Buscar

CÁLCULO DIFERENCIAL E INTEGRAL II - Funções de Várias Variáveis e suas Derivadas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 49 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 49 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 49 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
Aplicação do conceito de funções de várias variáveis e suas derivadas.
PROPÓSITO
Identificar a função de várias variáveis a valores reais, as derivadas parciais e o gradiente da função, além do conceito da regra da
cadeia, derivadas direcionais e derivadas parciais de ordem superior.
PREPARAÇÃO
Antes de iniciar o conteúdo deste tema, tenha em mãos papel, caneta e uma calculadora científica ou use a calculadora de seu
smartphone/computador.
OBJETIVOS
MÓDULO 1
Empregar as funções de várias variáveis
MÓDULO 2
Aplicar a derivação parcial e o gradiente de uma função escalar
MÓDULO 3
Aplicar a regra da cadeia para funções escalares
MÓDULO 4
Aplicar a derivada direcional e a derivada parcial de ordem superior
INTRODUÇÃO
MÓDULO 1
 EMPREGAR AS FUNÇÕES DE VÁRIAS VARIÁVEIS
INTRODUÇÃO
Existem vários tipos de funções que são definidas dependendo do conjunto escolhido para seu domínio e sua imagem.
Diversos fenômenos naturais, bem como diversas aplicações do nosso cotidiano fornecem, como resultado (saída), um valor real, mas
que depende de várias variáveis em suas entradas ao invés de apenas uma.
 EXEMPLO
A temperatura em cada ponto de uma sala depende da posição desse ponto dentro dessa sala. Assim, a função que representa o valor
dessa temperatura dependerá de três variáveis que representam a posição do ponto no espaço, isto é (x,y,z).
Dito isso, necessitamos definir uma função matemática que possua uma entrada vetorial (várias variáveis) e forneça como resultado
um valor real.
O DOMÍNIO É UM SUBCONJUNTO DE RN E A IMAGEM ESTÁ NO CONJUNTO DOS
NÚMEROS REAIS. ESTAS FUNÇÕES SÃO DENOMINADAS DE FUNÇÕES DE VÁRIAS
VARIÁVEIS REAIS A VALORES REAIS, OU SIMPLESMENTE FUNÇÕES ESCALARES.
Este módulo definirá as funções escalares e suas representações gráficas.
DEFINIÇÃO DE FUNÇÕES ESCALARES
Vamos relembra a definição do conjunto Rn, com n inteiro e n > 1:
RN = X1 , X2 , … , XN COM X1 , X2¸ … , XN REAIS
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O elemento do conjunto é uma n-upla que representa um vetor com n componentes, sendo que cada componente xj, 1 ≤ j ≤ n é um
número real.
Seja uma função f cujo domínio está em subconjunto de conjunto Rn e sua imagem está em um subconjunto do Rm, com n e m inteiros
maiores ou iguais a 1. Dependendo dos valores de m e n, teremos definidas funções de tipos diferentes.
Vejamos as possibilidades:
ETAPA 01
ETAPA 02
ETAPA 03
ETAPA 04
Quando n = 1 e m = 1, se tem uma função de uma variável real a valores reais, ou simplesmente funções reais (f: R → R). Em outras
palavras, a entrada e saída da função é um número real. Este tipo de função é estudado no cálculo integral e diferencial com uma
variável.
Por exemplo:
f(x) = 3x + 5, x ∈ R, que é uma função f:R → R
g(y) = 4 cos y + 8, y ∈ R, que é uma função g:R → R
Quando n = 1 e m > 1, se tem uma função de uma variável real a valores vetoriais, ou simplesmente funções vetoriais (f: R → Rm).
Isto é, a entrada é um número real e a imagem é um vetor.
Por exemplo:
{ ( ) }
f(t) =〈t2 + 1, cos t ,5t〉 , t ∈ R, que é uma função f: R → R3
h(u) =〈3u, 4- eu〉, u ∈ R, que é uma função h: R → R2
Quando n > 1 e m > 1, se tem uma função de uma variável vetorial a valores vetoriais, ou simplesmente campos vetoriais (f: Rn →
Rm). Ou seja, a entrada e a saída são vetores.
Por exemplo:
f(x, y, z) = 〈x + y, tg x + 2〉, que é uma função f: R3 → R2
g(u,v) = 〈3u2+ 5v, sen v + 3u, u - 2v〉, que é uma função f: R2 → R3
Por fim, quando n > 1 e m = 1, se tem a função de uma variável vetorial, ou de várias variáveis a valores reais ou simplesmente
função escalar (f: Rn → R). Isto é, a entrada é um vetor, e a saída, um número real.
Por exemplo:
f(x, y, z) = 9xy , que é uma função f: R3 → R
h(u,v) = u2 + 3uv, que é uma função f: R2 → R
As funções escalares, que serão o objeto deste tema, contêm diversas aplicações práticas, pois, de forma geral, os fenômenos
dependem de várias variáveis. Por exemplo, o volume de um recipiente depende do raio e da altura, ou a temperatura de uma região
na terra depende da latitude, longitude e altura.
Vamos começar por definir formalmente a função escalar.
DEFINIÇÃO
UMA FUNÇÃO ESCALAR SERÁ UMA FUNÇÃO F: S ⊂ RN → R, NA QUAL S É UM
SUBCONJUNTO DO CONJUNTO RN COM N INTEIRO E N > 1.
Assim, a cada elemento x1 , x2 , … , xn ∈S será associado um único número real denotado por f x1 , x2 , … , xn .
Portanto, a imagem da função será dada por:
IM F = F X1 , X2 , … , XN ∈R / X1 , X2 , … , XN ∈S⊂RN
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
As variáveis x1 , x2 , … , xn são denominadas de variáveis independentes, enquanto que a variável y é denominada de variável
dependente.
 ATENÇÃO
Quando o domínio não é especificado, se considera este como o subconjunto do Rn que permite, através da equação que define a
função, se obter um número real.
( ) ( )
{ ( ) ( ) }
EXEMPLO 1:
Determine o domínio da função escalar fx,y=x+y-2x-y.
SOLUÇÃO
Ao se analisar o numerador da função, verifica-se a existência de uma raiz quadrada.
Sabemos que só existe raiz quadrada de um número maior ou igual a zero:
x+y-2≥0→x+y≥2
Outro ponto importante é que o numerador não pode ser zero:
x-y≠0→x≠y
Portanto, o domínio de f(x,y) será:
Dom f=x,y ∈R2/ x+y≥2 e x≠y
.
EXEMPLO 2:
Determine, caso seja possível, os valores de fx,y=x+y-2x-y para x,y=4,2 e x,y=3,3.
SOLUÇÃO
Como calculado no exemplo anterior, o domínio da função será o conjunto S tal que
S=x,y/ x+y≥2 e x≠y
O par ordenado (4,2) ∈ S, assim
fx,y=x+y-2x-y→f4,2=4+2-24-2=22=1
O par ordenado (3,3) não pertence a S, pois, apesar de x + y ≥ 2, o valor de x é igual a y, não pertencendo, portanto, ao domínio da
função, não sendo possível obter f(3,3).
EXEMPLO 3:
Determine o domínio da função escalar
gx,y,z=3x+53 ln (2x+ y+z)y2+1
e calcule, caso seja possível, os valores de g(1, 0, 2) e g(1, 0, –3).
SOLUÇÃO
Uma raiz cúbica não tem restrição de domínio. Da mesma forma, o denominador y2 + 1 nunca fornecerá um valor de zero.
Assim, a única restrição de domínio da função será a referente à função log neperiano, que só pode ser aplicado a um número maior
do que zero. Portanto, devemos ter 2x + y + z > 0
Então: Dom f=x,y,z∈R3/ 2x+y+z>0
Quanto aos valores pedidos para a função:
A trinca ordenada (1, 0, 2) ∈ dom g, assim
g1,0,2=3.1+53 ln (2.1+ 0+2)02+1=8 3ln 4=2ln (4)
A trinca ordenada (1, 0, -3) não pertence ao dom g, pois, 2x + y + z = –1 < 0, não sendo possível obter g(1, 0, –3).
GRÁFICO, CURVAS DE NÍVEL E SUPERFÍCIE DE NÍVEL
Vimos a representação da função através de sua equação matemática que relaciona as suas variáveis independentes e o valor real a
ser obtido no resultado da função. Neste tópico, analisaremos a representação gráfica da função escalar.
Só será possível uma representação gráfica que permite uma visualização geométrica para funções escalares cujo domínio está no R2
ou no R3.
Quando o domínio é um subconjunto do R2, isto é, S ⊂ R2, o elemento de entrada da função será um vetor ou par ordenado (x, y). A
função, então, será visualizada através de sua representação gráfica no espaço através dos eixos cartesianos, considerando que z =
f(x, y). Assim, o gráfico da função z = f(x, y) será o conjunto de todos os pontos do espaço (x, y, z) ∈ R3, tal que z = f(x, y) e (x, y)
pertence ao domínio de f(x, y).
Portanto, o gráfico de f(x, y) será definido por
GF=X,Y,Z∈R3 / Z=FX,Y COM X,Y∈S
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O gráfico representará uma superfície que fica acima do conjunto que representa o domínio S da função f(x, y).
 
Fonte: Autor
 Gráfico de uma função escalar no R2.
EXEMPLO 4:
Esboce o gráfico associado à função f(x, y) = 8 - 4x - 2y.
SOLUÇÃO
O gráfico de f(x,y) será definido como
Gf=x,y,z∈R3 / z=8-4x-2y
Repare que a equação z = 8 - 4x - 2y é uma função linear, assim representará, no espaço, um plano.
Para esboçar no plano cartesiano, obtemos alguns pontos.Para x = y = 0 → z = 8 – 0 – 0 = 8
Para z = 0 → 8 – 4x – 2y = 0 → 4x + 2y = 8 → 2x + y = 4, assim quando x = 0 → y = 4 e para y = 0 → x =2.
Assim a representação será
 
Fonte: Autor
A figura apresenta apenas uma parte do plano, pois ele vai tanto para cima quanto para baixo, até o infinito.
Outra forma de visualizar as funções com domínio em um subconjunto do R2 são as curvas de nível ou curvas de contorno, que é
uma forma de representação planar para a função.
As curvas de nível são os contornos traçados no plano xy que representam todos os pontos em que o valor de z = f(x, y) é constante,
isto é, z = f(x, y) = k, na qual k é uma constante real. Assim, definimos uma curva de nível para cada nível k.
 EXEMPLO
Um exemplo prático das curvas de níveis são os mapas topográficos ou mapas que fornecem temperaturas de determinada região.
EXEMPLO 5:
Esboce o gráfico das curvas de nível da função f(x, y) = 8 - 2x - 4y.
SOLUÇÃO
Se fosse para traçar o gráfico de f(x, y), seria representado uma figura espacial, que neste caso seria um plano cuja equação se daria
por z = 8 - 2x - 4y.
Como se deseja esboçar as curvas de nível, é preciso desenhar no plano xy os pontos que atendem a equação 8 - 2x - 4y = k, com k
real.
Portanto, 2x + 4y + (k - 8) = 0, que é a equação de uma reta no plano xy.
Por exemplo:
Para k = 0 → 2x + 4y - 8 = 0 → x + 2y - 4 = 0
Para k = –2 → 2x + 4y - 10 = 0 → x + 2y - 5 = 0
Para k = 4 → 2x + 4y - 4 = 0 → x + 2y - 2 = 0
Assim, as curvas de nível do gráfico que seria um plano, serão retas paralelas.
 
Fonte: Autor
EXEMPLO 6:
Seja a função g(x, y) = 4 - x2 - y2. Sabe-se que o valor de g(x, y) determina o valor da grandeza G para os pontos em uma placa
definidos pelas coordenadas (x, y). Determine a superfície formada pelo gráfico da função g(x, y).
SOLUÇÃO
O gráfico de g(x, y) será definido como
Gf=x,y,z∈R3 / z=4-x2-y2
Repare que gx,y=4-x2-y2=4-(x2+y2), como x2+y2≥0 → z ≤ 4.
Para esboçar no plano cartesiano, obtemos alguns pontos:
Para x = y = 0 → z = 4 – 0 – 0 = 4
Para z = 0 → 0 = 4 -x2 - y2 → x2 + y2 = 4, que é uma circunferência de centro (x, y) = (0, 0) e raio 4=2
Repare que se mantivermos um valor de z = k , k < 4 
k=4-x2-y2→x2+y2=(4-k), que é uma circunferência de centro (x, y) = (0, 0) e raio 4-k.
Esboçando a figura no plano cartesiano.
 
Fonte: Autor
 Paraboloide elíptico com concavidade virada para baixo.
EXEMPLO 7:
Seja a função g(x,y) = 16 - x2 - 9y2. Sabe-se que o valor de g(x, y) determina o valor da grandeza G para os pontos em uma placa
definidos pelas coordenadas (x, y). Determine a figura formada por todos os pontos do plano que apresentam o valor de G = 7.
SOLUÇÃO
Neste caso, o que está sendo pedido é o esboço de uma curva de nível para um nível igual a 7.
gx,y=16-x2-9y2=7
x2+9y2=16-7
x2+9y2=9→x29+y21=1
Que representa uma elipse em (x,y) = (0,0):
 
Fonte: Autor
 Paraboloide elíptico com concavidade virada para baixo.
Quando o domínio for um subconjunto do R3, isto é, S ⊂ R3, o elemento de entrada da função será um vetor ou terna ordenado (x, y,
z). O gráfico da função f(x, y, z) será o conjunto de todos os pontos do espaço (x, y, z, w) ∈ R4, tal que w = f(x, y, z) e (x, y, z) pertence
ao domínio de f(x, y, z).
Esse gráfico será um subconjunto do R4, portanto, não será possível a representação dele através de uma forma geométrica. Para se
ter uma visão geométrica de tal função, vamos nos valer das superfícies de nível, que serão o conjunto de pontos do R3, ou as
superfícies do espaço xyz, tais que f(x, y, z) = k, na qual k é uma constante real. Por isso, definimos uma superfície de nível para cada
nível w = f(x, y, z) = k, k real.
EXEMPLO 8:
Determine as superfícies de nível que representam graficamente a função escalar f(x, y, z) = x2 + y2 + z2.
SOLUÇÃO
As superfícies de nível serão definidas por f(x, y, z) = x2 + y2 + z2 = k, k real.
Como x2 + y2 + z2 ≥ 0, para todo (x, y, z), então só é possível se definir níveis k ≥ 0.
Para facilitar a visualização, vamos definir k = R2 que será um número sempre maior ou igual a zero.
Desse modo, as superfícies de níveis definidas pela equação x2 + y2 + z2 = R2, serão esferas de centro (0, 0, 0) com raio dado por R,
em que R ≥ 0.
RESUMO DO MÓDULO 1
TEORIA NA PRÁTICA
Deseja-se montar um mapa topográfico que representa a altura de um monte de 900 m. O topo do monte é considerado o ponto
central do mapa. Cada ponto será marcado pela distância (x, y) determinada pela distância a dois eixos cartesianos que passam no
ponto central.
O monte será aproximado por uma forma parabólica com concavidade para baixo com altura, medida em metro, dada por uma
equação h (x, y) = H – 2x2 - 3y2, com x e y também medidos em metros. Esboce o mapa topográfico através das curvas de níveis.
RESOLUÇÃO
VEJA A SOLUÇÃO DA QUESTÃO NO VÍDEO A SEGUIR:
MÃO NA MASSA
1. MARQUE A ALTERNATIVA QUE REPRESENTA UMA FUNÇÃO ESCALAR COM DOMÍNIO NO R3.
A) hu,v=3uv,ln u, v2
B) ft=4+tg t
C) mr,s,t=8rt2
D) p(r)=3r,cos r,r+2
E) gu,v=u cos (2v)
2. DETERMINE A ALTERNATIVA QUE APRESENTA O DOMÍNIO DA FUNÇÃO 
GX,Y,Z=3Z-3 LN (4-Y)1-X2
A) Dom g=(x,y,z)∈R3/ x≠1, x≠-1, y<4 e z≥3
B) Dom g=x,y,z∈R3/ x≠1, y<4 e z>3
C) Dom g=(x,y,z)∈R3/ x≠-1 e y<4
D) Dom g=(x,y,z)∈R3/ x=1 , y≤4 e z≥3
E) Dom g=x,y,z∈R3/ x≠1, x≠-1, y≤4 e z>3
3. MARQUE A ALTERNATIVA VERDADEIRA RELACIONADA A FUNÇÃO REAL A VALORES VETORIAIS 
HU,W=4E2UW-3+COS (W)2-U
A) h2,π=4e4π-3
B) h-2,0=4e43-12
C) h6,0=-4e123-12
D) h-2,π=4e-4π-3-12
E) h2,3=cos (3)2
4. MARQUE A ALTERNATIVA QUE APRESENTA A EQUAÇÃO DAS CURVAS DE NÍVEL K PARA A
FUNÇÃO ESCALAR FX,Y=YX-2. CONSIDERE K REAL COMO SENDO O NÍVEL DESEJADO EM CADA
CONTORNO, COM K > 0.
A) Conjunto de retas com equações x = 2k
B) Conjunto de circunferências com equações x2 + y2 = k, exceto o ponto (0,k)
C) Conjunto de retas com equações kx - y - 2k = 0, exceto o ponto (2,0)
D) Conjunto de parábolas de equações y = kx2 - 4k + 1, exceto ponto (2,1)
E) Conjunto de retas com equações x + ky + 3 = 0
5. SEJA A FUNÇÃO G(X, Y, Z) = X + 4Y + 8Z, DESCREVA AS SUPERFÍCIES DE NÍVEL QUE
REPRESENTAM A QUESTÃO.
A) Um conjunto de esferas centrada na origem
B) Um conjunto de planos
C) Um conjunto de elipsoides
D) Um conjunto vazio
E) Um conjunto de hiperboloides
6. MARQUE A ALTERNATIVA FALSA EM RELAÇÃO A FUNÇÃO
FX,Y=16-X2-Y2
A) A função é uma função escalar.
B) O esboço do domínio da função no plano xy é um círculo centrado na origem com raio 4.
C) A imagem da função é f(x, y) > 0.
D) O esboço das curvas de nível são circunferências no plano xy com centro na origem e raio 16-k2, 0 ≤ k ≤ 4, sendo k o nível
desejado.
E) O gráfico da função será uma semiesfera de raio 4.
GABARITO
1. Marque a alternativa que representa uma função escalar com domínio no R3.
A alternativa "C " está correta.
A função h(u,v) da alternativa A é um campo vetorial, com entrada e saída vetoriais.
A função f(t) da alternativa B é uma função real, com entrada e saída reais.
A função p(r) da alternativa D é uma função vetorial, com entrada real e saída vetorial.
As funções m(r,s,t) e g(u,v) são funções escalares, porém a função g(u,v) tem domínio no R2 e a função m(r,s,t), que é a reposta
correta, tem domínio no R3.
2. Determine a alternativa que apresenta o domínio da função 
gx,y,z=3z-3 ln (4-y)1-x2
A alternativa "A " está correta.
Analisando o denominador da equação, ele deve ser diferente de zero:
1-x2≠0→x2≠1→x≠1 ou x≠-1
Quanto à parcela z-3, o número dentro de uma raiz quadrática deve ser maior ou igual a zero:
z-3≥0→z≥3
Por fim, a parcela relacionada ao log neperiano só é possível se o argumento for maior do que zero:
4-y>0→y<4
Então, o domínio de g(x,y,z) será
Dom g=(x,y,z)∈R3/ x≠1, x≠-1, y<4 e z≥3
3. Marque a alternativa verdadeira relacionada a função real a valores vetoriais 
hu,w=4e2uw-3+cos (w)2-u
A alternativa "D " está correta.
Vamos, inicialmente, determinar o domínio. Analisando o denominador da primeira parcela sendo diferente de zero, assim
w-3≠0→w≠3
Quanto ao numeradorda primeira parcela (4 e2u) e o da segunda parcela (cos(w)), não existe nenhuma restrição para o domínio, pois
eles podem ser calculados para qualquer valor real.
O denominador da segunda parcela é uma raiz quadrática, além disso, não pode ser zero por estar no denominador:
2-u>0→u<2
Logo, o domínio de h(u, w) será
Dom h=(u,w)∈R2/ w≠3 e u<2
Na alternativa A, é impossível calcular h(2, π), pois o par ordenado (2, π) não atende a condição do domínio de u < 2.
Na alternativa B, apenas é possível calcular h(-2, 0), pois (-2, 0) faz parte do domínio da função, o valor correto é h-2,0=-4e-43+12
Na alternativa C, é impossível calcular h(6, 0), pois o par ordenado (6, 0) não atende a condição do domínio de u < 2.
Na alternativa E, é impossível calcular h(2, 3), pois o par ordenado (2, 3) não atende a condição do domínio de w ≠ 3.
Portanto, a alternativa correta é a letra D, pois (-2, π) faz parte do domínio e vale
h-2,π=4e-4π-3-12
4. Marque a alternativa que apresenta a equação das curvas de nível k para a função escalar fx,y=yx-2. Considere k real como
sendo o nível desejado em cada contorno, com k > 0.
A alternativa "C " está correta.
fx,y=yx-2=k , x≠2→k(x-2)=y
kx-2k=y→kx-y-2k=0, com x ≠2
Para x = 2 → y = 0, assim a equação será kx-y-2k=0(x,y)≠(2,0)
Esta equação representa uma reta no plano, com exceção do ponto (2,0). Sendo a alternativa correta a letra C.
5. Seja a função g(x, y, z) = x + 4y + 8z, descreva as superfícies de nível que representam a questão.
A alternativa "B " está correta.
Veja a solução da questão no vídeo a seguir:
6. Marque a alternativa falsa em relação a função
fx,y=16-x2-y2
A alternativa "C " está correta.
Veja a solução da questão no vídeo a seguir:
GABARITO
VERIFICANDO O APRENDIZADO
1. MARQUE A ALTERNATIVA QUE APRESENTA, RESPECTIVAMENTE, O DOMÍNIO DA FUNÇÃO
HX,Y,Z=2-Z LN (Y-1)2X-6 E O VALOR DE H(4, 3, 0).
A) Dom h:x,y,z∈R3 / x≠3, y>1 e z≤2 e h4,3,0=ln24
B) Dom h:x,y,z∈R3 / x≠2, y<1 e z>2 e h4,3,0=2 ln22
C) Dom h:x,y,z∈R3 / x≠3, y>1 e z≤2 e h4,3,0=2 ln22
D) Dom h:x,y,z∈R3 / x≠6, y≥1 e z<2 e h4,3,0=2 ln62
E) Dom h:x,y,z∈R3 / x≠-3, y>0 e z≤2 e h4,3,0=2 ln24
2. SEJA A FUNÇÃO FX,Y=5XY+5. MARQUE A ALTERNATIVA FALSA EM RELAÇÃO A FUNÇÃO F(X,Y).
A) O domínio da função é
Dom f:(x,y∈R2/ y≠-5
A)
B) As curvas de nível da função f(x, y) representam um conjunto de retas com equações 5x - ky - 5k = 0, na qual k é o nível desejado,
com exceção do ponto (0, -5).
C) O valor de f1,5=12
D) O gráfico da função f(x, y) é composto por pontos (x, y, z) que formam um plano de equação 5x - y - z - 5 = 0.
E) A função f(x, y) é uma função escalar.
GABARITO
1. Marque a alternativa que apresenta, respectivamente, o domínio da função hx,y,z=2-z ln (y-1)2x-6 e o valor de h(4, 3, 0).
A alternativa "C " está correta.
 
Analisando o denominador da função, verifica-se que 2x-6≠0→x≠3
A parcela do numerador referente a log neperiano ln y-1:y-1>0→y>1
A parcela do numerador referente a raiz quadrada 2-z : 2-z≥0 → z ≤ 2
Dessa forma, o domínio será Dom h:x,y,z∈R3 / x≠3, y>1 e z≤2
Calculando h4,3,0=2-0 ln 3-12.4-6=2 ln22
2. Seja a função fx,y=5xy+5. Marque a alternativa falsa em relação a função f(x,y).
A alternativa "D " está correta.
 
Analisando as alternativas:
a) Para definir o domínio da função, verifica-se que a única restrição é que o denominador não pode ser zero, assim y + 5 ≠ 0 → y ≠ -5, 
Dom f:(x,y∈R2/ y≠-5, estando a alternativa A correta.
e) A entrada da função é um vetor e a saída um número real, assim a alternativa E está correta.
c) O valor de f1,5=5.15+5=12, estando correta a alternativa C.
b) As equações das curvas de nível serão obtidas por 5xy+5=k → 5x = ky + 5k 
Logo, as equações serão 5x - ky - 5k = 0 , que representa um conjunto de retas. Mas y ≠ -5, assim 5x ≠ k(-5) + 5k → x ≠ 0. Portanto, o
ponto (0, –5) não pertence a estas retas. Alternativa B está correta.
d) Por fim, o esboço do gráfico que são os pontos (x, y, z) do R3, tais que 5xy+5=z→5x-yz-5z=0, que não representa um plano.
Assim, a alternativa que contém uma afirmativa falsa é a D.
MÓDULO 2
 APLICAR A DERIVAÇÃO PARCIAL E O GRADIENTE DE UMA FUNÇÃO ESCALAR
INTRODUÇÃO
A operação matemática da derivação pode também ser definida para as funções escalares, porém de uma forma um pouco diferente
do que no caso das funções reais.
Como a função escalar depende de várias variáveis, devemos obter uma operação que determina a variação da função em relação a
uma variável, mantendo as demais constantes. Esta operação será denominada de derivação parcial
PODEMOS OBTER UMA DERIVADA PARCIAL PARA CADA VARIÁVEL INDEPENDENTE,
ASSIM CONSEGUIMOS DEFINIR UM VETOR QUE APRESENTA COMO COMPONENTES
ESTAS DERIVADAS PARCIAIS. TAL VETOR É DENOMINADO DE GRADIENTE DA FUNÇÃO
ESCALAR E APRESENTA APLICAÇÕES PRÁTICAS IMPORTANTES NA OBTENÇÃO DAS
TAXAS DE VARIAÇÃO DA FUNÇÃO PARA QUALQUER DIREÇÃO.
Neste módulo estudaremos as derivadas parciais e o vetor gradiente.
DERIVADAS PARCIAIS
Quando estudamos a função real, definimos a operação da derivação que representava a taxa de variação da função em relação a sua
variável independente. Isto é, como a função variava em relação a sua variável de entrada em determinado ponto do seu domínio.
No caso de a função escalar, a entrada é composta por várias variáveis. Ao se tentar descobrir como uma função varia em relação a
uma das variáveis, devemos isolar o efeito das demais variáveis. Este isolamento é obtido mantendo as demais variáveis constantes.
 EXEMPLO
Imaginemos o volume de um cone que depende de seu raio e de sua altura. Para se obter a taxa de variação desse volume ao se
alterar o raio do cone, devemos manter o valor da altura constante e observar como o volume se altera ao se alterar o raio. Esta
operação será denominada de derivada parcial. O nome parcial vem do fato que se está analisando a taxa de variação de apenas uma
das variáveis.
Vamos iniciar a definição pelo caso mais simples, ou seja, para uma função com domínio no R2, ou z = f (x, y).
Seja (x0, y0) um ponto de o domínio da função escalar f. Se fixarmos o valor y0, podemos definir uma função que depende de apenas
uma variável, dada por
h(x) = f( x, y0)
A função h(x) será uma função real, pois depende apenas de uma variável, e a derivada de h(x) no ponto x0 será dada por
h'x0=limx→x0 hx-hx0x-x0
Esta derivada representa como a função h(x) varia em relação a variável x, no ponto x0.
Substituindo a função h(x) pela função escalar f(x,y0)
h'x0=limx→x0 fx,y0-fx0,y0x-x0
que representará como a função f(x, y) irá variar em relação a variação de x, com y constante e igual a y0, no ponto (x0, y0). Esta
função será denominada de derivada parcial de f em relação a variável x, representada por
∂f∂xx0,y0=h'x0=limx→x0fx,y0-fx0,y0x-x0
Se considerarmos que Δx=x-x0 podemos obter uma outra definição equivalente:
∂f∂xx0,y0=limΔx→0 fx0+Δx,y0-fx0,y0Δx
Seja D o subconjunto de S, formado por todos os pontos (x, y), tais que ∂f∂x existe. Assim, definirmos uma função indicada por
∂f∂x(x,y), definida em D ⊂ S ⊂ R2, tal que:
∂f∂xx,y=limΔx→0 fx+Δx,y-fx,yΔx
ESTA FUNÇÃO SERÁ DENOMINADA DE DERIVADA PARCIAL DE PRIMEIRA ORDEM DE F,
EM RELAÇÃO A X, OU SIMPLESMENTE DERIVADA PARCIAL DE F EM RELAÇÃO A X.
De forma análoga, podemos definir
∂f∂yx,y=limΔy→0 fx,y+Δy-fx,yΔy
que é a derivada parcial de f em relação a y.
Outras notações utilizadas:
∂f∂xx,y=fxx,y=D1fx,y
∂f∂yx,y=fy(x,y)=D2f(x,y)
Resumindo:
A função fxx,y obtida em um ponto (x0, y0), representa a taxa de variação de f(x,y), no ponto (x0, y0), em relação apenas a
variável x, mantendo y constante e igual a y0
A função fyx,y obtida em um ponto (x0, y0), representa a taxa de variação de f(x,y), no ponto (x0, y0), em relação apenas a
variável y, mantendo x constante e igual a x0
Podemos agora extrapolar para o caso de a função escalar definida no R3
∂f∂xx,y,z=fxx,y,z=D1fx,y,z=limΔx→0 fx+Δx,y,z-fx,y,zΔx
∂f∂yx,y,z=fyx,y,z=D2fx,y,z=limΔy→0 fx,y+Δy,z-fx,y,zΔy
∂f∂zx,y,z=fzx,y,z=D3fx,y,z=limΔz→0 fx,y,z+Δz-fx,y,zΔz
IMAGINEMOSO CASO DE UMA FUNÇÃO ESCALAR QUE REPRESENTA O VALOR DO
VOLUME DE UMA CAIXA RETANGULAR. DESSA FORMA, O VALOR DA FUNÇÃO
DEPENDERÁ DE TRÊS VARIÁVEIS (L, C, A), COM L, C E A NÚMEROS REAIS QUE
REPRESENTAM A LARGURA, O COMPRIMENTO E A ALTURA DA CAIXA. ASSIM, V(L, C,
A). DESEJAMOS OBTER COMO O VOLUME DA CAIXA IRÁ VARIAR COM A VARIAÇÃO DE
UMA DE SUAS DIMENSÕES, OU SEJA, QUAL SERIA A TAXA DE VARIAÇÃO DE V EM
FUNÇÃO, POR EXEMPLO DE L.
Assim, necessitamos usar a derivada parcial da função em relação a variável L,
∂V∂LL,C,A=limh→0 VL+h,C,A-fL,C,Ah
que será semelhante a derivada de uma função real, pois dependerá da variação de apenas uma variável, neste caso L, mantendo
todas as demais constantes (C e A).
Para o caso geral da função com domínio em S ⊂ Rn. Seja f(x1,x2, ..., xn ), a derivada parcial de f em relação a variável xj será definida
por
∂f∂xjx1,x2,…, xn=limh→0 fx1,x2,…,xj+h, …, xn-fx1,x2,…xj,…, xnh
representando a variação de f em relação a xj, mantendo as n – 1 variáveis constantes.
Podemos também usar as notações
Djfx1,x2,…, xn=fjx1,x2,…, xn
 ATENÇÃO
A notação dfdx é usada para derivar a função real f em relação a x, quando a função depender apenas da variável x.
A notação ∂f∂x é usada para derivar parcialmente a função escalar f em relação a x, quando a função depender de outras variáveis,
além da variável x.
Na prática, as derivadas parciais não serão obtidas pelo limite, e sim, por fórmulas e regras de derivação. Como consideraremos a
função dependendo de apenas uma variável, pois todas as demais permaneceram como constantes, então pode ser utilizada as
mesmas propriedades e regras que utilizamos no caso da função real.
REGRA PARA OBTER A DERIVADA PARCIAL EM RELAÇÃO A VARIÁVEL XJ
1) CONSIDERE TODAS AS OUTRAS VARIÁVEIS, QUE NÃO SEJAM XJ, COMO
CONSTANTES.
2) USE AS REGRAS DE DERIVAÇÃO DA FUNÇÃO REAL PARA ACHAR A DERIVADA DE F
EM RELAÇÃO A XJ.
Vejamos alguns exemplos.
EXEMPLO 1
Determine as derivadas parciais da função f(x, y) = 2xy + 3x2 y3 + 5y - 3x e obtenha seus valores no ponto (2, 1).
SOLUÇÃO
Vamos obter fx(x, y), considerando y como uma constante e aplicando as regras de derivação em relação a x.
O primeiro termo 2xy será observado como kx, assim (2yx)' = 2y(x)' = 2y.
O termo 3x2 y3 será observado como kx2, assim (3y3 x2 )' = 3y3 (x2 )' = 3y3 . 2x = 6xy3.
O termo 5y será observado apenas como uma constante, independente de x, assim (5y)' = 0.
Por fim, (-3x)' = -3.
Então, fx (x, y) = 2y + 6xy3 -3 e fx (2, 1) = 2 . 1 + 6 . 2 . 13 -3 = 11
Vamos obter fy(x, y), considerando x como uma constante e aplicando as regras de derivação em relação a y.
O primeiro termo 2xy será observado como ky, assim (2xy)' = 2x(y)' = 2x.
O termo 3x2 y3 será observado como ky3, assim (3x2 (y3)' = 3x2 (y3 )' = 3x2 3y2 = 9x2 y2.
O termo (-3x) será observado apenas como uma constante, independente de y, assim (-3x)' = 0
Por fim, (5y)' = 5.
Logo, fy (x, y) = 2x + 9x2 y2 + 5 e fy (2, 1) = 2 . 2 + 9 . 22 12 + 5 = 45
EXEMPLO 2
Deseja obter a taxa de variação da função hx,y,z,w=2yz lnx+3xew2+ zw2y3, em relação a variável w, no ponto (x, y, z, w)=(1, 1,
1, 1).
SOLUÇÃO
O que está se pedindo é a derivada parcial da função h em relação a variável w.
Assim se mantém na função h todas as demais variáveis (x, y, z) como constantes e aplica as regras de derivação em relação
a variável w.
O termo 2yz lnx será observado como uma constante, pois independe de w, então 2yz lnx'=0.
 
O termo 3xew2 será observado como kew2, assim 3xew2'= 3x ew2'=3x 2wew2=6xwew2.
 
Por fim, o termo zw2y3, será observado como kw2, assim zy3w2'=zy3w2'=zy32w=2zy3w.
 
Então, fwx,y,z,w=6xwew2+2zy3w e fw1,1,1,1=6.1.1e1+2.1.1.1=2+6e
GRADIENTE DE UMA FUNÇÃO ESCALAR
Seja uma função de várias variáveis a valores reais, com domínio em S⊂ R2, e que admite as derivadas parciais, em um ponto
(x0,y0), para todas as suas duas variáveis independentes (x e y).
Define o vetor gradiente da função f como
∇FX0,Y0=∂F∂XX0,Y0,∂F∂YX0,Y0
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A outra notação para o vetor gradiente será grad f.
Observe que só existe gradiente de uma função escalar e o resultado é um vetor cujas componentes são as derivadas
parciais de cada uma das variáveis independentes.
Portanto, 
∇fx0,y0=∂f∂xx0,y0x^+∂f∂yx0,y0y^
EXEMPLO 3
Obtenha o vetor gradiente para a função f(x, y) = 3x2y, no ponto (x, y) = (1, 2).
SOLUÇÃO
Obtendo as derivadas parciais
∂f∂x=∂∂x3yx2=3y∂∂xx2=3y 2x=6xy
∂f∂y=∂∂y3x2y=3x2∂∂yy=3x2
Logo,
∇fx,y=(6xy,3x2) e ∇f1,2=(6.1.2,3.12) =(12,3)= 12𝑥^ + 3𝑦^
O vetor gradiente da função escalar pode ser definido, de forma análoga, para quando o domínio for S ⊂ Rn. Assim:
∇fx1,x2,…, xn=∂f∂x1x1,x2,…, xn,…, ∂f∂xjx1,x2,…, xn,…, ∂f∂xnx1,x2,…, xn
O vetor gradiente tem uma interpretação geométrica. Ele apontará para direção e sentido no qual a função f terá a sua maior
variação, em relação a suas variáveis independentes, no ponto analisado.
Por exemplo, obtivemos que no ponto (1, 2) a função f(x, y) = 3x2y tem um vetor gradiente ∇f =(12, 3)= 12x^ + 3y^ . Vamos
supor que esta função f(x, y) represente a temperatura, em um ponto (x,y), de uma placa plana. Assim, se estivermos no
ponto de coordenada (x,y) = (1,2) e desejarmos saber para que direção/sentido teremos a maior variação de temperatura ao
variar a posição, ela será dada pela direção/sentido definida pelo vetor ∇f = 12x^ + 3y^ .
EXEMPLO 4
Obtenha o versor que representa a direção e o sentido da maior variação da função f(x, y, z) = x2 + y2 + z2 no ponto (1, 1, 1)
SOLUÇÃO
Obtendo as derivadas parciais de f(x, y, z):
∂f∂x=2x, ∂f∂y=2y e ∂f∂z=2z
Assim, o vetor gradiente será ∇fx,y,z=(2x,2y,2z)
No ponto (1, 1, 1), se tem ∇f(1, 1, 1)=(2, 2, 2)
Portanto, o vetor 2,2,2=2x^+2y^+2z^ representa a direção de maior variação da função no ponto (1, 1, 1).
Como foi pedido o versor, isto é, o vetor unitário, devemos dividir pelo seu módulo
∇f1,1,1=(2,2,2)→∇f=22+22+22=12=23
Portanto, o versor será
∇f∇f=1232,2,2=13,13,13=33,33,33
Quanto a amplitude do vetor ∇f, ele representará a maior taxa de variação da função em relação à variação de suas variáveis.
No exemplo anterior, a função terá uma variação de 23 unidades quando ocorre uma variação ∆s=∆xx^+∆yy^+∆zz^ de módulo
unitário, na direção do vetor 33,33,33.
Por fim, uma última característica do vetor gradiente de uma função, é o fato de ser sempre normal às curvas de nível da
função, ou seja, às curvas ou superfícies de nível da função.
EXEMPLO 5
Determine a reta tangente a curva de nível da função fx,y=2x2+y2 no ponto (1, 2).
SOLUÇÃO
Obtendo o gradiente da função:
∂f∂x=4x e ∂f∂y=2y, então ∇fx,y=4x,2y
No ponto (1, 2): ∇f(1, 2) = (4, 4), que é um vetor normal à curva de nível no ponto (1, 2), sendo, portanto, um vetor normal à
reta tangente neste ponto.
Por isso, para se obter a equação da reta tangente, seguindo conceitos de geometria analítica:
x,y-x0-y0.n→r=0→x,y-x0,y0.∇fx0,y0=0
 
Portanto
x,y-1,2.∇f1,2=0→x-1,y-2.4,4=0
4x-1+4y-2=0→4x+4y-12=0→x+y-3=0
Então, a reta x + y - 3 = 0 e tangente à curva de nível da função f(x,y) = 2x2 + y2 no ponto (1, 2).
RESUMO DO MÓDULO 2
TEORIA NA PRÁTICA
As derivadas parciais de uma função escalar podem ser utilizadas para se determinar a equação de um plano tangente ao
gráfico de uma função z = f(x, y) em um ponto (x0, y0) e com ele realizar uma aproximação linear para a função. A equação do
plano tangente ao gráfico no ponto (x0, y0, f(x0,y0) será dada por:
z-fx0,y0=fxx0,y0x-x0+fyx0,y0y-y0.
Determine a equação do plano tangente ao gráfico da função f(x, y) = x2 + 2y2 + 1 no ponto (1, 1) e verifique através de uma
aproximação linear, a partir deste ponto, o valor de f1+1100,1+1100
RESOLUÇÃO
VEJA A SOLUÇÃO DA QUESTÃO NO VÍDEO A SEGUIR:
MÃO NA MASSA
1. SEJA A FUNÇÃO FX,Y=2KCOS(X)LN (Y+E), COM K REAL. DETERMINE O VALOR DE K SABENDO QUE
A DERIVADA PARCIAL DE F EM RELAÇÃO A X VALE – 8 NO PONTO X,Y=Π2,0
A) 2
B) 3
C) 4
D) 5
E) 6
2. MARQUE A ALTERNATIVA QUE APRESENTA O VETOR GRADIENTE DA FUNÇÃOESCALAR
GX,Y=XY2 E2XY PARA O PONTO (X, Y) = (1, 1)
A) e2(3, 0)
B) e2(3, 4)
C) e2(1, 1)
D) e2(2, 2)
E) e2(2, 1)
3. DETERMINE A DERIVADA PARCIAL DE 
GX,Y=2-XY+2Y2+3X
EM RELAÇÃO A VARIÁVEL X E EM RELAÇÃO A VARIÁVEL Y, RESPECTIVAMENTE, NO PONTO (X, Y) =
(1, 1).
A) 66 e 64
B) 54 e 54
C) 63 e 63
D) 56 e 55
E) 63 e 64
4. DETERMINE O MÓDULO DO VETOR GRADIENTE A FUNÇÃO 
FX,Y,Z=3XYZ-X2+2Y3+3Z2
 
NO PONTO (1, 0, 2).
A) 23
B) 46
C) 323
D) 246
E) 73
5. SEJA A FUNÇÃO HX,Y,Z=2Z ARCTGYX. MARQUE A ALTERNATIVA QUE APRESENTA UM VETOR QUE
POSSUA A DIREÇÃO DA MAIOR TAXA DE VARIAÇÃO DA FUNÇÃO H(X, Y, Z) NO PONTO (1, 1, 2).
A) 2, 2, 2π
B) 4, -4,-π
C) -1, 1, π
D) 0, 2, -π
E) 4, 0, π
6. SEJA A FUNÇÃO GX,Y=X-TY, COM T REAL DIFERENTE DE ZERO. A RETA X-2Y+4=0 É TANGENTE A
CURVA DE NÍVEL DE G(X, Y) NO PONTO (0, –2). DETERMINE O VALOR DE T
A) 2
B) 3
C) 4
D) 5
E) 6
GABARITO
1. Seja a função fx,y=2kcos(x)ln (y+e), com k real. Determine o valor de k sabendo que a derivada parcial de f em relação a x
vale – 8 no ponto x,y=π2,0
A alternativa "C " está correta.
fx,y=2kcos(x)ln (y+e)
Ao se derivar parcialmente em relação a variável x, a variável y permanecerá constante, assim é como se derivasse a função t
cos(2x), com t sendo uma constante igual a (k ln(y+e)).
Vamos relembrar que a derivada da função
hu=cos u→h'u=-sen(u)u'
Portanto,
fxx,y=tcos x'=t(–1) sen (x) = - t sen (x) = -2k ln (y+e) sen(x)
 
Mas,
fxπ2,0=-8=-2kln(0+e)senπ2=-2k.1.1=-2k→k=4
2. Marque a alternativa que apresenta o vetor gradiente da função escalar gx,y=xy2 e2xy para o ponto (x, y) = (1, 1)
A alternativa "B " está correta.
gx,y=xy2 e2xy
O vetor gradiente será ∇g=∂g∂x,∂g∂y
Vamos relembrar que:
Se h=keu→h'=ku'eu
Se g=uv→g'=u'v+uv'
Determinando a derivada parcial de g em relação a x, mantendo y constante
∂g∂x(x,y)=y2x' e2xy+ xy2 e2yx'
∂g∂xx,y=y2 e2xy+ xy22y e2yx=y2 e2xy+ 2xy3 e2yx=(y2+2xy3) e2xy
∂g∂xx,y=y2(1+2xy) e2xy
Determinando a derivada parcial de g em relação a y, mantendo x constante
∂g∂y(x,y)=xy2' e2xy+ xy2 e2xy'
∂g∂yx,y=2xy e2xy+ xy22x e2yx=2xy e2xy+ 2x2y2 e2yx=(2xy+2x2y2) e2xy
∂g∂yx,y=2xy(1+xy) e2xy
O vetor gradiente será
∇g(x,y)=y2(1+2xy) e2xy,2xy(1+xy) e2xy
∇g1,1=1.1+2.1.1 e2.1.1,2.1.1.1+1.1 e2.1.1=3e2,4e2=e23,4
3. Determine a derivada parcial de 
gx,y=2-xy+2y2+3x
em relação a variável x e em relação a variável y, respectivamente, no ponto (x, y) = (1, 1).
A alternativa "A " está correta.
gx,y=2-xy+2y2+3x
Vamos relembrar que a derivada da função
hu=u→h'u=12uu'
Para se achar a derivada parcial em relação a variável x, mantém-se a variável y constante.
Neste caso, se
u=2-xy+2y2+3x→u'=dudx=0-y+3=3-y
Assim,
gxx,y=3-y22-xy+2y2+3x→gx1,1=3-122-1.1+21+3.1=226=66
Para se achar a derivada parcial em relação a variável y, mantém-se a variável x constante
Neste caso, se
u=2-xy+2y2+3x→u'=u'=dudy=0-x+4y+0=4y-x
Assim,
gyx,y=4y-x22-xy+2y2+3x→gy1,1=4.1-122-1.1+21+3.1=326=3612=64
4. Determine o módulo do vetor gradiente a função 
fx,y,z=3xyz-x2+2y3+3z2
 
no ponto (1, 0, 2).
A alternativa "D " está correta.
fx,y,z=3xyz-x2+2y3+3z2
O vetor gradiente será
∇f=∂f∂x,∂f∂y,∂f∂z
Determinando a derivada parcial de f em relação a x, mantendo y e z constantes
∂f∂x=3yz-2x
Determinando a derivada parcial de f em relação a y, mantendo x e z constantes
∂f∂y=3xz+6y2
Determinando a derivada parcial de f em relação a z, mantendo x e y constantes
∂f∂z=3xy+6z
Portanto,
∇f(x,y,z)=3yz-2x,3xz+6y2,3xy+6z 
No ponto,
(x,y,z)=(1,0,2)→ ∇f(1,0,2)=(3.0.2-2.1,3.1.2+6.0,3.1.0+6.2 )=(-2,6,12)
Então,
∇f=-22+62+122=4+36+144=184=246
5. Seja a função hx,y,z=2z arctgyx. Marque a alternativa que apresenta um vetor que possua a direção da maior taxa de
variação da função h(x, y, z) no ponto (1, 1, 2).
A alternativa "B " está correta.
Veja a solução da questão no vídeo a seguir:
6. Seja a função gx,y=x-ty, com t real diferente de zero. A reta x-2y+4=0 é tangente a curva de nível de g(x, y) no ponto (0, –2).
Determine o valor de t
A alternativa "A " está correta.
Veja a solução da questão no vídeo a seguir:
GABARITO
VERIFICANDO O APRENDIZADO
1. DETERMINE A DERIVADA PARCIAL DA FUNÇÃO FX,Y,Z=XY2Z+2Z TGXY, EM RELAÇÃO A VARIÁVEL
X, NO PONTO (0, 1, 1)
A) 0
B) 1
C) 2
D) 3
E) 4
2. MARQUE A ALTERNATIVA QUE APRESENTA O GRADIENTE DA FUNÇÃO GX,Y=3X COS (Y+2)
A) ∇gx,y=3sen (y+2,3x cos(y+2))
B) ∇gx,y=3+cos (y+2,3x+sen(y+2))
C) ∇gx,y=3cos (y+2,-3xsen(y+2))
D) ∇gx,y=cos (y+2,sen(y+2))
E) ∇gx,y=3x cos (y+2,3x cos(y+2))
GABARITO
1. Determine a derivada parcial da função fx,y,z=xy2z+2z tgxy, em relação a variável x, no ponto (0, 1, 1)
A alternativa "D " está correta.
 
fx,y,z=xy2z+2z tgxy
Para se obter a derivada parcial de f em relação a x, se deriva em relação a variável x, mantendo as variáveis y e z constantes.
Lembre-se de que se
h(u)=tg(u)→h'(u)=sec2u u'
Se
fx,y,z=xy2z+2z tgxy=(y2z)x+2z tg1yx
Então
∂f∂xx,y,z=y2z+2z sec2xy.1y=y2z+2zy sec2xy
No ponto
x,y,z=0,1,1→ ∂f∂x0,1,1=121+211 sec201=1+2sec20=1+2=3
Assim, a alternativa correta é a da letra D.
2. Marque a alternativa que apresenta o gradiente da função gx,y=3x cos (y+2)
A alternativa "C " está correta.
 
gx,y=3x cos (y+2)
O vetor gradiente será
∇g=∂g∂x,∂g∂y
Determinando a derivada parcial de g em relação a x, mantendo y constante
∂g∂x=3cos y+2x'=3cos (y+2)
Determinando a derivada parcial de g em relação a y, mantendo x constante
∂g∂y=3xcos y+2'=3x -1sen y+2=-3xsen(y+2)
Portanto,
∇gx,y=3cos (y+2,-3xsen(y+2))
Assim, a alternativa correta é a letra C.
MÓDULO 3
 APLICAR A REGRA DA CADEIA PARA FUNÇÕES ESCALARES
INTRODUÇÃO
Seja uma função escalar. Suponha que se conheça a dependência desta função em relação a um conjunto de variáveis,
denominadas de intermediárias, que por sinal, depende de outro conjunto que são denominados de variáveis independentes.
A REGRA DA CADEIA PODE SER USADA PARA SE OBTER AS DERIVADAS DA FUNÇÃO
ESCALAR EM RELAÇÃO AS VARIÁVEIS INDEPENDENTES, MESMO NÃO SE OBTENDO A
FUNÇÃO QUE EXPLICITA DIRETAMENTE ESTA RELAÇÃO.
Estudaremos, neste módulo, três teoremas que definem esta regra da cadeia para serem aplicadas em funções escalares.
REGRA DA CADEIA
Para o caso de uma função real, ou melhor, que dependa de apenas uma variável, a regra da cadeia permitia a diferenciação
de uma função composta. Se y = f(x) e x = g(t), com as funções f e g diferenciáveis, se obtinha a derivada de y em relação a t
de uma forma indireta:
DYDT=DYDXDXDT
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Assim, mesmo não se tendo a relação direta de y em relação a t, podia se obter como a função y variava em relação a variável
t.
Vamos agora definir esta regra que permitirá também calcular a derivada de funções compostas para as funções escalares.
Iremos propor o seguinte teorema:
TEOREMA 1
SEJA A FUNÇÃO F(X, Y) DIFERENCIÁVEL EM X E Y, COM X = H(T) E Y = G(T). SE AS
FUNÇÕES H(T) E G(T) FOREM DIFERENCIÁVEIS EM T, ENTÃO
DFDT(XT,YT)=∂F∂XDX(T)DT+∂F∂YDY(T)DT
Repare que a regra acima permite calcular a derivada de f em relação a t por uma forma indireta. Não se conhece a relação
explicita da função em relação a variável t, mas se conhece a relação da função com x e y, e destas variáveis em relação a
variável t.
Outra forma de se representar essa regra seria através do gradiente da função f.
Seja γt=(xt,yt)
dfdt(y(t))=∇fγt.γ'(t)
Vejamos um exemplo de sua aplicação.
EXEMPLO 1:
Seja a função f(x, y) = 2xy2 e que x = t3 e y = 2t + 5. Obtenha a derivada de f em relação à variável t.
SOLUÇÃO
Usando a regra da cadeia dfdt=∂f∂xdxdt+∂f∂fdydt
Como ∂f∂x=2y2, ∂f∂y=4xy, dxdt=3t2 e dydt=2, se tem
dfdt=∂f∂xdxdt+∂f∂fdydt=2y23t2+4xy.2=6y2t2+8xy
Substituindo x e y em relação a variável t
dfdt=6y2t2+8xy=62t+52t2+8t32t+5
É obvio que neste caso, poderíamos obter o valor de f em relação apenas a t e depois obter a derivada.
f(x , y) = 2xy2 → f(t3, 2t+5) = g(t) = 2 t3 (2t+5)2
Assim, a derivada dfdt será obtida se derivando em relação a t através da regra do produto
dfdt=(2t+5)2 6 t2 + 2t32 (2t+5) . 2 = 62t+52t2+8t32t+5 obtendo o mesmo valor.
Todavia, às vezes, essa forma de obter a dependência e depois derivar é mais complexa do que usar a regra da cadeia
diretamente.
EXEMPLO 2:
Sabendo que o volume de um cilindro é dado pela fórmula Vr,h=πr2h, na qual r é o raio da base e h é a altura do cilindro,
ambas medidos em metros. Determine a taxa de variação do volume do cilindro, para r = 1 m e h = 1 m, sabendo que o raio
está variando a uma taxa de 0,5 m/s e a altura a uma taxa de –0,25 m/s.
SOLUÇÃO
Se Vr,h=πr2h, usando a regra da cadeia, se tem dVdt=∂V∂rdrdt+∂V∂hdhdt
Como ∂V∂r=2πhr, ∂V∂h=πr2, drdt=0,5 e dhdt=-0,25 m/s, se tem
dVdtr,h=2πhr. 0,5+ πr2(-0,25)
dVdtr,h=πhr- π4r2
Para r = 1m e h = 1m
dVdt1,1=π- π4=3π4 m3/s
 ATENÇÃO
A demonstração do teorema 1 não será vista neste módulo, e pode ser analisada nos livros que constam na referência
bibliográfica deste material.
Agora vamos analisar outra situação. Seja z = f(x, y), mas x = h(u, v) e y = g(u, v). Então a função f depende indiretamente de u
e de v. Podemos usar o seguinte teorema para obter as derivadas parciais de f em relação a variável u e em relação a variável
v.
TEOREMA 2
SEJA A FUNÇÃO F(X,Y) DIFERENCIÁVEL EM X E Y, COM X = H(U,V) E Y = G(U,V). SE AS
FUNÇÕES H(U,V) E G(U,V) SÃO DIFERENCIÁVEIS EM U E EM V, ENTÃO
∂F∂U=∂F∂X∂X∂U+∂F∂Y∂Y∂U E ∂F∂V=∂F∂X∂X∂V+∂F∂Y∂Y∂V
As variáveis u e v são denominadas de variáveis independentes, enquanto as variáveis x e y serão denominadas de variáveis
intermediárias, pois serão usadas para obter a variável dependente z em relação às variáveis independentes.
Observe a aplicação da regra acima no exemplo a seguir.
EXEMPLO 3:
Seja g(x,y) = 2eycos (x), na qual x=u2v e y=uv2. Determine as derivadas parciais de g(x,y) em relação a u e a v para os pontos
em que u = 1 e v = 2.
SOLUÇÃO
Obtendo as derivadas parciais de g em relação a x e a y.
∂g∂x=-2eysenx e ∂g∂y=2eycosx
Além disso,
∂x∂u=2uv, ∂x∂v=u2, ∂y∂u=v2, ∂y∂v=2uv
Assim,
∂g∂u=∂g∂x∂x∂u+∂g∂y∂y∂u=-2eysenx2uv+2eycosxv2
∂g∂u=2v2 eycosx-4uv eysenx
∂g∂v=∂g∂x∂x∂v+∂g∂y∂y∂v=-2eysenxu2+2eycosx2uv
∂g∂u=4uv eycosx-2u2eysenx
Quando u = 1 e v = 2 → x = u2 v = 2 e y = uv2 = 4.
Deste modo:
∂g∂u1,2=2.4 e4cos2-4.1.2 e4sen2=8e4cos2-8e4sen2
∂g∂u1,2=4.1.2 e4cos2-2.12e4sen2=8 e4cos2-2e4sen2
Podemos agora definir a situação geral.
Seja a função escalar f: S ⊂ Rn, ou seja, a função dependente z é função de n variáveis intermediárias (x1,x2,…,xn ). Cada uma
das variáveis intermediárias xj, a seu tempo, depende de m variáveis independentes (u1,u2,…,um ). Se deseja agora obter o
valor da derivada parcial de z em relação a uma das variáveis independentes ui.
TEOREMA 3
SEJA A FUNÇÃO F: S⊂ RN DIFERENCIÁVEL EM RELAÇÃO AS N VARIÁVEIS (X1, X2, ...,
XN), EM QUE CADA XJ É DIFERENCIÁVEL EM RELAÇÃO A M VARIÁVEIS (U1, U2, ..., UM).
ENTÃO:
∂F∂UJ=∂F∂X1∂X1∂UJ+∂F∂X2∂X2∂UJ+…+∂F∂XN∂XN∂UJ
para cada j = 1,2,..., m.
Vamos aplicar esse teorema em um exemplo.
EXEMPLO 4:
Seja a função hr,s,t=sr2+2rst, na qual r = xz + 2yz , s = 3x2z e t = 2xy. Determine as derivadas parciais da função h, em relação
as variáveis x, y e z, para os valores de (x, y, z) = (1, 0, 2).
SOLUÇÃO
Neste exemplo, as variáveis intermediárias serão r,s e t, enquanto as variáveis independentes serão x, y e z.
Calculando as derivadas parciais da função h
∂h∂r=2sr+2st, ∂h∂s=r2+2rt e ∂h∂t=2rs
Mas
∂r∂x=z, ∂r∂y=2z e ∂r∂y=x+2y
∂s∂x=6xz, ∂s∂y=0 e ∂s∂z=3x2
∂t∂x=2y, ∂t∂y=2x e ∂t∂z=0
Desta forma,
a) ∂h∂x=∂h∂r∂r∂x+∂h∂s∂s∂x+∂h∂t∂t∂x
∂h∂x=2rs+2stz+r2+2rt 6xz+2rs 2y
b) ∂h∂y=∂h∂r∂r∂y+∂h∂s∂s∂y+∂h∂t∂t∂y
∂h∂y=2rs+2st 2z+r2+2rt 0+2rs 2x
c) ∂h∂z=∂h∂r∂r∂z+∂h∂s∂s∂z+∂h∂t∂t∂z
∂h∂z=2rs+2st (x+2y)+r2+2rt 3x2+2rs 0
Para (x, y, z) = (1, 0, 2) → r = xz + 2yz = 1 . 2 + 2 . 0 . 2 = 2, s = 3x2z = 3 . 1 . 2 = 6 e t = 2xy = 2 . 1 . 0 = 0, assim:
a) ∂h∂xx,y,z=2.2.6+2.6.0.2+22+2.2.0 6.1.2+2.2.62.0
∂h∂xx,y,z=48+48+0=96
b) ∂h∂y=2.2.6+2.6.0.2.2+22+2.2.0 0+2.2.62.1
∂h∂y=96+0+48=144
c) ∂h∂z=2.2.6+2.6.0.(1+2.0)+22+2.2.0 3.1+2.2.60
∂h∂z=24+12=36
RESUMO DO MÓDULO 3
TEORIA NA PRÁTICA
Uma caixa com formato de um paralelepípedo retangular é feita de um material que apresenta um custo de R$ 10,00 por m2.
Sabendo que o comprimento da caixa cresce a uma taxa de 2 m/s, a largura decresce a uma taxa de 1 m/s e a altura cresce a
uma taxa de 3 m/s, determine a taxa de variação do custo de produção da caixa em relação ao tempo, para quando
comprimento(C) = 10 m, largura(L) = 5m e altura (A) = 2 m.
RESOLUÇÃO
VEJA A SOLUÇÃO DA QUESTÃO NO VÍDEO A SEGUIR:
MÃO NA MASSA
1. A TENSÃO EM UM CIRCUITO ELÉTRICO É DADA PELA EQUAÇÃO V= RI, NA QUAL R É A
RESISTÊNCIA E I A CORRENTE ELÉTRICA. A TENSÃO DO CIRCUITO ESTÁ DIMINUINDO A UMA TAXA
DE 1 V/S, DEVIDO A DESCARGA DA BATERIA E SIMULTANEAMENTE A RESISTÊNCIA AUMENTA A UMA
TAXA DE 0,05 Ω/S. DETERMINE A TAXA DA VARIAÇÃO DA CORRENTE QUANDO A TENSÃO FOR DE 800
V E A RESISTÊNCIA DE 10 Ω.
A) 0,5 A/s
B) -0,5 A/s
C) -1,5 A/s
D) 1,5 A/s
E) 2 A/s
2. SEJA A FUNÇÃO G(X, Y) = 4 COS (XY). SABE-SE QUE X = 4T2 E Y = T3. USE A REGRA DA CADEIA E
DETERMINE A TAXA DE VARIAÇÃO DA FUNÇÃO G EM RELAÇÃO A T.
A) -80 sen4t5
B) -40 t4 cost5
C) -80 t4 sen4t5
D) 80 t4 (sen4t5+cos4t5)
E) 20 t5 (sen4t5-cos4t5)
3. DETERMINE A DERIVADA PARCIAL DA FUNÇÃO G(X, Y) = 2XY, EM RELAÇÃO A VARIÁVEL Θ,
SABENDO QUE X(R, Θ) = R COSΘ E Y(R, Θ) = R SENΘ.
A) 2r2sen2θ
B) r2cosθB
C) 2r2cos2θ
D) r2senθ
E) 4r3cos2θD
4. SEJA A FUNÇÃO H(U, V) = -SEN(U2 + V2). SABE-SE QUE U(X, Y, Z) = X -Y + 3Z E V(X, Y, Z) = 2X - 3Y +
2Z. DETERMINE A SOMA DA DERIVADA PARCIAL DA FUNÇÃO H EM RELAÇÃO À VARIÁVEL Y COM A
DERIVADA PARCIAL DA FUNÇÃO H EM RELAÇÃO À VARIÁVEL Z, PARA X = Y = Z = 1.
A) cos(10)
B) -10 sen(8)
C) 10 cos(8)
D) 10 sen(10)
E) -10 cos(10)
5. A EQUAÇÃO QUE RELACIONA A PRESSÃO (P), MEDIDA EM KPA, A TEMPERATURA (T), MEDIDA EM
K, E O VOLUME (V), MEDIDAS EM LITROS, DE DOIS MOLES DE UM GÁS IDEAL É DADA POR PVT=16,6.
DETERMINE A TAXA DE VARIAÇÃO DO VOLUME DO GÁS, QUANDO A PRESSÃO 25 KPA ESTÁ
AUMENTANDO A UMA TAXA DE 0,04 KPA/S E A TEMPERATURA É DE 600 K E ESTÁ DIMINUINDO A UMA
TAXA DE 0,1 K/S
A) Aumenta com taxa de 0,571 l/s
B) Diminui com taxa de 0,571 l/s
C) Aumenta com taxa de 0,345 l/s
D) Aumenta com taxa de 0,703 l/s
E) Diminui com taxa de 0,703 l/s
6. SEJA A FUNÇÃO FX, Y, Z, NA QUAL X(U,V,W)=UV,Y(U,V,W)=WU E Z(U,V,W)=VW. DETERMINE O
VALOR DA EXPRESSÃO U∂F∂U+V∂F∂V+W∂F∂W.
A) -1
B) 0
C) 1
D) 2
E) 3
GABARITO
1. A tensão em um circuito elétrico é dada pela equação V= RI, na qual R é a resistência e I a corrente elétrica. A tensão do
circuito está diminuindo a uma taxa de 1 V/s, devido a descarga da bateria e simultaneamente a resistência aumenta a uma
taxa de 0,05 Ω/s. Determine a taxa da variação da corrente quando a tensão for de 800 V e a resistência de 10 Ω.
A alternativa "B " está correta.
A função V(R,I) depende de R e I, e R = h(t) e I = g(t), então
dVdt(Rt,It)=∂V∂RdR(t)dt+∂V∂IdI(t)dt
Pelo enunciado dR(t)dt=0,05Ω/s e dV(t)dt=-1Vs
Quando V = RI →∂V∂R=I e ∂V∂I=R
Assim, substituindo na regra da cadeia
dVdtt=IdRtdt+RdItdt→-1=80.0,05+10 . dItdt
10 . dItdt=-1-4=-5→dItdt=-0,5 A/s
2. Seja a função g(x, y) = 4 cos (xy). Sabe-se que x = 4t2 e y = t3. Use a regra da cadeia e determine a taxa de variação da
função g em relação a t.
A alternativa "C " está correta.
A função g(x,y) depende de x e y, e x = h(t) e y = g(t), então
dgdt(xt,yt)=∂g∂xdx(t)dt+∂g∂ydy(t)dt
Temos:
xt=4t2→dx(t)dt=8t
yt=t3→dy(t)dt=3t2
gx,y=4cos xy→∂g∂x=4-1senxyy=-4y sen(xy)
gx,y=4cos xy→∂g∂x=4-1senxyx=-4x sen(xy)
Portanto
dgdtxt,yt=-4y senxy 8t+-4x senxy 3t2
Porém, x = 4t2 e y = t2
dgdtt=-4t3sen4t2t3 8t-4 4t2 sen4t2t3 3t2
dgdtt=-32t4sen4t5-48 t4 sen4t5=-80 t4 sen4t5 
3. Determine a derivada parcial da função g(x, y) = 2xy, em relação a variável θ, sabendo que x(r, θ) = r cosθ e y(r, θ) = r senθ.
A alternativa "C " está correta.
A função g(x, y) depende de x e y, com x = h(r, θ) e y = f(r, θ) . Assim
∂g∂r=∂g∂x∂x∂θ+∂g∂y∂y∂θ
Mas
gx,y=2xy→∂g∂x=2y e ∂g∂y=2x 
xr,θ=r cosθ→∂x∂θ=-r senθ
yr,θ=r senθ→∂y∂θ=rcosθ
Assim
∂g∂θ=2y(-r senθ )+2x (r cosθ)
Como x(r, θ) = r cosθ e y(r, θ) = r senθ
∂g∂θ=2 rsen θ(-r senθ )+2 rcos θ(r cosθ)
∂g∂θ=2r2cos2θ-sen2θ=2r2cos2θ 
4. Seja a função h(u, v) = -sen(u2 + v2). Sabe-se que u(x, y, z) = x -y + 3z e v(x, y, z) = 2x - 3y + 2z. Determine a soma da derivada
parcial da função h em relação à variável y com a derivada parcial da função h em relação à variável z, para x = y = z = 1.
A alternativa "E " está correta.
Veja a solução da questão no vídeo a seguir:
5. A equação que relaciona a pressão (P), medida em kPa, a temperatura (T), medida em K, e o volume (V), medidas em litros,
de dois moles de um gás ideal é dada por PVT=16,6. Determine a taxa de variação do volume do gás, quando a pressão 25
kPa está aumentando a uma taxa de 0,04 kPa/s e a temperatura é de 600 K e está diminuindo a uma taxa de 0,1 K/s
A alternativa "E " está correta.
PVT=16,6→V=16,6TP
dVdt=∂V∂P∂P∂t+∂V∂T∂T∂t
Mas:
V=16,6TP=16,6T 1P→∂V∂P=16,6T1P'=16,6T -11P2=-16,6TP2
V=16,6TP=16,61P T →∂V∂T=16,61PT'=16,6P
∂P∂t=0,04 kPa/s e ∂T∂t=-0,1 K/s
Assim
dVdt=-16,6TP20,04+16,6P(-0,1)
Mas P = 25 kPa e T = 600 K
Portanto
dVdt=-16,6. 6002520,04+16,625-0,1=-0,637-0,066=-0,703 l/s
6. Seja a função fx, y, z, na qual x(u,v,w)=uv,y(u,v,w)=wu e z(u,v,w)=vw. Determine o valor da expressão u∂f∂u+v∂f∂v+w∂f∂w.
A alternativa "B " está correta.
Veja a solução da questão no vídeo a seguir:
GABARITO
VERIFICANDO O APRENDIZADO
1. O VOLUME DE UM CONE É DADO PELA FÓRMULA VR,H=13ΠR2H, NA QUAL R É O RAIO DA BASE E
H É A ALTURA DO CONE, AMBAS MEDIDOS EM METROS. DETERMINE A TAXA DE VARIAÇÃO DO
VOLUME DO CONE, PARA R = 2 M E H = 1 M, SABENDO QUE O RAIO ESTÁ VARIANDO A UMA TAXA DE
– 0,1 M/S E A ALTURA A UMA TAXA DE 0,2 M/S.
A) 15π m³/s
B) -25π m³/s
C) -215π m³/s
D) 215π m³/s
E) 415π m³/s
2. DETERMINE A DERIVADA PARCIAL DA FUNÇÃO G(X, Y) = 2X2+Y3, EM RELAÇÃO A VARIÁVEL R,
SABENDO QUE X(R, Θ) = R COSΘ E Y(R, Θ) = R SENΘ.
A) 4r cos2θ+3r2sen3θ
B) 2r sen2θ+r2cos3θ
C) 2 cos2θ+rsen3θ
D) 8r3sen4θ
E) 3r2 cos3θ
GABARITO
1. O volume de um cone é dado pela fórmula Vr,h=13πr2h, na qual r é o raio da base e h é a altura do cone, ambas medidos
em metros. Determine a taxa de variação do volume do cone, para r = 2 m e h = 1 m, sabendo que o raio está variando a uma
taxa de – 0,1 m/s e a altura a uma taxa de 0,2 m/s.
A alternativa "D " está correta.
 
Se Vr,h=13πr2h usando a regra da cadeia, se tem dVdt=∂V∂rdrdt+∂V∂hdhdt
Como ∂V∂r=23πhr, ∂V∂h=13πr2, drdt=– 0,1 e dhdt=0,2, se tem
dVdt=∂V∂rdrdt+∂V∂hdhdt=23πhr-0,1+13πr20,2
Para r = 2 m e h = 1 m
dVdt=23π.1.2-0,1+13π220,2=-43π 110+43π 210430π=215π m³/s
2. Determine a derivada parcial da função g(x, y) = 2x2+y3, em relação a variável r, sabendo que x(r, θ) = r cosθ e y(r, θ) = r
senθ.
A alternativa "A " está correta.
 
A função g(x, y) depende de x e y, com x = h(r, θ) e y = f(r, θ). Assim
∂g∂r=∂g∂x∂x∂r+∂g∂y∂y∂r
Mas
gx,y=2x2+y3→∂g∂x=4x e ∂g∂y=3y2 
xr,θ=r cosθ→∂x∂r=cosθ
yr,θ=r senθ→∂y∂r=senθ
Assim
∂g∂r=4xcos θ+3y2 sen θ
Como x(r, θ) = r cosθ e y(r, θ) = r senθ
∂g∂r=4r cos θcos θ+3(r sen θ)2 sen θ
∂g∂r=4r cos2θ+3r2sen3θ
MÓDULO 4
 APLICAR A DERIVADA DIRECIONAL E A DERIVADA PARCIAL DE ORDEM SUPERIOR
INTRODUÇÃO
Em algumas aplicações, se torna necessário obter a taxa de variação de uma função escalar quando ocorre a variação das
variáveis seguindo certa direção. Esta derivada é denominada de derivada direcional e será determinada através do gradiente
de uma função escalar
A DERIVADA PARCIAL TAMBÉM SERÁ UMA FUNÇÃO ESCALAR, CAPAZ DE POSSUIR,
POR SUA VEZ, UMA DERIVADA PARCIAL. ESTA DERIVADA É DENOMINADA DE FUNÇÃO
PARCIAL DE ORDEM SUPERIOR E SERÁ CALCULADA ATRAVÉS DAS DERIVAÇÕES
PARCIAIS SUCESSIVAS.
DERIVADAS DIRECIONAIS
Certas práticas exigem a obtenção da taxa de variação de uma função escalar em determinada direção/sentido. Essa taxa
será denominada de derivação direcional da função e dependerá do ponto analisado e do vetor que determina a
direção/sentido desejado.
 ATENÇÃO
A direção/sentido desejado deve ser definido através de um vetor unitário (versor).
Vamos iniciar a definição para funções escalares com domínio em R2.
Seja a função f: S ⊂ R2 → R, a derivada direcional de f em um ponto (x0, y0) na direção e no sentido do vetor unitário v→(a,b)
é
DVFX0,Y0=LIMH→0 FX0+AH,Y0+BH-FX0,Y0H
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Esta derivada vai existir se o limite acima existir.
Observe que se v→⃗(a, b) = (1, 0), a derivada direcional será a própria derivada parcial em relação a variável x. E se v→(a,b) =
(0, 1), a derivada direcional será a própria derivada parcial em relação a variável y. Dizemos, portando, que as derivadas
parciais de f em relação a x e a y são casos particulares da derivada direcional.
Não iremos calcular a derivada direcional através de sua definição, ou melhor, através do cálculo do limite. Para a
determinação da derivada direcional, usaremos o teorema, a seguir, por permitir seu cálculo pelo gradiente da função escalar
f.
TEOREMA
SE F É UMA FUNÇÃO ESCALAR DIFERENCIÁVEL EM X E EM Y, ENTÃO A DERIVADA
DIRECIONAL NA DIREÇÃO E NO SENTIDO DE QUALQUER VETOR UNITÁRIO V→(A, B) É
DADO POR
DVFX,Y=∇F(X,Y).V→(A,B) =AFXX,Y+B FY(X,Y)
Observe que o maior valor da derivada direcional será quando o vetor unitário tiver a mesma direção e sentido que o ∇f,
tendo o módulo desta derivada o valor do módulo do ∇f. Este fato comprova o que foi dito: que o gradiente da função é o
vetor que representa a maior taxa de variação da função.
A derivada direcional pode ser analisada como sendo a projeção do vetor gradiente sobre a direção e sentido definidos pelo
vetor unitário v→.
EXEMPLO 1:
Determine a derivada direcional da função f(x, y) = 5x3 y + 5 na direção do vetor v→(3, 4), para o ponto (x, y) = (1, 1)
SOLUÇÃO
Observe que o vetor v→(3, 4) não é um versor, ou seja, um vetor unitário. Assim, necessitamos achar o vetor unitário na
direção/sentido de v→(3, 4).
v→=32+42=9+16=25=5
Dessa forma, o versor será
v^=v→v→=153,4=35,45
Sabe-se que f(x, y) = 5x3 y + 5, então
∂f∂x=5y(x3)'=5y 3x2=15yx2
∂f∂y=5x3(y)'=5x3
Portanto, ∇f(x, y) = (15yx2, 5x3)
Assim, a derivada direcional será dada por
Dvx,y=∇f.v^=15yx235+5x345=9yx2+4x3
Para o ponto (x,y)=(1,1)
Dvx,y=∇=9.1.12+4.13=9+4=13
DERIVADA PARCIAL DE ORDEM SUPERIOR
A derivada parcial de uma função escalar, conforme já estudada neste tema, é também uma função escalar. Por serem
funções escalares, podemos também determinar as suas derivadas parciais em relação as variáveis independentes.
A DERIVADA PARCIAL DE UMA FUNÇÃO QUE JÁ É DERIVADA PARCIAL DE UMA
FUNÇÃO É DENOMINADA DE DERIVADA PARCIAL DE SEGUNDA ORDEM. SE
REPETIRMOS O PROCESSO, TEREMOS AS DERIVADAS PARCIAIS DE TERCEIRA,
QUARTA, ..., ENÉSIMA ORDEM.
ESTAS DERIVADAS PARCIAIS SÃO CONHECIDAS COMO DERIVADAS PARCIAIS DE
ORDEM SUPERIOR.
Iniciaremos nosso estudo pelas derivadas parciais de segunda ordem para uma função escalar f(x,y), isto é, com domínio no
R2. Por exemplo, seja f(x, y) = 4x2y3, então
fxx,y=8xy3 e fyx,y=12x2y2
Vamos agora determinar as derivadas parciais de segunda ordem, ou, a derivada parcial da função escalar fx (x, y) = 8xy3
fxx,y=8xy3→∂fx∂x=8y3
fxx,y=8xy3→∂fx∂y=24xy2
Usamos a seguinte notação
∂fx∂x=∂∂x∂f∂x=∂2f∂x2=8y3 ou fxx=fxx=8y3
∂fx∂y=∂∂y∂f∂x=∂2f∂y∂x=24xy2 ou fxy=fxy=24xy2
De forma análoga, podemos fazer o mesmo raciocínio para as derivadas parciais da função escalar fy (x, y) = 12x2 y2
fyx,y=12x2y2→∂fy∂x=24xy2
fyx,y=12x2y2→∂fy∂y=24x2y
Usamos a notação
∂fy∂x=∂∂x∂f∂y=∂2f∂x∂y=24xy2 ou fyx=fyx=24xy2
∂fy∂y=∂∂y∂f∂y=∂2f∂y2=24x2y ou fyy=fyy=24x2y
Portanto, as funções fx(x, y) e fy(x, y) são denominadas de derivadas parciais de primeira ordem da função f(x, y). As funções
fxx(x, y) , fxy(x, y), fyx(x, y) e fyy(x, y) são as derivadas de segunda ordem da função f(x, y).
 ATENÇÃO
É preciso cuidado com a notação utilizada, pois a ordem das variáveis na notação determina a ordem da derivação.
Veja a primeira notação:
∂2f∂x∂y→ a função f foi derivadaparcialmente, primeiro em relação a variável y e depois em relação a variável x.
∂2f∂y∂x→ a função f foi derivada parcialmente, primeiro em relação a variável x e depois em relação a variável y.
 COMENTÁRIO
Observe que a ordem de derivação parcial no denominador aparece da direita para a esquerda.
Agora analisemos a segunda notação:
fyx → a função f foi derivada parcialmente primeiro em relação a variável y e depois em relação a variável x.
fxy → a função f foi derivada parcialmente primeiro em relação a variável x e depois em relação a variável y.
 COMENTÁRIO
Observe que, neste caso, a ordem da derivação parcial no índice aparece da esquerda para a direita.
O número de derivadas parciais de segunda ordem dependerá do domínio da função. Como vimos no exemplo, a função f(x .
y) tinha domínio no R2, assim possuía 4 derivadas de segunda ordem, correspondendo a 2 variáveis vezes 2 variáveis.
Desse modo, se o domínio da função escalar for no Rn, ela possuirá n2 derivadas de segunda ordem. Vamos ver o caso do
R3, seja g(x, y, z): S ⊂ R3, as derivadas de segunda ordem de g(x, y, z) serão nove:
∂2G∂X2, ∂2G∂Y∂X, ∂2G∂Z∂X,∂2G∂X∂Y ∂2G∂Y2, ∂2G∂Z∂Y, ∂2G∂X∂Z, ∂2G∂Y∂Z E ∂2G∂Z2
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
EXEMPLO 2:
Determine as derivadas parciais de segunda ordem da função h(x, y) = 4x3y + y2 cos(x)
SOLUÇÃO
Inicialmente, precisamos obter as derivadas parciais de primeira ordem
∂h∂x=12x2y-y2 sen(x)
∂h∂y=4x3y+2y cos(x)
Agora iremos derivar parcialmente as derivadas parciais de primeira ordem para obter as quatro derivadas parciais de
segunda ordem.
∂∂x∂h∂x=∂2h∂x2=24xy-y2 cos(x)
∂∂y∂h∂x=∂2h∂y∂x=12x2-2y sen(x)
∂∂x∂h∂y=∂2h∂x∂y=12x2y-2y sen(x)
∂∂y∂h∂y=∂2h∂y2=4x3+2 cos(x)
 ATENÇÃO
Foram dados exemplos de derivadas parciais de segunda ordem, mas as derivadas parciais de ordem maiores do que a
segunda seguem a mesma notação e o mesmo procedimento.
EXEMPLO 3:
Seja a função f(x, y, z) = 2xez + 3x2y3z – 2 cos x. Determine as derivadas parciais de ordem superior fxyz.
SOLUÇÃO
Como visto na teoria, a notação fxyz, representa uma derivada parcial de terceira ordem com a seguinte sequência de
derivadas x, y e por último z.
Assim fxyz=∂3f∂z∂y∂x
 
∂f∂x=2ez(x)'+3y3zx2'-2cosx'=2ez+3y3z 2x-2-senx
∂f∂x=2ez+6xy3z+2senx
∂2f∂y∂x=∂∂y∂f∂x=2ez'+6xzy3'+2senx'=0+6xz 3y2+0=18xzy2
∂3f∂z∂y∂x=∂∂z∂2f∂y∂x=18xy2z'=18xy2
As derivadas parciais de ordem superior que envolvem variáveis diferentes são denominadas derivadas mistas da função.
NOS EXEMPLOS APRESENTADOS ATÉ AQUI, AS DERIVADAS MISTAS ENVOLVENDO AS
MESMAS VARIÁVEIS APRESENTARAM OS MESMOS VALORES, MAS NEM SEMPRE ISSO
ACONTECE. AS DERIVADAS MISTAS, ENVOLVENDO O MESMO CONJUNTO DE
VARIÁVEIS, APENAS EM ORDEM DIFERENTE, SERÃO IGUAIS SE FOREM FUNÇÕES
CONTÍNUAS.
Por exemplo, para o caso do R2, elas serão ∂2f∂x∂y e ∂2f∂y∂x. Estas derivadas serão iguais se, e somente se, as derivadas
∂2f∂x∂y e ∂2f∂y∂x forem contínuas. Assim, se uma for contínua, obrigatoriamente a outra também será e terá o mesmo valor
da primeira.
Esta conclusão diminui o número de cálculo para obter as derivadas de ordem superior, pois necessitaremos apenas fazer a
conta uma vez para cada conjunto de derivadas mistas.
RESUMO DO MÓDULO 4
TEORIA NA PRÁTICA
A temperatura em uma placa plana é dada pela equação Tx,y=x2+2y2, que apresenta a temperatura (T), medido em °C em um
ponto (x, y), com x e y medida em metros. Um objeto se encontra no ponto (1,2). Determine a taxa de variação da temperatura
sofrida pelo objeto, quando ele segue uma trajetória definida pelo vetor (2, 4).
RESOLUÇÃO
VEJA A SOLUÇÃO DA QUESTÃO NO VÍDEO A SEGUIR:
MÃO NA MASSA
1. A DERIVADA DE SEGUNDA ORDEM MISTA DA FUNÇÃO G(X,Y) = (XY-2YX3+KXY4), COM K REAL, NO
PONTO (1,1) VALE 3. DETERMINE O VALOR DE K
A) 0
B) 1
C) 2
D) 3
E) 4
2. DETERMINE O VALOR DA MAIOR DERIVADA DIRECIONAL PARA A FUNÇÃO GX,Y,Z=3X2YZ2 NO
PONTO (X, Y, Z) = (1, 1, –1).
A) 5
B) 9
C) -3
D) 2
E) 6
3. SEJA A FUNÇÃO F(X, Y) = 3X2 + 2XY. DETERMINE A DERIVADA DIRECIONAL DA FUNÇÃO ∂F∂X NA
DIREÇÃO DO VETOR (–4, 3).
A) 85
B) 125
C) -185
D) -125
E) 185
4. DETERMINE A SOMA DAS QUATRO DERIVADAS DE SEGUNDA ORDEM DA FUNÇÃOFX,Y=2Y2EX2 NO
PONTO (1, 1)
A) 16e
B) 32e
C) 48e
D) 64e
E) 72e
5. DETERMINE A EXPRESSÃO DA DERIVADA PARCIAL ∂3H∂X∂Y∂Z(X,Y,Z), SENDO HX,Y,Z=4X3E-
2Y COS (3Z)
A) 72x2e-2y sen(3z)
B) 36x3e-y cos(3z)
C) 36x2e-2y cos(3z)
D) 18x2e-2y sen(3z)
E) 24x2y sen(3z)
6. SEJA A FUNÇÃO FX,Y=XY2 COS (XY). DETERMINE A DERIVADA DIRECIONAL, NO PONTO X,Y=Π2,Π2,
EM RELAÇÃO A DIREÇÃO DEFINIDA PELO VETOR UNITÁRIO (1, –1).
A) π8
B) π24
C) π22
D) -π8
E) -π2
GABARITO
1. A derivada de segunda ordem mista da função g(x,y) = (xy-2yx3+kxy4), com k real, no ponto (1,1) vale 3. Determine o valor
de k
A alternativa "C " está correta.
gx,y=xy-2yx3+kxy4
∂g∂x=y(x)'-2yx3'+ky4x'=y-2y 3x2+ky4=y-6yx2+ky4
∂∂y∂g∂x=(y)'-6x2y'+ky4'=1-6x2+k. 4y3=1-6x2+4ky3
∂2g∂y∂x1,1=1-6.12+4.k.13=1-6+4k=3
4k = 3 + 5 = 8 → 4k = 8 → k = 2
2. Determine o valor da maior derivada direcional para a função gx,y,z=3x2yz2 no ponto (x, y, z) = (1, 1, –1).
A alternativa "B " está correta.
Sabe-se que a derivada direcional de maior valor é o próprio ∇g.
gx,y,z=3x2yz2
∂g∂x=3yz2x2'=3yz2 2x=6xyz2
∂g∂y=3x2z2y'=3x2z2 
∂g∂z=3x2y1z2'=3x2y-21z3=-6x2yz3 
No ponto (1, 1, -1)
∇g1,1,-1=6.1.1(-1)2,3.12(-1)2,-6.12.1(-1)3=6,3,6
∇g=62+32+62=81=9
3. Seja a função f(x, y) = 3x2 + 2xy. Determine a derivada direcional da função ∂f∂x na direção do vetor (–4, 3).
A alternativa "C " está correta.
fx,y=3x2+2xy
∂f∂x=6x+2y
Para facilitar a nomenclatura chamaremos de
 ∂f∂x=gx,y=6x+2y
Necessitamos achar o gradiente de f
∂g∂x=6 e ∂g∂y=2
Repare que é constante e temo mesmo valor para todo (x,y)
O vetor ( – 4 , 3) não é unitário, assim necessitamos do versor:
v→=(-4)2+(3)2=16+9=25 = 5
Assim
v^=v→v→=15-4,3=-45,35
A derivada direcional vale
Dv=∇f.v^=6,2.-45,35=6.-45+2.35=-185
4. Determine a soma das quatro derivadas de segunda ordem da funçãofx,y=2y2ex2 no ponto (1, 1)
A alternativa "B " está correta.
fx,y=2y2ex2
∂f∂x=2y2(ex2)'=2y2 2xex2=4xy2ex2
∂f∂y=2ex2(y2)'=2ex2 2y=4yex2
∂2f∂x2=∂∂x∂f∂x=4y2(xex2)'=4y2ex2+x 2x ex2=4y2(1+2x2)ex2
∂2f∂y∂x=∂∂y∂f∂x=4xex2(y2)'=4xex2 2y=8xyex2
Não existe necessidade de se calcular ∂2f∂x∂y, pois como ∂2f∂y∂x é contínua, então
∂2f∂x∂y=∂2f∂y∂x=8xyex2
∂2f∂y2=∂∂y∂f∂y=4ex2(y)'=4ex2
Para o ponto (x, y) = (1, 1)
∂2f∂x21,1=4.121+2.12e12=4.3.3=12 e
∂2f∂y21,1=4e12=4e
∂2f∂x∂y1,1=∂2f∂y∂x1,1=8.1.1e12=8e
Somando se tem 12e + 4e + 8 e + 8 e = 32e
5. Determine a expressão da derivada parcial ∂3h∂x∂y∂z(x,y,z), sendo hx,y,z=4x3e-2y cos (3z)
A alternativa "A " está correta.
Veja a solução da questão no vídeo a seguir:
6. Seja a função fx,y=xy2 cos (xy). Determine a derivada direcional, no ponto x,y=π2,π2, em relação a direção definida pelo
vetor unitário (1, –1).
A alternativa "D " está correta.
Veja a solução da questão no vídeo a seguir:
GABARITO
VERIFICANDO O APRENDIZADO
1. SEJA A FUNÇÃO FX,Y=Y2+3XY. DETERMINE A DERIVADA DIRECIONAL DA FUNÇÃO, NO PONTO (1, –
1), NA DIREÇÃO DO VETOR (–3, 4).
A) 115
B) 195
C) 35
D) 135
E) 175
2. SEJA A FUNÇÃO HX,Y=X2Y LN (Y). DETERMINE A DERIVADA DE SEGUNDA ORDEM ∂2H∂Y∂X.
A) 2x(ln y+1)
B) 2y(ln y-1)
C) x(ln y-1)
D) xy(ln y+1)
E) 4x(ln y+2)
GABARITO
1. Seja a função fx,y=y2+3xy. Determine a derivada direcional da função, no ponto (1, –1), na direção do vetor (–3, 4).
A alternativa "D " está correta.
 
fx,y=y2+3xy
∂f∂x=3y e ∂f∂y=2y+3x
No ponto (1, –1)
∇f1,-1=3.-1, 2.-1+3.1=(-3,1)
O vetor (–3, 4) não é unitário, assim necessitamos do versor:
v→=(-3)2+(4)2=16+9=25
Assim
v^=v→v→=15-3,4=-35,45
A derivada direcional vale
Dv=∇f.v^=-3,1.-35,45=-3.-35+1.45=9+45=135
2. Seja a função hx,y=x2y ln (y). Determine a derivada de segunda ordem ∂2h∂y∂x.
A alternativa "A " está correta.
 
hx,y=x2y ln (y)
∂h∂x=ylnyx2'=yln y 2x=2xyln y
∂∂y∂h∂x=2xyln y'=2xln y+y.1y=2x(ln y+1)
CONCLUSÃO
CONSIDERAÇÕES FINAIS
Este tema apresentou e aplicou o conceitode função de várias variáveis, também conhecida como função escalar, e suas
derivadas.
No primeiro módulo, definimos a função escalar e vimos as suas representações, além de analisarmos o gráfico e as curvas e
superfícies de nível.
No segundo e terceiro módulos, aplicamos as derivadas parciais, o gradiente e a regra da cadeia, bem como algumas de suas
aplicações no cálculo diferencial e integral de várias variáveis. Por fim, apresentamos a derivada direcional e as derivadas
parciais de ordem superior.
Temos certeza de que, a partir deste momento, você saberá definir e trabalhar com funções escalares e aplicar suas
derivadas.
-->
AVALIAÇÃO DO TEMA:
REFERÊNCIAS
APOSTOL, T. M. Cálculo, Volume 1. 1 ed. Barcelona – Espanha: Editorial Reverte SA, 1985. cap. 8, p. 243-281
GUIDORIZZI, H. L. Cálculo, Volume 2. 5 ed. São Paulo: LTC, 2013. cap. 8, p.147-162, cap. 12, p. 211-225, cap. 13, p. 245-273 e
cap. 14, p. 274-287.
STEWART, J. Cálculo, Volume 2. 5 ed. São Paulo: Thomson Learning, 2008. cap. 14, p. 884-977
EXPLORE+
Para saber mais sobre os assuntos tratados neste tema, pesquise na internet e nas referências:
Sobre funções escalares, derivadas parciais e derivadas direcionais.
Sobre as superfícies planas e espaciais, de forma a conhecer possíveis representações gráficas obtidas por uma função
escalar no plano ou no espaço.
CONTEUDISTA
Jorge Luís Rodrigues Pedreira de Cerqueira
 CURRÍCULO LATTES
javascript:void(0);

Outros materiais