Logo Passei Direto
Buscar

FICHA MILITAR GEOMETRIA PLANA ÁREAS AFA - EFOMM

Ferramentas de estudo

Questões resolvidas

Um terreno retangular de lados cujas medidas, em metro, são x e y será cercado para a construção de um parque de diversões. Um dos lados do terreno encontra-se às margens de um rio.
Nessas condições, as dimensões do terreno e o custo total do material podem ser relacionados pela equação
a) 4(2x + y) = 7.500
b) 4(x + 2y) = 7.500
c) 2(x + y) = 7.500
d) 2(4x + y) = 7.500
e) 2(2x + y) = 7.500

Julgue as afirmativas abaixo e assinale a alternativa correta.
I. Todo paralelogramo é losango.
II. Se um quadrilátero tem todos os lados com a mesma medida, então esse quadrilátero é um quadrado.
III. As diagonais de um quadrado são perpendiculares entre si.
a) Só I é verdadeira.
b) Só II é verdadeira.
c) Só III é verdadeira.
d) I e III são verdadeiras.
e) II e III são verdadeiras.

A figura representa um trapézio isósceles ABCD, com AD = BC = 4cm. M é o ponto médio de AD, e o ângulo ˆBMC é reto.
O perímetro do trapézio ABCD, em cm, é igual a
a) 8.
b) 10.
c) 12.
d) 14.
e) 15.

Dadas as seguintes afirmacoes:
I. Se um paralelogramo tem dois ângulos de vértices consecutivos congruentes, então ele é um retângulo.
II. A altura de um trapézio retângulo que tem o ângulo agudo medindo 30° é igual à metade do lado não perpendicular às bases.
III. Se as diagonais de um quadrilátero são congruentes e perpendiculares, então elas são bissetrizes dos ângulos desse quadrilátero.
a) Apenas I é verdadeira.
b) Apenas II é verdadeira.
c) Todas as afirmações são verdadeiras.
d) Apenas I e II são verdadeiras.
e) Apenas II e III são verdadeiras.

Considere o trapézio ABCD de bases AB e CD. Sejam M e N os pontos médios das diagonais AC e BD, respectivamente.
Então, se AB tem comprimento x e CD tem comprimento y, MN é igual a
a) x - y.
b) 1/2(x - y).
c) 1/3(x - y).
d) 1/3(x + y).
e) 1/4(x + y).

Considerando que as medidas de dois ângulos opostos de um losango são dadas, em graus, por 3x + 60° e 135 - 2x.
A medida do menor ângulo desse losango é
a) 75°.
b) 70°.
c) 65°.
d) 60°.
e) 55°.

Dado um pentágono regular ABCDE, constrói-se uma circunferência pelos vértices B e E de tal forma que BC e ED sejam tangentes a essa circunferência.
A medida do menor arco BE na circunferência construída é
a) 72°.
b) 108°.
c) 120°.
d) 135°.
e) 144°.

Seis circunferências de raio 5 cm são tangentes entre si duas a duas e seus centros são vértices de um hexágono regular.
O comprimento de uma correia tensionada que envolve externamente as seis circunferências mede, em cm,
a) 18√3 + π.
b) 30√10 + π.
c) 18√6 + π.
d) 60√10 + π.
e) 36√6 + π.

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Questões resolvidas

Um terreno retangular de lados cujas medidas, em metro, são x e y será cercado para a construção de um parque de diversões. Um dos lados do terreno encontra-se às margens de um rio.
Nessas condições, as dimensões do terreno e o custo total do material podem ser relacionados pela equação
a) 4(2x + y) = 7.500
b) 4(x + 2y) = 7.500
c) 2(x + y) = 7.500
d) 2(4x + y) = 7.500
e) 2(2x + y) = 7.500

Julgue as afirmativas abaixo e assinale a alternativa correta.
I. Todo paralelogramo é losango.
II. Se um quadrilátero tem todos os lados com a mesma medida, então esse quadrilátero é um quadrado.
III. As diagonais de um quadrado são perpendiculares entre si.
a) Só I é verdadeira.
b) Só II é verdadeira.
c) Só III é verdadeira.
d) I e III são verdadeiras.
e) II e III são verdadeiras.

A figura representa um trapézio isósceles ABCD, com AD = BC = 4cm. M é o ponto médio de AD, e o ângulo ˆBMC é reto.
O perímetro do trapézio ABCD, em cm, é igual a
a) 8.
b) 10.
c) 12.
d) 14.
e) 15.

Dadas as seguintes afirmacoes:
I. Se um paralelogramo tem dois ângulos de vértices consecutivos congruentes, então ele é um retângulo.
II. A altura de um trapézio retângulo que tem o ângulo agudo medindo 30° é igual à metade do lado não perpendicular às bases.
III. Se as diagonais de um quadrilátero são congruentes e perpendiculares, então elas são bissetrizes dos ângulos desse quadrilátero.
a) Apenas I é verdadeira.
b) Apenas II é verdadeira.
c) Todas as afirmações são verdadeiras.
d) Apenas I e II são verdadeiras.
e) Apenas II e III são verdadeiras.

Considere o trapézio ABCD de bases AB e CD. Sejam M e N os pontos médios das diagonais AC e BD, respectivamente.
Então, se AB tem comprimento x e CD tem comprimento y, MN é igual a
a) x - y.
b) 1/2(x - y).
c) 1/3(x - y).
d) 1/3(x + y).
e) 1/4(x + y).

Considerando que as medidas de dois ângulos opostos de um losango são dadas, em graus, por 3x + 60° e 135 - 2x.
A medida do menor ângulo desse losango é
a) 75°.
b) 70°.
c) 65°.
d) 60°.
e) 55°.

Dado um pentágono regular ABCDE, constrói-se uma circunferência pelos vértices B e E de tal forma que BC e ED sejam tangentes a essa circunferência.
A medida do menor arco BE na circunferência construída é
a) 72°.
b) 108°.
c) 120°.
d) 135°.
e) 144°.

Seis circunferências de raio 5 cm são tangentes entre si duas a duas e seus centros são vértices de um hexágono regular.
O comprimento de uma correia tensionada que envolve externamente as seis circunferências mede, em cm,
a) 18√3 + π.
b) 30√10 + π.
c) 18√6 + π.
d) 60√10 + π.
e) 36√6 + π.

Prévia do material em texto

UMA HISTÓRIA DE GRANDES RESULTADOS 
 
1. (Enem 2ª aplicação 2016) Um terreno retangular de lados 
cujas medidas, em metro, são x e y será cercado para a 
construção de um parque de diversões. Um dos lados do terreno 
encontra-se às margens de um rio. Observe a figura. 
 
 
 
Para cercar todo o terreno, o proprietário gastará 
R$ 7.500,00. O material da cerca custa R$ 4,00 por metro 
para os lados do terreno paralelos ao rio, e R$ 2,00 por metro 
para os demais lados. 
 
Nessas condições, as dimensões do terreno e o custo total do 
material podem ser relacionados pela equação 
 
a) 4(2x y) 7.500  
b) 4(x 2y) 7.500  
c) 2(x y) 7.500  
d) 2(4x y) 7.500  
e) 2(2x y) 7.500  
 
2. (G1 - ifal 2016) Julgue as afirmativas abaixo e assinale a 
alternativa correta. 
 
I. Todo paralelogramo é losango. 
II. Se um quadrilátero tem todos os lados com a mesma medida, 
então esse quadrilátero é um quadrado. 
III. As diagonais de um quadrado são perpendiculares entre si. 
 
a) Só I é verdadeira. 
b) Só II é verdadeira. 
c) Só III é verdadeira. 
d) I e III são verdadeiras. 
e) II e III são verdadeiras. 
 
3. (Unesp 2015) A figura representa duas raias de uma pista de 
atletismo plana. Fábio (F) e André (A) vão apostar uma 
corrida nessa pista, cada um correndo em uma das raias. Fábio 
largará à distância FB da linha de partida para que seu 
percurso total, de F até a chegada em C', tenha o mesmo 
comprimento do que o percurso total de André, que irá de A 
até D'. 
 
 
 
Considere os dados: 
- ABCD e A 'B 'C 'D ' são retângulos. 
- B', A ' e E estão alinhados. 
- C, D e E estão alinhados. 
- A 'D e B'C são arcos de circunferência de centro E. 
 
Sabendo que AB 10 m, BC 98 m, ED 30 m, 
ED' 34 m e 72 ,α   calcule o comprimento da pista de A 
até D' e, em seguida, calcule a distância FB. Adote nos 
cálculos finais 3.π  
 
4. (Fgv 2015) A figura representa um trapézio isósceles 
ABCD, com AD BC 4cm.  M é o ponto médio de AD, e 
o ângulo ˆBMC é reto. 
 
 
 
FICHA MILITAR GEOMETRIA PLANA ÁREAS 
AFA - EFOMM
O perímetro do trapézio ABCD, em cm, é igual a 
 
a) 8. 
b) 10. 
c) 12. 
d) 14. 
e) 15. 
 
5. (Ufjf-pism 1 2015) Dadas as seguintes afirmações: 
 
I. Se um paralelogramo tem dois ângulos de vértices 
consecutivos congruentes, então ele é um retângulo. 
II. A altura de um trapézio retângulo que tem o ângulo agudo 
medindo 30  é igual à metade do lado não perpendicular às 
bases. 
III. Se as diagonais de um quadrilátero são congruentes e 
perpendiculares, então elas são bissetrizes dos ângulos 
desse quadrilátero. 
 
É CORRETO afirmar que: 
 
a) Apenas I é verdadeira. 
b) Apenas II é verdadeira. 
c) Todas as afirmações são verdadeiras. 
d) Apenas I e II são verdadeiras. 
e) Apenas II e III são verdadeiras. 
 
6. (Unicamp 2015) A figura abaixo exibe um retângulo ABCD 
decomposto em quatro quadrados. 
 
 
 
O valor da razão 
AB
BC
 é igual a 
 
a) 
5
.
3
 
b) 
5
.
2
 
c) 
4
.
3
 
d) 
3
.
2
 
 
7. (Upe 2014) A figura a seguir mostra uma das peças do jogo 
“Pentaminós”. 
 
 
 
Cada peça é formada por cinco quadradinhos, e o lado de cada 
quadradinho mede 5cm. Com 120 dessas peças, Jorge montou 
uma faixa, encaixando perfeitamente as peças como mostra a 
figura a seguir: 
 
 
 
Quanto mede o perímetro dessa faixa? 
 
a) 1 200 cm 
b) 1 500 cm 
c) 3 000 cm 
d) 3 020 cm 
e) 6 000 cm 
 
8. (Ita 2014) Considere o trapézio ABCD de bases AB e 
CD. Sejam M e N os pontos médios das diagonais AC e 
BD, respectivamente. Então, se AB tem comprimento x e 
CD tem comprimento y x, MN é igual a 
 
a) x y. 
b) 
1
(x y).
2
 
c) 
1
(x y).
3
 
d) 
1
(x y).
3
 
e) 
1
(x y).
4
 
 
9. (G1 - ifsp 2014) Considerando que as medidas de dois 
ângulos opostos de um losango são dadas, em graus, por 
3x 60  e 135 2x,  a medida do menor ângulo desse 
losango é 
 
a) 75°. 
b) 70°. 
c) 65°. 
d) 60°. 
e) 55°. 
 
10. (G1 - cftrj 2014) Quais são, respectivamente, as medidas 
dos ângulos X e Y na figura abaixo, sabendo que E é o ponto 
médio do segmento AD e que BCDE é um losango? 
 
 
 
11. (Ufrn 2013) Uma indústria compra placas de alumínio em 
formato retangular e as corta em quatro partes, das quais duas 
têm a forma de triângulos retângulos isósceles (Fig. 1). Depois, 
reordena as quatro partes para construir novas placas no 
formato apresentado na Fig. 2. 
 
 
 
Se a medida do lado menor da placa retangular é 30 cm, a 
medida do lado maior é 
 
a) 70 cm. 
b) 40 cm. 
c) 50 cm. 
d) 60 cm. 
 
12. (Udesc 2012) Numa praça de alimentação retangular, com 
dimensões 12 m por 16 m, as mesas estão dispostas em fileiras 
paralelas às laterais do ambiente, conforme o esquema da 
figura, sendo as linhas pontilhadas os corredores entre as 
mesas. 
 
 
 
Pela disposição das mesas, existem várias maneiras de se 
chegar do ponto A ao ponto C, movendo-se apenas pelos 
corredores. Seguindo-se o caminho destacado e desprezando-
se a largura dos corredores, a distância percorrida é: 
 
a) 12 m 
b) 20 m 
c) 24 m 
d) 28 m 
e) 16 m 
 
TEXTO PARA A PRÓXIMA QUESTÃO: 
 
Considere um losango ABCD em que M, N, P e Q são os pontos 
médios dos lados AB, BC, CD e DA, respectivamente. Um 
dos ângulos internos desse losango mede ,α sendo 
0 90 .α    
13. (Insper 2012) Se 60 ,α   então a razão entre o perímetro 
do losango ABCD e o perímetro do quadrilátero MNPQ, nessa 
ordem, é igual a 
 
a) 3 1. 
b) 2. 
c) 3. 
d) 
3
.
2
 
e) 2 3 2. 
 
14. (G1 - ifce 2011) As medidas dos ângulos internos de um 
quadrilátero convexo são inversamente proporcionais a 5, 8, 10 
e 40, então as medidas, em graus, dos ângulos são, 
respectivamente, iguais a 
 
a) 160°; 100°; 80° e 20°. 
b) 100°; 80°; 20° e 160°. 
c) 80°; 50°; 40° e 10°. 
d) 50°; 40°; 10º e 80°. 
e) 75°; 45°; 40° e 20°. 
 
15. (Espm 2011) Uma parede retangular cujo comprimento 
mede o dobro da altura, foi revestida com azulejos quadrados, 
inteiros e de mesmo tamanho, sendo que, em todo o contorno 
externo, foi feita uma faixa decorativa com 68 peças mais 
escuras, como na figura exemplo abaixo. 
 
 
 
O número de azulejos mais claros usados no interior da parede 
foi de: 
 
a) 260 
b) 246 
c) 268 
d) 312 
e) 220 
 
16. (Udesc 2009) No paralelogramo ABCD, conforme mostra 
a figura, o segmento CE é a bissetriz do ângulo DCB. 
 
 
 
Sabendo que AE 2 e AD 5, então o valor do perímetro do 
paralelogramo ABCD é: 
 
a) 26 
b) 16 
c) 20 
d) 22 
e) 24 
 
17. (Unesp 2008) Uma certa propriedade rural tem o formato de 
um trapézio como na figura. As bases WZ e XY do trapézio 
medem 9,4 km e 5,7 km, respectivamente, e o lado YZ 
margeia um rio. 
 
 
 
Se o ângulo XYZ é o dobro do ângulo XWZ, a medida, em 
km, do lado YZ que fica à margem do rio é: 
 
a) 7,5. 
b) 5,7. 
c) 4,7. 
d) 4,3. 
e) 3,7. 
 
18. (Uerj 2012) Para construir a pipa representada na figura 
abaixo pelo quadrilátero ABCD, foram utilizadas duas varetas, 
linha e papel. 
 
 
 
As varetas estão representadas pelos segmentos AC e BD. A 
linha utilizada liga as extremidades A, B, C e D das varetas, e o 
papel reveste a área total da pipa. Os segmentos AC e BD 
são perpendiculares em E, e os ângulos ˆABC e ˆADC são 
retos. Se os segmentos AE e EC medem, respectivamente, 
18 cm e 32 cm, determine o comprimento total da linha, 
representada por AB BC CD DA.   
 
19. (Eear 2019) O segmento AT é tangente, em T, à 
circunferência de centro O e raio R 8 cm. A potência de A 
em relação à circunferência é igual a ______ 2cm . 
 
 
a) 16 
b) 64 
c) 192 
d) 256 
 
20. (Efomm 2018) Num triângulo ABC, as bissetrizesdos 
ângulos externos do vértice B e C formam um ângulo de 
medida 50 . Calcule o ângulo interno do vértice A. 
 
a) 110 
b) 90 
c) 80 
d) 50 
e) 20 
 
21. (Efomm 2018) Qual é a área de uma circunferência inscrita 
em um triângulo equilátero, sabendo-se que esse triângulo está 
inscrito em uma circunferência de comprimento igual a 
10 cm?π 
 
a) 
75
4
π
 
b) 
25
4
π
 
c) 
5
2
π
 
d) 
25
16
π
 
e) 
5
4
π
 
 
22. (Esc. Naval 2014) Rola-se, sem deslizar, uma roda de 1 
metro de diâmetro, por um percurso reto de 30 centímetros, em 
uma superfície plana. O ângulo central de giro da roda, em 
radianos, é 
 
a) 0,1 
b) 0,2 
c) 0,3 
d) 0,6 
e) 0,8 
 
23. (G1 - ifsp 2011) Na figura, a reta t é tangente, no ponto P, 
ao círculo de centro O. A medida do arco é 100º e a do arco 
 é 194º. O valor de x, em graus, é 
 
 
a) 53. 
b) 57. 
c) 61. 
d) 64. 
e) 66. 
 
24. (Fgv 2008) Dado um pentágono regular ABCDE, constrói-
se uma circunferência pelos vértices B e E de tal forma que 
BC e ED sejam tangentes a essa circunferência, em B e E, 
respectivamente. 
 
 
 
A medida do menor arco BE na circunferência construída é 
 
a) 72 . 
b) 108 . 
c) 120 . 
d) 135 . 
e) 144 . 
 
25. (Ita 2017) Seis circunferências de raio 5 cm são tangentes 
entre si duas a duas e seus centros são vértices de um 
hexágono regular, conforme a figura abaixo. 
 
 
 
O comprimento de uma correia tensionada que envolve 
externamente as seis circunferências mede, em cm, 
a) 18 3 .π 
b) 30 10 .π 
c) 18 6 .π 
d) 60 10 .π 
e) 36 6 .π

Mais conteúdos dessa disciplina