Prévia do material em texto
Atenção. Este gabarito é para uso exclusivo do aluno e não deve ser publicado ou compartilhado em redes sociais ou grupo de mensagens. O seu compartilhamento infringe as políticas do Centro Universitário UNINTER e poderá implicar sanções disciplinares, com possibilidade de desligamento do quadro de alunos do Centro Universitário, bem como responder ações judiciais no âmbito cível e criminal. Questão 1/10 - Cálculo Diferencial Integral a Várias Variáveis Leia o fragmento de texto a seguir: "A função da derivada parcial em relação a um valor xixi é a derivada de f em relação a xixi uma vez que admitamos todas as outras variáveis como constantes". Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80. Considerando o fragmento de texto acima e os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis, assinale a alternativa correta que corresponde às derivadas parciais da função f(x,y,z)=3x2+4xy−3zy.f(x,y,z)=3x2+4xy−3zy. Nota: 10.0 A ∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y.∂f∂x=6x+4y;∂f∂y=4x−3z;∂f∂z=−3y. Você acertou! Comentário: Esta é a alternativa correta, pois calculamos a derivada parcial separadamente em relação a cada variável. Assim, temos: ∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3zy)=−3y.∂∂x(3x2+4xy−3zy)=6x+4y;∂∂y(3x2+4xy−3zy)=4x−3z;∂∂z(3x2+4xy−3z y)=−3y. (Livro-base, p. 80). B ∂f∂x=4y;∂f∂y=4y−3x;∂f∂z=−3y.∂f∂x=4y;∂f∂y=4y−3x;∂f∂z=−3y. C ∂f∂x=−6x−4z;∂f∂y=y;∂f∂z=y.∂f∂x=−6x−4z;∂f∂y=y;∂f∂z=y. D ∂f∂x=x;∂f∂y=y;∂f∂z=z.∂f∂x=x;∂f∂y=y;∂f∂z=z. E ∂f∂x=−4xyz;∂f∂y=6xyz;∂f∂z=xyz.∂f∂x=−4xyz;∂f∂y=6xyz;∂f∂z=xyz. Questão 2/10 - Cálculo Diferencial Integral a Várias Variáveis Leia o excerto de texto a seguir: "Se considerarmos C uma curva da equação y=f(x)y=f(x), em que a função ff é contínua e derivável no intervalo fechado [a,b][a,b], isso nos permite determinar o comprimento do arco da curva C, de aa até bb. [Para calcular tal comprimento utiliza-se a fórmula ∫ba√1+[f′(x)]2 dx∫ab1+[f′(x)]2dx. ]". Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 21. Considere o excerto de texto acima, os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, a equação f′(x)=x3/2−4f′(x)=x3/2−4 e o intervalo [a,b]=[1,4][a,b]=[1,4]. Agora, assinale a alternativa correta que apresenta o comprimento do arco de f(x)f(x) no intervalo [a,b][a,b]: Nota: 10.0 A 80√10−√13 88010−138 B 80278027 C 80√10−13√13 278010−131327 Você acertou! Comentário: Esta é a alternativa correta, pois para calcularmos o comprimento da curva, devemos ter a derivada da função f, Se f(x)=x3/2−4f(x)=x3/2−4 então f′(x)=3x1/22f′(x)=3x1/22. Aplicando a fórmula a ∫ba√1+[f′(x)]2 dx∫ab1+[f′(x)]2dx. teremos: a ∫ba√1+[f′(x)]2 dx∫41√ 1+[3x1/22]2 dx∫41√ 1+9x4 dx∫ab1+[f′(x)]2dx∫141+[3x1/22]2dx∫141+9x4dx Agora, para podermos integrar esta raiz, o que está fora dela deve ser a derivada do que está dentro dela. Como a derivada de 1+9x41+9x4 é 9/4, inserimos esta fração e tiramos fora da integral. Assim fica fácil a integração. C=49∫41√ 1+9x4 94dxC=49∣∣ ∣ ∣ ∣ ∣∣(1+9x4)3/232∣∣ ∣ ∣ ∣ ∣∣41=827(1+9x4)3/2∣∣ ∣∣41827[(1+9⋅44)3/2−(1+9⋅14)3/2]=827[(1+9)3/2−(1+94)3/2]=827[(10)3/2−(134)3/2]=827[10√10−134√ 134 ]=827[10√10−138√13 ]=827[80√1 0−13√13 8]=80√10−13√13 27C=49∫141+9x494dxC=49|(1+9x4)3/232|14=827(1+9x4)3/2|14827[(1+9⋅44)3/2−(1+9⋅14)3/2]=827[(1+9)3/2−(1+94)3/2 ]=827[(10)3/2−(134)3/2]=827[1010−134134]=827[1010−13813]=827[8010−13138]=8010−131327 (Livro-base p. 24). D √10 21610216 E 827(80√10−√13 )827(8010−13) Questão 3/10 - Cálculo Diferencial Integral a Várias Variáveis Leia o excerto de texto a seguir: "Em geral, podemos concluir que a derivada direcional de um campo escalar numa determinada direção será o produto escalar dessa direção pelo gradiente do campo escalar". Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 86. Considere o excerto de texto acima, os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis e a função f(x,y)=lnx−lny.f(x,y)=lnx−lny. Agora, assinale a alternativa correta que apresenta a derivada de ff no ponto P=(12,−13)P=(12,−13), na direção do vetor unitário ⃗u=(35,−45).u→=(35,−45). Nota: 10.0 A ∂f∂⃗u(35,−13)=85.∂f∂u→(35,−13)=85. B ∂f∂⃗u(35,−13)=−135.∂f∂u→(35,−13)=−135. C ∂f∂⃗u(35,−13)=−65.∂f∂u→(35,−13)=−65. Você acertou! Comentário: Esta é a alternativa correta, pois notamos que ∂f∂⃗u(x0,y0)=∇f(x0,y0)⋅⃗u.∂f∂u→(x0,y0)=∇f(x0,y0)⋅u→. Assim, ∂f∂⃗u(1/2,−1/3)=∇f(1/2,−1/3)⋅(3/5,−4/5).∂f∂u→(1/2,−1/3)=∇f(1/2,−1/3)⋅(3/5,−4/5). Como ∂f∂x(x,y)=1x e ∂f∂y(x,y)=−1y,∂f∂x(x,y)=1x e ∂f∂y(x,y)=−1y, temos ∇f(1/2,−1/3)=(2,3)∇f(1/2,−1/3)=(2,3) e, portanto, ∂f∂⃗u(1/2,−1/3)=(2,3)⋅(3/5,−4/5)=−65.∂f∂u→(1/2,−1/3)=(2,3)⋅(3/5,−4/5)=−65. (livro-base, p. 86). D −57.−57. E −85.−85. Questão 4/10 - Cálculo Diferencial Integral a Várias Variáveis Leia o texto a seguir: No espaço tridimensional, estabelecemos três relações representadas por valores do conjunto domínio Dm(f), expresso por (x,y,z), com respectiva imagem Im(f) expressa pela função f(x,y,z). Fonte: Texto elaborado pelo autor da questão. Considere o texto acima, os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis e a função f(x,y,z)=x2+y2|√ z−1 |f(x,y,z)=x2+y2|z−1| com domínio Dom(f)={(x,y,z)∈R3/z>1}Dom(f)={(x,y,z)∈R3/z>1}. Agora, assinale a alternativa correta que apresenta o valor de f(x,y,z)f(x,y,z) no ponto (2,3,5)(2,3,5): Nota: 10.0 A 132132 Você acertou! Comentário: Esta é a alternativa correta, conforme a seguinte solução: substituindo os valores de x, y e z em f(x,y,z) temos: f(2,3,5)=22+32|√ 5−1 |=4+9|√ 4 |=132.f(2,3,5)=22+32|5−1|=4+9|4|=132. (livro-base, p. 77). B 145145 C 133133 D 115115 E 154154 Questão 5/10 - Cálculo Diferencial Integral a Várias Variáveis Leia o extrato de texto a seguir: "[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46.. Considerando o extrato de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, assinale a alternativa correta que apresenta o valor da integral repetida ∫21∫102xydydx∫12∫012xydydx: Nota: 0.0 A 11 B 3232 Comentário: Esta é a alternativa correta, pois para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então, ∫21∫102xydydx=2∫21x[∫10ydy]dx=2∫21x[y22]10dx=2∫21x[122−022]dx=2∫21x12dx=∫21xdx=x22∣∣∣21222−12242−12=32∫12∫012xydydx=2∫12x[∫01ydy]dx =2∫12x[y22]01dx=2∫12x[122−022]dx=2∫12x12dx=∫12xdx=x22|12222−12242−12=32 (Livro-base p. 43-47). C 1212 D 5252 E 7272 Questão 6/10 - Cálculo Diferencial Integral a Várias Variáveis Leia o trecho de texto a seguir: "A função da derivada parcial em relação a um valor xi é a derivada de f em relação a xi uma vez que admitamos todasas outras variáveis constantes". Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 80. Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis, assinale a alternativa correta que apresenta o valor das derivadas parciais, ao calcular a função f(x,y,z)=3x+5y−6zf(x,y,z)=3x+5y−6z: Nota: 10.0 A fx=3;fy=5;fz=−6fx=3;fy=5;fz=−6 Você acertou! Comentário: Esta é a alternativa correta, pois calculamos a derivada separadamente em relação a cada variável. Então as derivadas parciais de f(x,y,z)=3x+5y−6zf(x,y,z)=3x+5y−6z são: fx=3fx=3 pois a derivada dos outros termos é zero por não ter o termo xx. fy=5fy=5 pois a derivada dos outros termos é zero por não ter o termo yy. fz=−6fz=−6 pois a derivada dos outros termos é zero por não ter o termo zz. (livro-base, p. 80). B fx=−3;fy=−5;fz=−5fx=−3;fy=−5;fz=−5 C fx=5;fy=3;fz=−6fx=5;fy=3;fz=−6 D fx=6;fy=5;fz=−3fx=6;fy=5;fz=−3 E fx=−6;fy=5;fz=3fx=−6;fy=5;fz=3 Questão 7/10 - Cálculo Diferencial Integral a Várias Variáveis Leia o extrato de texto a seguir: "[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46. Considerando o extrato de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, identifique a alternativa que apresenta o valor da integral repetida ∫10∫10xdydx∫01∫01xdydx: Nota: 10.0 A 1414 B 1313 C 11 D 22 E 1212 Você acertou! Comentário: Esta é a alternativa correta, pois para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então, ∫10∫10xdydx=∫10x[∫10dy]dx=∫10x[y]10dx=∫10x[1−0]dx=∫10xdx=[x22]10=122−022=12∫01∫01xdydx=∫01x[∫01dy]dx=∫01x[y]01dx=∫01x[1−0]dx=∫01xdx =[x22]01=122−022=12 (Livro-base página 43-47). Questão 8/10 - Cálculo Diferencial Integral a Várias Variáveis Leia o texto a seguir: Seja f uma função de duas variáveis x e y, diferenciável num ponto (x0,y0)(x0,y0) do domínio, e sejam as funções dadas por x(t)x(t) e y(t)y(t) diferenciáveis em t0t0, de modo que x(t0)=x0x(t0)=x0 e y(t0)=y0y(t0)=y0, então a função FF composta por ff com xx e yy é tal que: dFdt=dfdx⋅(x0,y0)⋅dxdt(t0)+dfdy⋅(x0,y0)⋅dydt(t0)dFdt=dfdx⋅(x0,y0)⋅dxdt(t0)+dfdy⋅(x0,y0)⋅dydt(t0). Fonte: Texto elaborado pelo autor da questão. Considerando o texto acima, os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis e a função z=x3−4x2y+xy2−y3+1,z=x3−4x2y+xy2−y3+1, onde x=sentx=sent e y=cost.y=cost., assinale a alternativa correta que apresenta a derivada de zz em relação à variável tt: Nota: 10.0 A dzdt=(3x2−8xy+y2)cost+(4x2−2xy+3y2)sent.dzdt=(3x2−8xy+y2)cost+(4x2−2xy+3y2)sent. Você acertou! Comentário: Esta é a alternativa correta, pois pela Regra da Cadeia, como xx e yy estão em função de tt, temos dzdt=∂z∂x⋅dxdt+∂z∂y⋅dydt.dzdt=∂z∂x⋅dxdt+∂z∂y⋅dydt. Portanto, dzdt=(3x2−8xy+y2)cost+(−4x2+2xy−3y2)(−sent)=(3x2−8xy+y2)cost+(4x2−2xy+3y2)sent. dzdt=(3x2−8xy+y2)cost+(−4x2+2xy−3y2)(−sent)=(3x2−8xy+y2)cost+(4x2−2xy+3y2)sent. (livro-base, p. 79) B dzdt=(3x2−8xy+y2)sent+(4x2−2xy+3y2)sentdzdt=(3x2−8xy+y2)sent+(4x2−2xy+3y2)sent C dzdt=(3x2−8xy+y2)cost+(4x2−2xy+3y2)costdzdt=(3x2−8xy+y2)cost+(4x2−2xy+3y2)cost D dzdt=(−8xy+y2)cost+(4x2−2xy)sent.dzdt=(−8xy+y2)cost+(4x2−2xy)sent. E dzdt=(3x2−8xy+y2)costdzdt=(3x2−8xy+y2)cost Questão 9/10 - Cálculo Diferencial Integral a Várias Variáveis Leia o trecho de texto a seguir: "Na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46. Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral de várias variáveis, dada a integral a dupla ∫2−1∫20x2y3dydx∫−12∫02x2y3dydx , identifique a alternativa correta que apresenta o valor correspondente às integrais: Nota: 10.0 A 6 B 10 C 12 Você acertou! Comentário: Esta é a alternativa correta, conforme cálculo a seguir: ∫2−1∫20x2y3dydx==∫2−1x2∫20y3dydx=∫2−1x2⋅[y44]20dx=∫2−1x2⋅[244−044]20dx=∫2−1x2⋅[4−0]dx=∫2−14x2dx=4⋅[x33]2−1=4⋅[233−(−1)33]==4⋅93==12∫−12∫0 2x2y3dydx==∫−12x2∫02y3dydx=∫−12x2⋅[y44]02dx=∫−12x2⋅[244−044]02dx=∫−12x2⋅[4−0]dx=∫−124x2dx=4⋅[x33]−12=4⋅[233−(−1)33]==4⋅93==12 (livro-base, p. 43-72). D 15 E 16 Questão 10/10 - Cálculo Diferencial Integral a Várias Variáveis Leia o trecho de texto a seguir: "[Em integrais repetidas] na intenção de calcular ∫dc∫h(x)g(x)f(x,y)dydx∫cd∫g(x)h(x)f(x,y)dydx, inicialmente integramos f(x,y)f(x,y) em relação a yy, mantendo xx fixo. Os limites de integração g(x)g(x) e h(x)h(x) dependerão desse valor fixo de xx, o que resultará na quantidade ∫h(x)g(x)f(x,y)dy∫g(x)h(x)f(x,y)dy. E, então, integraremos a quantidade posterior em relação a xx, considerando este uma variável entre os limites constantes de integração cc e dd". Após esta avaliação, caso queira ler o texto integralmente, ele está disponível em: RODRIGUES, A. C. D; SILVA, A. R. H. S. Cálculo diferencial e integral de várias variáveis. Curitiba: InterSaberes, 2016, p. 46. Considerando o trecho de texto acima e os conteúdos do livro-base Cálculo diferencial e integral a várias variáveis, identifique a alternativa correta que apresenta o valor da integral repetida ∫1−1∫1−1dydx∫−11∫−11dydx é: Nota: 10.0 A 2 B 1 C zero D 4 Você acertou! Comentário: Esta é a alternativa correta, pois para calcular a integral repetida, primeiro considera uma das variáveis constante. Em nosso caso, consideraremos a variável x. Então, ∫1−1∫1−1dydx=∫1−1[y]1−1dx=∫1−1[1−(−1)]dx=∫1−12dx=2∫1−1dx=2[y]1−1=2[1−(−1)]=4∫−11∫−11dydx=∫−11[y]−11dx=∫−11[1−(−1)]dx=∫−112dx=2∫−11d x=2[y]−11=2[1−(−1)]=4 (Livro-base p. 43-47). E 10