagente de Fehling A e 2 mL do reagente de Fehling B em um tubo 
de ensaio. Agitar. Juntar 1 mL de solução de sacarose. Aquecer e observar. Caso haja 
reação escreva a equação. 
- Colocar 10 mL de solução de sacarose 5% em um béquer de 50 mL. Juntar 1 mL de 
solução de HCl a 2 M. Ferver a solução cuidadosamente durante 3 minutos. 
- Esfriar. Juntar solução a 5% de NaOH, até alcalinizar a solução (controlar com papel 
indicador). 
- Colocar 2 mL do reagente de Fehling A e 2 mL do reagente de Fehling B em um tubo 
de ensaio. Agitar. Juntar um 1 mL dos produtos da hidrólise de sacarose. Aquecer. 
Observar. Houve reação? Por que? Procurar descrever o que ocorreu. 
 
Propriedades da MALTOSE 
- Colocar 2 mL do reagente de Fehling A e 2 mL do reagente de Fehling B em um tubo 
de ensaio. Juntar 1 mL da sulução de maltose. Aquecer. Observar. Houve reação? Por 
que? Procurar descrever o que ocorreu. 
 
Propriedades do AMIDO 
- Colocar 2 mLdo reagente de Fehling A e 2 mL do reagente de Fehling B em um tubo 
de ensaio. Agitar. Juntar 1 ml da solução de amido. Aquecer. Observar. O amido é 
redutor? Por que? 
- Colocar 2 mL da solução de amido em um tubo de ensaio. Juntar 2 gotas de solução 
de iodo. Agitar. Anotar suas observações. 
- Colocar 20 ml de solução de amido e 1 mL de ácido clorídrico concentrado em um 
béquer de 50 ml. Colocar o béquer na tela de amianto e aquecer a solução com chama 
pequena, apenas suficiente para manter a ebulição. (não deixar secar. Juntar água se 
necessário) 
 42 
- Cinco minutos após a ebulição retirar 2 mL da solução, colocando 1 ml em dois tubos. 
Com um dos tubos fazer o teste com reagente de Fehling. Esfriar o outro tubo e 
adicionar solução de iodo. 
- Repetir a operação anterior, com intervalo de cinco minutos, por mais de três vezes. 
Durante a hidrólise do amido a prova de Fehling é intensificada ou 
enfraquecida?_______Porque?____________________________________________
_________________________________________________________ 
Durante a hidrólise do amido, a prova com iodo é intensificada ou 
enfraquecida?_____________Porque?______________________________________
_________________________________________________________ 
Reagente de FEHLING 
Solução A: dissolvem-se 34,65 g de sulfato de cobre em água e leva-se a 500 mL. 
Solução B: dissolvem-se 173 g de tartarato de potássio e sódio (sal de Rochelle ou sal 
de Seignette) e 125 g de KOH em água destilada e dilui-se a 500 mL. 
 
III - QUESTIONÁRIO 
1. O que é reagente de Fehling? Qual é a diferença entre este reagente e o de 
Benedict 
2. Que tipos de grupamentos podem ser identificados usando o reagente de Fehling? 
3. Qual a fórmula estrutural dos carboidratos: glicose, frutose, sacarose, maltose e 
amido? 
4. Explicar a razão da coloração adquirida pelo amido quando em presença da 
solução de iodo. 
5. Por que o amido após hidrólise apresenta teste positivo com o reagente de Fehling? 
6. Mostrar através de suas estruturas a diferença entre açúcar redutor e não redutor 
Exemplificar. 
7. Indicar quais átomos de carbono na sacarose são carbonos acetais. Escrever uma 
equação equilibrada para a hidrólise da sacarose em glicose e frutose. 
8. Quantos moles de água são necessários por mol de sacarose? 
 
IV - BIBLIOGRAFIA 
1. SOLOMONS, T.W G., Química orgânica. Rio de Janeiro: LTC, 1983. V. 2. 
2. AMARAL, L. Química orgânica. São Paulo: Editora Moderna Ltda,1981. 
3. ALLINGER, N. L.; CAVA, M. P.; JONGH, D. C. et al. Química orgânica. 2. ed, Rio de 
Janeiro, Guanabara Dois, 1978. 
4. HART, A.; SHUETZ, R. D. Química orgânica. Rio de Janeiro, Editora Campus 
LTDA, 1983. 
MORITA, T.; ASSUMPÇÃO, R. M. V. Manual de soluções, reagentes & 
solventes. 2. ed, São Paulo: Edgard Blücher LTDA.,1972. 
 
 
 
 
 
 
 
 
 43 
AULA N
O 
21 
SÍNTESE DO ÁCIDO ACETILSALICÍLICO - (ASPIRINA) 
 
I. MATERIAL E REAGENTES 
- Bequer de 250 e 100 mL - Etiquetas 
- Bastão de vidro - Placa de Petri 
- Kitazato de 250 e 125 mL - Pisseta 
- Espátula - Ácido salicílico (C7H6O3) 
- Pipeta de Pasteur - Ácido sulfúrico (H2SO4) 
- Funil de Bucher - Anidrido acético (C4H6O3) 
- Proveta de 25 e 10 mL - Erlenmeyer de 125 mL 
- Papel de filtro 
II. PROCEDIMENTO 
 Pesar em bequer de 100 mL, cerca de 3,0 g de ácido salicílico, adicionar 6 mL 
de anidrido acético e juntar 6 gotas de H2SO4 concentrado. CUIDADO: Anidrido acético 
e ácido sulfúrico causam graves queimaduras. Aqueça o béquer em banho-maria, a 50-
60o durante 10 minutos, agitando a mistura de vez em quando, com um bastão de 
vidro. Remover o béquer do banho-maria e adicionar 30 mL de água destilada. Deixar o 
béquer esfriar ao ar para que se formem os cristais. Se os cristais demorarem a surgir, 
resfrie em banho de gelo para acelerar a cristalização e aumentar o rendimento do 
produto. Filtrar sob sucção utilizando funil de Buchner e lavar duas vezes com 5 mL de 
água gelada. 
OBSERVAÇÃO: A próxima etapa só deverá ser realizada, caso não seja feita a 
purificação da aspirina. 
Secar a aspirina, ao ar ou na estufa a 50 oC, pesar o produto e determinar o 
rendimento percentual da reação. 
 
III. PURIFICAÇÃO DA ASPIRINA 
 Dissolver o produto bruto em béquer de 100 mL usando 10 mL de álcool etílico, 
aquecendo em banho-maria. Verter a solução alcóolica quente sobre 22 mL de água 
quente contida em um béquer de 100 mL. Caso haja precipitação, dissolver por 
aquecimento em banho-maria. Deixar em repouso na geladeira. Cristais sobre a forma 
de agulha serão obtidos. Filtrar em Buchner, lavar com alguns mL de água gelada e 
depois com alguns de álcool gelado. Secar ao ar ou em estufa a 50o . Pesar e 
determinar o redimento da aspirina. Obter o espectro de infravermelho do material de 
partida (ácido salicílico) e do produto obtido (AAS). Comparar os dois espectros 
observando as modificações que ocorreram e fazer a atribuição dos principais sinais. 
 QUESTIONÁRIO 
1. Escrever a equação da reação de obtenção da ASPIRINA. 
2. Que tipo de reação se verifica na obtenção da ASPIRINA? 
3. Qual a finalidade da adição de ácido sulfúrico concentrado? 
4. Por que, na determinação do ponto de fusão da ASPIRINA, não se encontra um 
valor real? 
5. Calcular o rendimento teórico de ASPIRINA se 1,0 kg de ácido salicílico é usado com 
2,0 kg de anidrido acético? 
5. Quais as principais mudanças observadas no espectro de infravermelho do ácido 
salicílico quando comparado ao espectro do ácido acetilsalicílico? 
 44 
V. BIBLIOGRAFIA 
1. MANO E.B.; SEABRA, A.P. Práticas de química orgânica. 3. ed, São Paulo, Edgard 
Blücher LTDA, 1987. 
2. ALLINGER, N. L.; CAVA, M. P.; JONG, D. C. de; et al. Química orgânica. 2. ed., Rio 
de Janeiro, Guanabara Dois. 1976. 
3. SILVERSTEIN, R.M.; BASSLER, G.C.; MORRIL, T.C., Identificação espectrométrica 
de compostos orgânicos. 5. ed, Rio de Janeiro, Guanabara Koogan S. A. 1994. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45 
AULA N
O 
22 
PREPARAÇÃO DA ACETANILIDA 
 
I - MATERIAIS E REAGENTES 
- Anilina - Béquer de 250 mL 
- Anidrido acético - Provetas de 10 e 25 mL 
- Acetato de sódio anidro - Papel de filtro 
- Ácido acético glacial - Funil de Buchner 
- Pisseta com água destilada - Kitassato 
- Bastão de vidro - Pinça metálica 
 
II - PROCEDIMENTO EXPERIMENTAL 
Em um béquer de 250 mL, em capela, fazer uma suspensão de 1,25 g de 
acetato de sódio anidro e pulverizado, em 5 g de (4,8 mL) de ácido acético glacial. 
Acrescentar, com agitação, 4,65 g (4,6 mL) de anilina e, finalmente, 5,5 g (5,1 mL) de 
anidrido acético, em pequenas porções. 
Adicionar à mistura, com agitação, 25 mL de água. Resfriar, filtrar em Buchner à 
vácuo e lavar com água gelada. Secar ao ar ou em estufa a 50 oC, pesar e calcular o 
rendimento. 
Determinar o ponto de fusão da acetanilida obtida e comparar com o descrito na 
literatura. 
 
OBSERVAÇÃO: Nas condições da reação, forma-se o produto monoacilado; se houver 
aquecimento prolongado, haverá diacetilação. 
 
III - REAÇÃO DE CONFIRMAÇÃO 
Em tubo de ensaio, colocar alguns cristais de acetanilida e adicionar 1 mL de 
solução aquosa a 20% (v/v) de HCL. Observar a insolubilidade do produto. 
Paralelamente, em outro tubo, repetir o ensaio com uma gota de anilina, ao invés de 
acetanilida; observar a solubilização da anilina, em contraste com o comportamento da 
acetanilida. 
 
Características dos Reagentes: 
 
 - ANILINA 
 d = 1,022 4, 65 g = 1,6 mL M.M. = 93, 12 
 
 ANIDRIDO ACÉTICO 
 d =1,080 5,5 g = 5,1 mL M.M. = 102,05 P.E. = 139 oC 
 
Características da Acetanilida: 
 
P. F = 113 - 115 oC Kb = 1 x 10 
-13 M.M. = 135,16 
Solubilidade: 
Em água.................................................................97,5% a 20 oC, 178% a 60 oC 
Em CHCl3....................................................................Solúvel 
 
 46 
IV - QUESTIONÁRIO 
1. Sugerir um mecanismo para a reação de formação da acetanilida. 
2. Qual é a função do ácido acético e do acetato de sódio? 
3.

Outros materiais