Prévia do material em texto
08/10/2020 UNIASSELVI - Centro Universitário Leonardo Da Vinci - Portal do Aluno - Portal do Aluno - Grupo UNIASSELVI https://portaldoalunoead.uniasselvi.com.br/ava/notas/request_gabarito_n2.php 1/3 Acadêmico: Quenaz Cardoso Pereira (2505204) Disciplina: Geometria Analítica e Álgebra Vetorial (EMC02) Avaliação: Avaliação II - Individual Semipresencial ( Cod.:656381) ( peso.:1,50) Prova: 24587864 Nota da Prova: 9,00 Legenda: Resposta Certa Sua Resposta Errada 1. Uma transformação linear pode ser compreendida e associada ao estudo de funções, que normalmente já conhecemos desde o Ensino Médio. Isto se deve ao fato de uma transformação linear ligar dois conjuntos através de uma lei de formação. A grande diferença é que uma transformação opera com vetores e não com números reais como de costume. Baseado na transformação linear de R³ em R³ dada por T(x,y,z) = (x + y, 2x, y - z), classifique V para as sentenças verdadeiras e F para as falsas: ( ) Uma base para a imagem desta transformação é [(1,2,0),(1,0,1),(0,0,1)]. ( ) A sua imagem tem dimensão 2. ( ) O núcleo da transformação possui apenas o vetor nulo. ( ) A dimensão do domínio da transformação é 3. Assinale a alternativa que apresenta a sequência CORRETA: a) V - F - V - V. b) V - V - F - F. c) V - V - F - V. d) F - V - F - V. 2. O produto vetorial é de grande utilidade para a física para analisar o comportamento no eletromagnetismo, mecânica de corpos rígidos e dos fluidos. Na matemática, o produto vetorial aplica-se a vetores em R³ resolvendo problemas na geometria, no qual o produto entre dois vetores tem como solução um novo vetor, simultaneamente ortogonal aos outros dois. Baseado nisto, quanto ao produto vetorial (u x v) entre os vetores u = (1,1,2) e v = (-3,1,2), analise as opções a seguir: I- u x v = (1,8,-4). II- u x v = (0,8,4). III- u x v = (0,-8,4). IV- u x v = (0,8,-4). Assinale a alternativa CORRETA: a) Somente a opção II está correta. b) Somente a opção I está correta. c) Somente a opção IV está correta. d) Somente a opção III está correta. 3. Uma das aplicações mais práticas do conceito de produto vetorial é o cálculo de área. Por exemplo, temos a área do paralelogramo formada pela unificação de dois vetores, que é o módulo (ou norma) do produto vetorial entre os dois. Já para o caso da área do triângulo, bastaria dividir este resultado por dois, pois a área do triângulo é a metade da área do paralelogramo. Determine a área do triângulo formado pelos vetores u = (1,2,0) e v = (0,1,2): a) Somente a opção IV está correta. b) Somente a opção II está correta. c) Somente a opção III está correta. d) Somente a opção I está correta. 08/10/2020 UNIASSELVI - Centro Universitário Leonardo Da Vinci - Portal do Aluno - Portal do Aluno - Grupo UNIASSELVI https://portaldoalunoead.uniasselvi.com.br/ava/notas/request_gabarito_n2.php 2/3 4. Com relação às transformações lineares, é importante determinar corretamente conceitos de núcleo, imagem, juntamente a suas respectivas dimensões para um entendimento teórico do problema encontrado. Baseado nisto, considere T, um operador linear de R³ em R³: T(x,y,z) = (z, x - y, -z) Assinale a alternativa CORRETA que melhor apresenta a dimensão da Imagem deste operador: a) 0. b) 3. c) 2. d) 1. Você não acertou a questão: Atenção! Está não é a resposta correta. 5. Dado um espaço vetorial V, há subconjuntos de V tais que eles próprios também são espaços vetoriais, só que menores. Esses subconjuntos são chamados de subespaços de V. Sobre o exposto, classifique V para as sentenças verdadeiras e F para as falsas: ( ) O conjunto dos números irracionais é um subespaço dos números reais. ( ) Um plano é um subespaço de R² ( ) Um ponto é um subespaço de R. ( ) Uma reta que passa na origem é um subespaço de R². Assinale a alternativa que apresenta a sequência CORRETA: a) F - F - V - V. b) F - V - V - F. c) V - V - F - F. d) V - F - F - V. 6. Pela definição de vetor, sabemos que dados dois pontos e um sentido podemos determinar o vetor que liga estes dois pontos e possui a direção indicada. Através deste processo podemos mais tarde ter um apoio no estudo das retas e planos no espaço. Baseado nisso, assinale a alternativa CORRETA que apresenta o vetor u definido pelos pontos A = (1,0,-3) e B = (2,4,1), no sentido de B para A: a) u = (0,-4,-4). b) u = (-1,-4,-2). c) u = (-1,-4,2). d) u = (-1,-4,-4). 7. A norma ou módulo de um vetor trata da verificação de qual é o comprimento do vetor analisado. Fisicamente, o módulo do vetor informa qual a intensidade da grandeza física envolvida em um dado problema. Assinale a alternativa CORRETA que apresenta a norma (ou módulo) do vetor z = (1,4): a) 4. b) Raiz de 17. c) Raiz de 5. d) 2. 8. Em matemática, o produto vetorial é uma operação binária sobre vetores em um espaço vetorial. Seu resultado difere do produto escalar por ser também um vetor, ao invés de um escalar. Seu principal uso baseia-se no fato de que o resultado de um produto vetorial é sempre perpendicular a ambos os vetores originais. Quanto ao resultado do produto escalar entre u = (1,-2,3) e v = (0,2,1), classifique V para as opções verdadeiras e F para as falsas: ( ) u x v = -2. ( ) u x v = -1. ( ) u x v = 0. ( ) u x v = 1. Assinale a alternativa que apresenta a sequência CORRETA: a) F - V - F - F. b) V - F - F - F. c) F - F - F - V. d) F - F - V - F. 9. Seja uma transformação linear de R² em R², em relação as bases canônicas: 08/10/2020 UNIASSELVI - Centro Universitário Leonardo Da Vinci - Portal do Aluno - Portal do Aluno - Grupo UNIASSELVI https://portaldoalunoead.uniasselvi.com.br/ava/notas/request_gabarito_n2.php 3/3 a) As opções I e IV estão corretas. b) As opções III e IV estão corretas. c) As opções II e III estão corretas. d) As opções I e II estão corretas. 10.Os problemas ligados ao conceito de autovalores, vistos em Álgebra Linear, permeiam muito mais do que estamos acostumados a verificar. Não são apenas as raízes do polinômio característico de uma transformação linear, mas sim o problema clássico de autovalores, que é absolutamente essencial para a compreensão e a análise de estruturas simples, tais como treliças, vigas, pórticos, placas etc., como também de sistemas estruturais mais complexos, dentre os quais podem ser citados os seguintes: pontes rodoviárias e ferroviárias, torres de aço de telecomunicações e de transmissão de energia, estádios de futebol, passarelas de pedestres, edificações residenciais, edifícios altos, plataformas off-shore etc. Sobre a soma dos autovalores da transformação apresentada a seguir, classifique V para as opções verdadeiras e F para as falsas e, em seguida, assinale a alternativa que apresenta a sequência CORRETA: a) V - F - F - F. b) F - F - V - F. c) V - V - F - V. d) F - V - F - F. Prova finalizada com 9 acertos e 1 questões erradas.