Buscar

APOL 2 - OBJETIVA - NOTA 100

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Questão 1/10 - Análise Matemática
Considere a seguinte citação:
 
“Ter uma indeterminação (qualquer que seja) não significa que o limite considerado não existe ou que ele não pode ser calculado, mas que um estudo mais minucioso é necessário”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: <https://e-scola.edu.gov.cv/index.php?option=com_rea&id_disciplina=1&id_materia=2&id_capitulo=88&Itemid=298>. Acesso em: 20  jun. 2017.
Dado o seguinte limite: limx→12x−2x2−1limx→12x−2x2−1
Considerando essas informações e os conteúdos do livro-base Análise Matemática sobre limites, assinale a alternativa que fornece o valor do limite dado:
Nota: 10.0
	
	A
	−2−2
	
	B
	2
	
	C
	∞∞
	
	D
	0
	
	E
	1
Você acertou!
Temos uma indeterminação do tipo 0000, então podemos usar a Regra de L’Hôpital: limx→12x−2x2−1=limx→122x=1limx→12x−2x2−1=limx→122x=1. Outra forma de calcular esse limite seria isolando no numerador a expressão (x−1)(x−1) e fatorando o denominador como (x+1)(x−1)(x+1)(x−1).
(livro-base, p. 128).
Questão 2/10 - Análise Matemática
Considere a seguinte informação:
 
Seja  uma função definida por partes da seguinte forma:
 f(x)=⎧⎨⎩x2−3x+2x−2,x≠2kx=2f(x)={x2−3x+2x−2,x≠2kx=2
 
Fonte: texto elaborado pelo autor da questão.
Considerando a função dada no texto e os conteúdos estudados no livro-base Análise Matemática sobre limite e continuidade, assinale qual valor deve ser dado para que a função dada seja contínua em x = 2:
Nota: 10.0
	
	A
	k=2k=2
	
	B
	k=0k=0
	
	C
	k=1k=1
Você acertou!
Para que a função seja contínua em x=2x=2 devemos ter: limx→2f(x)=f(2)limx→2f(x)=f(2). Temos que limx→2f(x)=limx→2x2−3x+2x−2=limx→2(x−2)(x−1)x−2=limx→2(x−1)=1limx→2f(x)=limx→2x2−3x+2x−2=limx→2(x−2)(x−1)x−2=limx→2(x−1)=1. Portanto, devemos definir f(2)=1f(2)=1. (livro-base, p. 99).
	
	D
	k=−1k=−1
	
	E
	k=−2k=−2
Questão 3/10 - Análise Matemática
Considere as funções f,g:R→Rf,g:R→R dadas por f(x)=exf(x)=ex e g(x)=3xg(x)=3x e seja a função composta (f∘g)(x)=e3x(f∘g)(x)=e3x.
De acordo com os conteúdos do livro-base Análise Matemática a respeito das derivadas, podemos concluir que a derivada da função composta dada é:
Nota: 10.0
	
	A
	
(f∘g)′(x)=3ex+2ex(f∘g)′(x)=3ex+2ex
	
	B
	
(f∘g)′(x)=3ex+2e2x(f∘g)′(x)=3ex+2e2x
	
	C
	(f∘g)′(x)=e3x2+2(f∘g)′(x)=e3x2+2
	
	D
	(f∘g)′(x)=3e3x(f∘g)′(x)=3e3x
Você acertou!
A alternativa correta é a letra d), pois temos que f′(x)=exf′(x)=ex e g′(x)=3g′(x)=3. Logo, pela Regra da Cadeia, temos que (f∘g)′(x)=f′(g(x))⋅g′(x)=3e3x(f∘g)′(x)=f′(g(x))⋅g′(x)=3e3x
(livro-base, p. 119-121).
	
	E
	(f∘g)′(x)=(3x2)ex(f∘g)′(x)=(3x2)ex
Questão 4/10 - Análise Matemática
Atente para a seguinte informação sobre topologia:
“Para que tenha sentido determinar o limite ou indagar sobre a continuidade de uma função, e o domínio e o contradomínio da mesma devem possuir um certo tipo de estrutura, tornando-se o que se chama um ‘espaço topológico’. Em outras palavras, espaços topológicos são conjuntos equipados com estruturas tais que entre eles tem sentido falar em limites e continuidades de funções”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: LIMA, E. L. Curso de Análise. v. 1. 14. ed. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada,  2013. p. 161.
Conforme os conteúdos do livro-base Análise Matemática sobre os conceitos topológicos, assinale a alternativa que melhor define, de maneira informal, ponto de acumulação de um conjunto. 
Nota: 10.0
	
	A
	É um ponto de um conjunto que é simultaneamente fechado e limitado.
	
	B
	É um ponto do conjunto tal que todos os pontos aderentes pertencem a ele.
	
	C
	É um ponto que possui uma vizinhança inteiramente contida no conjunto.
	
	D
	É um ponto que é limite de uma sequência de elementos do conjunto.
	
	E
	É um ponto tal que toda vizinhança dele possui um ponto do conjunto diferente dele.
Você acertou!
Definição de ponto de acumulação (livro-base, p. 89).
Questão 5/10 - Análise Matemática
Considere a seguinte série numérica conhecida por série geométrica:
∑∞n=0rn=1+r+r2+r3+⋯∑n=0∞rn=1+r+r2+r3+⋯
 
Com base nos conteúdos do livro-base Análise Matemática a respeito de séries numéricas, analise as afirmativas a seguir e marque V para as verdadeiras e F para as falsas.
 
I.   ( ) A sequência de termos (rn)(rn) da série geométrica converge para zero para todo r∈Rr∈R
II.  ( ) A soma parcial dos temos da série da geométrica Sn=1+r+r2+⋯+rnSn=1+r+r2+⋯+rn é igual a 1−rn+11−r1−rn+11−r .
III. ( ) A série geométrica diverge para |r|≥1|r|≥1
IV.  ( ) ∑∞n=0(12)n=2∑n=0∞(12)n=2
Agora, assinale a alternativa que apresenta a sequência correta:
Nota: 10.0
	
	A
	V-V-V-F
	
	B
	V-F-V-F
	
	C
	F-V-V-F
	
	D
	F-V-V-V
Você acertou!
A alternativa que apresenta a sequência correta é a letra d). A afirmativa I é falsa porque a sequência dos termos diverge se |r|≥1|r|≥1. A afirmativa II é verdadeira pois SnSn é a soma dos termos de uma progressão geométrica. A afirmativa III é verdadeira pois se |r|≥1|r|≥1, a sequencia dos termos não converge para zero, logo, a série diverge. A afirmativa IV é verdadeira, pois a série é geométrica com r=12r=12. Logo, ∑∞n=0(12)n=11−12=112=2∑n=0∞(12)n=11−12=112=2. (livro-base, Capítulo 2).
	
	E
	F-V-F-V
Questão 6/10 - Análise Matemática
Considere a seguinte informação:
 
“Se as funções contínuas f(x)f(x) e g(x)g(x) são zero em x=ax=a, então limx→af(x)g(x)limx→af(x)g(x) não pode ser encontrado com a substituição x=ax=a. A substituição gera 0000, uma expressão sem significado conhecida como uma forma indeterminada. [...] A Regra de l’Hôpital nos permite ter sucesso usando derivadas para calcular limites que, abordados de outra maneira, levam a formas indeterminadas”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: FINNEY, R. L., WEIR, M. D., Giordano, F. R. Cálculo: George B. Thomas. 10. ed. São Paulo: Addison Wesley. v. I, 2002. p. 554.
 
Considerando estas informações e os conteúdos do livro-base Análise Matemática sobre a Regra de l’Hôpital, o limite da função limx→1x2−1x−1limx→1x2−1x−1 quando xx tende a 11 é:
Nota: 10.0
	
	A
	ee
	
	B
	1
	
	C
	−∞−∞
	
	D
	+∞+∞
	
	E
	2
Você acertou!
Usando a Regra de L'Hôspital temos: limx→1x2−1x−1=limx→12x1=2⋅11=2limx→1x2−1x−1=limx→12x1=2⋅11=2 (livro-base, p. 128).
Questão 7/10 - Análise Matemática
Leia o fragmento de texto a seguir:
 
“Utilizaremos, porém, com frequência cada vez maior, a linguagem geométrica segundo a qual nos referimos ao corpo RR como ‘a reta’, diremos ‘ponto’ em vez de ‘número real’, traduziremos ‘a<ba<b’ por ‘aa está à esquerda de bb’, dados x,y∈Rx,y∈R, interpretaremos o valor absoluto |x−y||x−y| como ‘distância do ponto xx ao ponto yy’ e, finalmente, veremos o intervalo [a,b][a,b] como o segmento de reta cujos extremos são os pontos aa e bb.”
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
LIMA, E. L., Curso de Análise. 14. ed. v 1. Rio de Janeiro: Associação Instituto Nacional de Matemática Pura e Aplicada, 2013. p. 162.
 
Conforme os conteúdos do livro-base Análise Matemática sobre noções topológicas da reta, analise as afirmativas a seguir e marque V para as afirmativas verdadeiras e F para as afirmativas falsas.
 
I.   ( ) O ponto x=1x=1 é um ponto interior do conjunto X={1}∪[32 , 2]X={1}∪[32 , 2].
II.  ( ) O conjunto X={n | n∈N}X={n | n∈N} não possui pontos de acumulação.
III. ( ) O ponto x=0x=0 é um ponto de acumulação do conjunto X={12 | n∈N}X={12 | n∈N}.
IV.  ( ) O ponto x=0x=0 é um ponto de aderência do conjunto X={12 | n∈N}X={12 | n∈N}.
 
Assinale a alternativa que contém a sequência correta:
Nota: 10.0
	
	A
	V-V-F-V
	
	B
	F-F-V-V
	
	C
	V-F-F-V
	
	D
	V-F-V-F
	
	E
	F-V-V-V
Você acertou!
A alternativa que contém a sequência correta é a letra e). A afirmativa I está incorreta, pois qualquer intervalo centrado em x=1x=1 não está contido no conjunto XX. A afirmativa II está correta, pois para qualquer x∈Rx∈R, com x∉Xx∉X, é fácil ver que existem vizinhanças de xx que não contém pontos de XX e para ospontos x∈Xx∈X, existem vizinhanças de xx que contém apenas o ponto xx. Logo, não existem pontos de acumulação. A afirmativa III está correta, pois qualquer vizinhança de zero contém um ponto diferente de zero que pertence ao conjunto XX. A afirmativa IV está correta pois zero é o limite da sequência (1n)(1n) que é formada por pontos de XX. (livro-base, Capítulo 3).
Questão 8/10 - Análise Matemática
Na definição de integral definida ∫baf(x)dx∫abf(x)dx, trabalhamos com uma função ff definida em um intervalo limitado [a,b][a,b] e presumimos que ff não tenha uma descontinuidade infinita. 
   Agora entenderemos o conceito de integral definida para o caso em que o intervalo é infinito e também para o caso onde ff tem uma descontinuidade infinita em [a,b][a,b]. Em ambos os casos, a integral é chamada integral imprópria. 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: STEWART, James. Cálculo. 7. ed. São Paulo: Cengage, 2013. v. I. p. 470.
 
Observe a imagem:
Com base na imagem dada e nos conteúdos do livro-base Análise Matemática sobre Integrais impróprias, a área da região hachurada na figura é o valor da integral imprópria ∫+∞11x2dx∫1+∞1x2dx que corresponde a:
Nota: 10.0
	
	A
	A(D)=∞A(D)=∞
	
	B
	A(D)=2A(D)=2
	
	C
	A(D)=1A(D)=1
Você acertou!
∫+∞11x2=limt→+∞∫t11x2dx=limt→+∞(F(t)−F(1))=limt→+∞((−1t)−(−11))=∫1+∞1x2=limt→+∞∫1t1x2dx=limt→+∞(F(t)−F(1))=limt→+∞((−1t)−(−11))= limt→+∞(−1t+1)=0+1=1limt→+∞(−1t+1)=0+1=1 (livro-base, p. 161)
	
	D
	A(D)=eA(D)=e
	
	E
	A(D)=e−1A(D)=e−1
Questão 9/10 - Análise Matemática
Atente para o seguinte excerto de texto:
“A exclusão do ponto x=ax=a na definição de limite é natural, pois o limite LL nada tem a ver com o valor f(a)[...]f(a)[...]. O conceito de limite é introduzido para caracterizar o comportamento da função f(x)f(x) nas proximidades do valor aa, porém mantendo-se sempre diferente de aa. Assim, podemos mudar o valor da função no ponto como quisermos, sem que isso mude o valor do limite, e é assim mesmo que deve ser. Agora, se a função já está definida em aa, e seu valor aí coincide com seu limite, então ocorrerá a continuidade do ponto”.
 
Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em:
ÁVILA, Geraldo. Análise Matemática para licenciatura. 3 ed. ver. e ampl. São Paulo: Edgard Blücher, 2006.  p. 143.
 
Com base no fragmento de texto dado e nos conteúdos do livro-base Análise Matemática sobre Limite e continuidade, analise as afirmativas a seguir:
 
I. Se ff é uma função contínua em um ponto x=ax=a do seu domínio, então, ff é limitada numa vizinhança de a.
II. Toda função que é limitada superiormente e inferiormente é contínua.
III. Se existe o limite de uma função f(x)f(x) quando xx se aproxima de um ponto aa, então, ff é contínua no ponto aa.
IV. Se uma função possui limites laterais iguais em um ponto x=ax=a, então existe o limite bilateral de f(x)f(x) quando x=ax=a.
São corretas as alternativas:
Nota: 10.0
	
	A
	I e II apenas
	
	B
	I, III e IV apenas
	
	C
	I e IV apenas
Você acertou!
A afirmativa I é verdadeira, pois se ff é contínua em aa, então existe limx→af(x)limx→af(x). Logo ff é limitada numa vizinhança de aa. (livro-base, p. 92). A afirmativa II é falsa, basta ver o seguinte exemplo: f(x)={1,x≤00,x>0f(x)={1,x≤00,x>0. A função ff é limitada, pois |f(x)|≤1|f(x)|≤1 para todo x∈Rx∈R, mas ff não é contínua em x=0x=0. A afirmativa III é falsa, basta ver o seguinte exemplo: f(x)=⎧⎨⎩x2−1x−1,x≠10x=1f(x)={x2−1x−1,x≠10x=1. Temos que .
A afirmativa I é verdadeira, pois se ff é contínua em aa, então existe limx→af(x)limx→af(x). Logo ff é limitada numa vizinhança de aa. (livro-base, p. 92). A afirmativa II é falsa, basta ver o seguinte exemplo: f(x)={1,x≤00,x>0f(x)={1,x≤00,x>0. A função ff é limitada, pois |f(x)|≤1|f(x)|≤1 para todo x∈Rx∈R, mas ff não é contínua em x=0x=0. A afirmativa III é falsa, basta ver o seguinte exemplo: f(x)=⎧⎨⎩x2−1x−1,x≠10x=1f(x)={x2−1x−1,x≠10x=1. Temos que limx→1−f(x)=limx→1−x2−1x−1=limx→1−x+1=2≠f(1)limx→1−f(x)=limx→1−x2−1x−1=limx→1−x+1=2≠f(1). A afirmativa IV é verdadeira, pois se
 limx→a+f(x)=L=limx→a−f(x)limx→a+f(x)=L=limx→a−f(x), então limx→af(x)=Llimx→af(x)=L  . (livro-base, p. 96).
	
	D
	II e IV apenas
	
	E
	II e III apenas
Questão 10/10 - Análise Matemática
Considere a seguinte imagem:
Fonte: imagem elaborada pelo autor da questão.
Considerando o gráfico fornecido e os conteúdos estudados no livro-base Análise Matemática sobre Teoria da Integral, assinale a alternativa que contém a área da região compreendida entre o eixo xx  e o gráfico da função f(x)=x+2f(x)=x+2  no intervalo limitado por x=0x=0 e x=2x=2.
 
Nota: 10.0
	
	A
	2
	
	B
	3232
	
	C
	4
	
	D
	1414
	
	E
	6
Você acertou!
A área da região é dada por: A(D)=∫20(x+2)dx=(x22+2x)∣∣∣20=(222+2⋅2)−(022+2⋅0)=[(2+4)−0]=6A(D)=∫02(x+2)dx=(x22+2x)|02=(222+2⋅2)−(022+2⋅0)=[(2+4)−0]=6.    (livro-base, p. 156).

Outros materiais