Buscar

Compressibilidade e Adensamento do Solo

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 30 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 30 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 30 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 61 
 
 
 
Capítulo 3 - COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 
 
3.1 - Introdução 
 
Compressibilidade é uma característica de todos os materiais de quando submetidos 
a forças externas (carregamentos) se deformarem. O que difere o solo dos outros materiais 
é que ele é um material natural, com uma estrutura interna o qual pode ser alterada, pelo 
carregamento, com deslocamento e/ou ruptura de partículas. Portanto, devido a estrutura 
própria do solo (multifásica), possuindo uma fase sólida (grãos), uma fase fluída (água) e 
uma fase gasosa (ar) confere-lhe um comportamento próprio, tensão-deformação, o qual 
pode depender do tempo. 
Define-se compressibilidade dos solos como sendo a diminuição do seu volume sob 
a ação de cargas aplicadas. 
 
Considere os exemplos de obras da Figura 3.1, que referem-se à construção de 
aterros de grande extensão (carga distribuída com extensão muito maior que a 
profundidade de subsolo). Ao executar os aterros há o lançamento de sobrecarga por sobre 
o subsolo de cada um dos perfis de solo. A questão que se apresenta é: Como se 
comportará estes solos quanto a deformação esperada ? 
A Figura 3.2 ilustra a intensidade de carregamento para cada um dos casos. 
 
Exemplos de Obras 
 
Construção de aterro para extensão de pista 
de aeroporto. H = 60m 
Construção de aterro para implantação de via 
de acesso. H = 4m 
Imagens das obras 
 
 
 
 
Formação geológico-geotécnico dos subsolos 
 
Solo residual (Perfil de intemperismo) Solo sedimentar (aluvião argiloso) 
Figura 3.1 – Exemplos de obras de aterros em Juiz de Fora-MG 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 62 
Seções transversais típicas 
 
 
 
Sobrecargas aplicadas 
 
σ = γ . Z = 18 . 60 = 1080 kN/m2 σ = γ . Z = 18 . 4 = 72 kN/m2 
Figura 3.2 – Intensidade de carregamento para exemplos da figura 3.1 
 
 Sendo os solos compressíveis, característica de todos os materiais quando 
submetidos a carregamentos externos se deformarem, pergunta-se: 
Qual das situações apresentará maior RECALQUE (deformação) ? 
Qual o condicionante que contribui significativamente para a ocorrência de 
recalque, como no caso dos exemplos ? 
 
Os carregamentos externos, como por exemplo, da construção de um aterro, são 
transmitidas ao solo gerando uma redistribuição dos estados de tensão em cada ponto do 
maciço (acréscimos de tensão), a qual irá provocar deformações em maior ou menor 
intensidade. 
 A compressibilidade depende do tipo de solo, por exemplo: a compressibilidade 
em areias (solos não-coesivos) devido a sua alta permeabilidade ocorrerá rapidamente, 
pois a água poderá drenar facilmente. Em contrapartida, nas argilas (solos coesivos) a 
saída de água é lenta devido à baixa permeabilidade, portanto, as variações volumétricas 
(deformações/recalques) dependem do tempo, até que se conduza o solo a um novo estado 
de equilíbrio, sob as cargas aplicadas. Essas variações volumétricas que ocorrem em solos 
finos saturados, ao longo do tempo, constituem o processo de adensamento (GURGEL, 
2018). 
 
Definem-se então alguns conceitos importantes: 
 
Compressão (ou expansão): É o processo pelo qual uma massa de solo, sob a ação 
de cargas, varia de volume (“deforma”) mantendo sua forma. 
Os processos de compressão podem ocorrer por compactação (redução de volume 
devido ao ar contido nos vazios do solo) e pelo adensamento (redução do volume de água 
contido nos vazios do solo). 
 
Compressibilidade: Relação independente do tempo entre variação de volume 
(deformação) e tensão efetiva. É a propriedade que os 
solos têm de serem suscetíveis à compressão 
Adensamento: Processo dependente do tempo de variação de volume 
(deformação) do solo devido à drenagem da água dos 
poros 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 63 
 Para os exemplos das Figuras 3.1 e 3.2, apesar do “aterro de extensão de pista” 
gerar um carregamento externo de 1080 kN/m2, muito maior que o da “via de acesso”, com 
72 kN/m2, este segundo caso apresentará um recalque muito maior que o primeiro. Trata-se 
de solo de “fundação” sedimentar argiloso, saturado, cuja compressibilidade é muito maior. 
Neste caso, o “fechamento” dos vazios ocorrerá por fluxo de água que ocorrerá ao longo do 
tempo, fenômeno típico de recalque por “adensamento”, a ser visto neste capítulo. No 
primeiro caso é esperada deformação principalmente por saída de ar dos poros, considerado 
como recalque “inicial ou imediato”. 
 
 
3.2 – Compressibilidade dos solos 
 
O solo é um sistema particulado composto de partículas sólidas e espaços vazios, os 
quais podem estar parcialmente ou totalmente preenchidos com água. Os decréscimos de 
volume (as deformações) dos solos podem ser atribuídos, de maneira genérica, a três 
causas principais: 
• Compressão das partículas sólidas; 
• Compressão dos espaços vazios do solo, com a conseqüente expulsão da água (no 
caso de solo saturado); 
• Compressão da água (ou do fluido) existente nos vazios do solo. 
 
Para os níveis de tensões usuais aplicados na engenharia de solos, as deformações 
que ocorrem na água e grãos sólidos são desprezadas (pois, são incompressíveis). 
Calculam-se, portanto, as deformações volumétricas do solo a partir da variação do 
índice de vazios (função da variação das tensões efetivas). 
 
Em solos saturados (finos – elevado índice de vazios), a variação de volume é 
devida à drenagem da água. Esta situação é verificada para o caso de ocorrência de argilas 
sedimentares em que se tem S  100%. Estes solos se formam pelo transporte da água – 
típicos de regiões “baixas” – topografia “plana”, em que o NA é elevado. 
No caso de solos de formação não sedimentar, (formados no mesmo local da 
rocha de origem) correspondente a situações de cotas mais “elevadas”, não se tem o NA 
elevado, frequentemente se encontram não saturados. Desta forma não se esperam 
adensamento destes solos, assim como em solos granulares que apresentam permeabilidade 
elevada, não sendo submetidos ao processo de drenagem lenta como no caso dos solos 
argilosos – “sujeitos ao efeito do adensamento”. 
 
O fluxo (drenagem) da água no solo é governado pela lei de Darcy → v = k.i  a 
variação de volume não é imediata, sendo função da velocidade com que ocorre o fluxo. 
 A compressibilidade de um solo irá depender do arranjo estrutural das partículas 
que o compõe e do grau em que estas são mantidas uma em contato com a outra. 
 
Variação de volume → devido à variação das tensões efetivas 
No caso do carregamento confinado a deformação volumétrica corresponde à 
deformação específica vertical 




 =
0h
h
V 
 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 64 
3.3 – Ensaio de adensamento ou de compressão confinada (edométrico) 
 
Dentre os parâmetros de compressibilidade que o engenheiro geotécnico necessita 
para a execução de projetos e o estudo do comportamento dos solos, destacam-se a pressão 
de pré-adensamento ’vm, o índice de compressão Cc, e o coeficiente de adensamento Cv. 
A obtenção desses parâmetros se dá a partir da realização de ensaios de compressibilidade 
do solo. 
O estudo de compressibilidade dos solos é normalmente efetuado utilizando-se o 
edômetro, que foi desenvolvido por Terzaghi para o estudo das características de 
compressibilidade e da taxa de compressão do solo com o tempo. A Figura3.3 apresenta o 
aspecto do recipiente do aparelho em que é colocada a amostra, utilizado nos ensaio de 
compressão confinada. 
A Figura 3.4 mostra a imagem de tubos “shelby” em câmara úmida (com amostra 
interna de argila mole) e do equipamento de adensamento. 
 
 
Figura 3.3 – Edômetro utilizado nos ensaios de compressão confinada (de adensamento) 
 
 
 
 
 
Figura 3.4 – Imagens de tubos “shelby” em câmara úmida e do equipamento de adensamento 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 65 
O ensaio de compressão oedométrica (também referido como ensaio de 
compressão confinada ou ensaio de adensamento) é o mais antigo e mais conhecido para a 
determinação de parâmetros de compressibilidade do solo. O ensaio consiste na 
compressão de uma amostra de solo, compactada ou indeformada, pela aplicação de 
valores crescentes de tensão vertical, sob a condição de deformação radial nula. As 
condições de contorno estão apresentadas na Figura 3.5. 
 
 
Figura 3.5 – Condições de contorno do ensaio de compressão confinada 
 
O ensaio é realizado mantendo a amostra saturada (se for o caso) e utilizando duas 
pedras porosas (uma no topo e uma na base) de modo a acelerar a velocidade dos recalques 
na amostra e, conseqüentemente, diminuir o tempo de ensaio. Durante cada carregamento, 
são efetuadas leituras dos deslocamentos verticais do topo da amostra e do tempo. 
• Procedimento do ensaio (resumido) 
NBR 12007 MB 3336 (ABNT) – Solo – Determinação de Adensamento Unidirecional 
− Saturação da amostra (se for o caso) 
− Aplicação do carregamento 
− Leituras, geralmente efetuadas em uma progressão geométrica do tempo 
(15s, 30s, 1min, 2min, 4min, 8min, ... 24hs), dos deslocamentos verticais do 
topo da amostra através de um extensômetro 
− Plotar gráficos com as leituras efetuadas da variação da altura ou recalque 
versus tensões aplicadas 
− A partir da interpretação dos gráficos, decidir se um novo carregamento 
deve ser aplicado. Repetem-se os processos anteriores. 
− Última fase: descarregamento da amostra. 
• Seqüências usuais de cargas 
 (em kPa) : 10, 20, 40, 80, 160, 320, 640, etc 
 em geral são aplicados de 5 a 8 carregamentos → podendo chegar a quase 2 
semanas de ensaio 
 
 
3.4 – Interpretação dos resultados de um ensaio de compressão confinada 
 
 Existem diversos modos de se representar os resultados do ensaio de adensamento. 
A taxa de deformação do solo no início do ensaio é bem veloz, mas como o decorrer do 
ensaio ela decresce. Depois de transcorrido o tempo necessário para que as leituras se 
tornem constantes, os resultados de cada estágio são colocados em um gráfico, em função 
do logaritmo do tempo. A curva de compressão do solo é normalmente representada em 
função do índice de vazios versus o logaritmo da tensão vertical. 
 
A deformação final (recalque) pode ser calculada em termos de índice de vazios, a 
partir do ilustrado na Figura 3.6, como: 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 66 
 
 
O recalque é, portanto, o resultado do produto da variação do índice de vazios e da 
altura de sólidos (Hs). Como Hs é constante, este valor pode se estabelecido em função das 
condições iniciais da camada, conforme demonstrado na Figura 3.6. 
 
 
 
 
Figura 3.6 – Subdivisão de fases de um solo e cálculo do recalque (GERSCOVICH, 2008) 
 
Sendo 
0h
h
V

= então 
e
e
V
+
−
=
1
 
 
O valor do índice de vazios ao final de cada estágio de carregamento pode ser 
obtido considerando-se a hipótese de carregamento confinado, a partir da relação da 
deformação volumétrica com o índice de vazios: 
 
Logo: ( )0
0
0 1. e
h
h
ee f +

−= 
 Onde: 
 ef é o índice de vazios ao final do estágio de carregamento atual 
 h é a variação da altura do corpo de prova (acumulada) ao final do estágio 
 h0 é a altura inicial do corpo de prova (antes do início do ensaio) 
 e0 é o índice de vazios inicial do corpo de prova (antes do início do ensaio) 
 
 
O índice de vazios inicial do corpo de prova (“e0”) pode ser obtido a partir da 
relação: 
e0 =  - 1  = peso específico das partículas sólidas 
 s o s o = peso específico seco na condição inicial 
 
Para a condição inicial da amostra, pode-se calcular o grau de saturação (“So”) a 
partir da relação: 
S0 =  hi hi = teor de umidade na condição inicial 
 e0 e0 = índice de vazios inicial da argila 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 67 
Resultados do Ensaio 
Os gráficos da Figura 3.7 mostram a representação dos resultados do ensaio de 
compressão confinada. 
 
 
Figura 3.7 – Representação dos resultados em termos de índice de vazios x tensão vertical 
 
O valor da tensão a qual separa os trechos de recompressão e compressão virgem do 
solo na curva de compressão do solo é normalmente denominado de tensão de pré-
adensamento, e representa, conceitualmente, o maior valor de tensão já sofrido pelo solo 
em campo (no resultado mostrado na curva acima, se aproxima de 100 kPa). Corresponde 
ao início do trecho virgem de compressão (em que se tem o comportamento linear do 
índice de vazios com o log da tensão vertical aplicada). 
 
Interpretação dos Resultados 
 
Para o melhor entendimento de alguns conceitos do ensaio de compressão 
confinada, analisaremos o exemplo dos gráficos da Figura 3.8 (resultados de ensaio 
oedométrico realizado em uma argila normalmente adensada, com um descarregamento 
no meio do ensaio e com tensão de carregamento inicial - 175 kPa - acima dos valores 
correspondentes ao trecho não virgem), plotados no gráfico em escala semi-log (nota-se 
que os resultados podem ser aproximados por dois trechos lineares) e no gráfico das 
tensões em escala não logarítmica. 
 
 
Figura 3.8 – Resultado do ensaio de adensamento de uma argila normalmente adensada 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 68 
Nota-se que a amostra foi comprimida, em primeiro carregamento, do ponto A até o 
ponto B. Em seguida, sofreu um processo de descarregamento até o ponto D, para 
finalmente ser recarregada até aproximadamente o ponto B, e novamente aplicado o 
carregamento levou a amostra a atingir o ponto C. 
A expressão primeiro carregamento significa que os carregamentos que ora se 
impõem ao solo superam o maior valor por ele já sofrido em sua história de carregamento 
prévia. É um conceito de grande importância, pois o solo (e todo material de 
comportamento elastoplástico) guarda em sua estrutura indícios de carregamentos 
anteriores. Assim, da curva apresentada na Figura 3.8, temos: 
• Trecho A-B: trecho de carregamento virgem, no sentido que a amostra ensaiada 
nunca experimentara valores de tensão vertical daquela magnitude. Quando isto 
ocorre, dizemos que a amostra está em níveis de tensões correspondente à condição 
de “normalmente adensada (NA)”. 
• Trecho B-D-B (descarga/recarregamento): não é normalmente adensada, pois a 
tensão a qual lhe é imposta é inferior à tensão máxima por ela experimentada (ponto 
B), sendo classificado como solo “pré-adensado (PA)”. 
• Trecho B-C: apresenta um estado de tensão superior ao maior estado de tensão já 
experimentado, sendo classificado como normalmente adensado. 
A Tabela 3.1 apresenta um resumo do exposto anteriormente. 
 
Tabela 3.1 – Comparação entre pressões atual ’v e máxima passada ’vm 
PRESSÃO COMPORTAMENTO DA ARGILA 
’v < ’vm Solo pré adensado(PA) 
Deformações pequenas e reversíveis 
Comportamento elástico 
’v  ’vm Solo normalmente adensado (NA) 
Deformações grandes e irreversíveis 
Comportamento plástico 
 
Um outro exemplo que pode ser analisado refere-se a uma argila hipotética, cuja 
relação índice de vazios em função da pressão de adensamento é indicada na Figura 3.9. 
Esta argila foi adensada, no passado, segundo a curva tracejada na figura, até uma 
tensão efetiva igual a aproximadamente o valor “3” – entre 2 e 4 (as tensões estão 
indicadas por valores absolutos, independentes do sistema de unidades; 3 poderia ser 300 
kPa, por exemplo). Veja que esta argila apresenta, atualmente (executado o ensaio de 
laboratório), a curva de índice de vazios em função da tensão confinante indicada pela 
linha contínua. 
 
Considerando o nível de tensões de 4 a 8, estas tensões correspondem a valores 
atuantes no solo argiloso na condição de argila normalmente adensada (ou seja, esta argila 
ainda não tinha experimentado este nível de tensão, portanto não se pode atribuir à 
condição de pré-adensada). 
Considerando o nível de tensões de 0,5 a 2, estas tensões correspondem a valores 
menores que a máxima tensão experimentada pelo solo (em sua história de vida – 
geralmente atribuída a uma condição geológica do passado). Assim estes valores se 
referem a uma condição de argila pré-adensada (ou seja, esta argila já foi submetida a valor 
de tensão superior a estes valores). 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 69 
 
Figura 3.9 – Relação índice de vazios em função da pressão de adensamento 
 
 
3.5 – Tensão de pré-adensamento 
 
O valor da tensão a qual separa os trechos de recompressão e compressão virgem do 
solo na curva de compressão do solo é normalmente denominado de tensão de pré-
adensamento, e representa, conceitualmente, o maior valor de tensão já sofrido pelo solo 
em campo. 
A determinação da tensão de pré-adensamento é feita por processos gráficos, 
dentre os quais podemos citar o método de Casagrande e o método de Pacheco e Silva. 
 
A) Método de Casagrande 
 
Para a determinação de ’vm , segue-se os seguintes passos (Figura 3.10): 
a) Obter na curva índice de vazios x logaritmo da tensão efetiva o ponto de maior 
curvatura ou menor raio (R); 
b) Traçar uma tangente (t) e uma horizontal (h) por R; 
c) Determine e trace a bissetriz do ângulo formado entre (h) e (t); 
d) A abscissa do ponto de intersecção, da bissetriz com o prolongamento da reta virgem 
corresponde à pressão de pré-adensamento. 
 
 
Figura 3.10 – Determinação da tensão de pré-adensamento por Casagrande 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 70 
B) Método de Pacheco e Silva 
 
Para a determinação de ’vm , segue-se os seguintes passos (Figura 3.11): 
a) Traçar uma horizontal passando pela ordenada correspondente ao índice de vazios 
inicial; 
b) Prolongar a reta virgem e determinar seu ponto de intersecção (p) com a reta definida 
no item anterior; 
c) Traçar uma reta vertical por (P) até interceptar a curva índice de vazios x logaritmo da 
tensão efetiva (ponto Q); 
d) Traçar uma horizontal por (Q) até interceptar o prolongamento da reta virgem (R). A 
abscissa correspondente ao ponto (R) define a pressão de pré-adensamento. 
 
 
Figura 3.11– Determinação da tensão de pré-adensamento por Pacheco e Silva 
 
 A Figura 3.12 ilustra a obtenção da tensão de pré-adensamento, para a mesma curva 
obtida no ensaio de adensamento, pelos dois métodos apresentados. 
 
 
Figura 3.12 - Tensão de pré-adensamento obtida por Casagrande e Pacheco e Silva 
 
Efeito de amolgamento da amostra 
 
 A qualidade da amostra (Figura 3.13) a ser submetida ao ensaio de adensamento, no 
que se refere ao seu possível amolgamento (perturbação) durante a sua coleta, transporte ao 
laboratório ou ainda na sua preparação antes de ser submetida à prensa do edômetro 
(adensamento), influencia diretamente na qualidade dos resultados a serem obtidos. 
 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 71 
 
Moldagem de amostra indeformada para 
ensaio de adensamento 
 
Curva típica “e” x log tensão efetiva 
(observe o efeito curvo na compressão) 
Figura 3.13 – Moldagem de amostra e resultados típicos esperados (“e” x “log ’”) 
 
A Figura 3.14 mostra resultados de ensaios para um mesmo material com diferentes 
condições de amolgamento do corpo de prova. Observa-se o traçado diferenciado para a 
mesma amostra, apresentando “com curva” a amostra indeformada de boa qualidade. 
 
 
Figura 3.14 – Efeito do amolgamento de amostra, observado na curva “e” x “log ’” 
 
 
3.6 – Determinação da condição de adensamento 
 
 história de tensões que “viveu” o solo 
 
Em algumas situações de análise do comportamento dos solos em Engenharia 
Geotécnica faz-se necessário determinar as condições de adensamento em que o solo se 
encontra, ou seja, determinar a história de tensões que o solo já foi submetido. 
A razão de pré-adensamento (OCR) de um solo é a relação entre a máxima tensão 
efetiva vertical já experimentada pelo solo e a tensão efetiva vertical atual de campo, ou 
seja, é a razão entre a tensão de pré-adensamento do solo (obtida em laboratório) e a sua 
tensão efetiva vertical que atua hoje no solo, conforme ilustrado na Figura 3. 15. O OCR é 
dado por: 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 72 
Vcampo
vm
Vcampo
VRCO



 'max... == , onde ’vm representa a tensão de pré-adensamento do solo 
Ou ainda: '
0v
'
vmOCR


=  razão de pré-adensamento (“overconsolidation ratio”) 
 
Se OCR > 1 → solo pré-adensado (ou sobre adensado) 
Se OCR = 1 → solo normalmente adensado 
Se OCR < 1 → solo sub-adensado (solo em processo de adensamento). 
 
 
Figura 3.15 – Valor da tensão efetiva vertical in situ, que atua hoje no solo 
 
As argilas sedimentares se formam sempre com elevados índices de vazios (são 
solos muito compressíveis). Quando elas se apresentam com índices de vazios baixos, 
estes são conseqüentes de um pré-adensamento. Em virtude disso, uma argila, com 
diferentes índices de vazios iniciais apresentarão curvas tensão-deformação, após atingirem 
a pressão de pré-adensamento correspondente, “fundidas” em uma única reta virgem. 
 
Consequentemente a isto, tem-se que o comportamento de uma argila é 
altamente dependente do índice de vazios em que ela se encontra, que é fruto das 
tensões atuais e passadas, e da estrutura da argila. Assim o comportamento destes solos 
é determinado pelas tensões efetivas que estiveram submetidos em relação ao nível de 
tensão que se apresenta hoje, no material. 
O valor da razão de pré-adensamento pode influenciar na determinação dos 
diversos parâmetros que expressam o comportamento dos solos, como, por exemplo no 
cálculo do coeficiente de empuxo no repouso K0 (relação entre as tensões efetivas 
horizontal e vertical, a ser estudada no Capítulo 06 neste curso), representado pela equação: 
'
v
'
h
0K


= 
• Para argila normalmente adensada (OCR = 1) 
'sen95,00 −K  equação empírica 
• Para argila pré-adensada (OCR > 1) 
( ) '0 .'95,0
 senOCRsenK −=  equação empírica 
 
A expressão é função do parâmetro ’ - ângulo de atrito do solo, parâmetro 
relacionado à resistência ao cisalhamento do solo, conforme será também estudado 
posteriormente neste curso (Capítulos 04 e 05). 
 
Faculdade de Engenharia – NuGeo/Núcleo de GeotecniaProf. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 73 
3.7 – Parâmetros de compressibilidade por compressão primária 
 
 Realizado o ensaio de adensamento tem-se, a partir das curvas obtidas em função da 
tensão efetiva vertical (’v) (plotado com log ou não) os coeficientes (compressibilidade - 
Figura 3.16 e compressibilidade volumétrica - Figura 3.17), o Módulo de Elasticidade 
edométrico (Figura 3.17) e os índices (compressão, expansão e recompressão) - Figura 
3.18: 
 
- Coeficiente de Compressibilidade av 
 
 
Figura 3.16 – Obtenção do coeficiente av, na curva ’v x e 
 
 - Coeficiente de Compressibilidade Volumétrica mv e Módulo Edométrico E oed 
 
 
 
 
 
Figura 3.17 – Obtenção do coeficiente mv e do módulo Eoed, na curva ’v x εv 
 
- Índices de compressão (Cc), expansão (Cs) e recompressão (Cr) 
 
 
Figura 3.18 – Obtenção dos índices Cc, Cs e Cr, na curva log ’v x e 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 74 
Podem-se se distinguir nesse gráfico, três partes distintas: 
O primeiro trecho representa uma recompressão do solo, até um valor característico 
da tensão de pré-adensamento (’vm). Tal reta apresenta um coeficiente angular 
denominado índice de recompressão (Cr). 
Ultrapassando o valor de ’vm o corpo de prova comprime-se, sob tensões 
superiores a esta, corresponde ao trecho reto do gráfico - reta virgem de adensamento. Tal 
reta apresenta um coeficiente angular denominado índice de compressão (Cc). 
O terceiro trecho corresponde à parte do ensaio, quando o corpo de prova é 
descarregado gradativamente, e pode experimentar ligeiras expansões, denominado índice 
de expansão (Cs). 
 
São determinados pelas expressões a seguir apresentadas: 
 
- Índice de Compressão, expansão ou recompressão: Cc = Cs = Cr = e 
 log ’v 
 Observa-se poder escrever: 






−
===
vi
vf
if
rSC
ee
CCC


log
 
E ainda: e = Ci . log ’v = Ci . 






vi
vf


log 
 
Esta última expressão, que corresponde à variação do índice de vazios (e) é 
extremamente útil para o cálculo de “recalques” como será visto. 
 
 
3.8 – Recalque Total por Compressão Primária 
 
O recalque primário ocorre durante o processo de Adensamento e equivale à 
variação de altura da camada de solo, a qual pode ser representada pela variação da altura 
de vazios, como visto no item 3.4: 
 
 
Sendo: 
 (∆H) é o valor do recalque do solo, em relação à superfície (referência) 
e é a variação do índice de vazios correspondente à nova tensão aplicada 
e0 é o índice de vazios inicial do solo 
H0 é a altura inicial da camada de solo compressível (ou da camada de solo para a 
qual se quer calcular o recalque) 
 
O recalque  (∆H) pode ser expresso em função do índice de compressão “Cc” e/ou 
do índice de recompressão “Cr” e da diferença dos logs das tensões efetivas consideradas 
(igual “log” da divisão de tensões), bastando substituir o valor da diferença dos índices 
de vazios (e), como se vê nas expressões apresentadas, dependendo de cada caso. 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 75 
Então, em função dos níveis de tensões aplicados (inicial σ’vo - e final σ’vf) temos 
para o recalque, conforme apresentado na Figura 3.19, as expressões abaixo, referido à 
tensão de pré-adensamento aplicada (’vm): 
 
 
Figura 3.19 - Diferentes níveis de tensões aplicadas em função da tensão de pré-adensamento 
 
Solo Normalmente Adensado (NA) 
A variação de tensões verticais aplicadas se dá na zona de compressão virgem. 
Por exemplo, inicial σ’vo = ’vm = P e final σ’vf = C (entre P e C) 
Recalque para solos NA (função do CC, apenas) 
 
 
Solo Pré-Adensado (PA) 
A variação de tensões verticais aplicadas se dá na zona de recompressão ou na parte 
na zona de recompressão e em parte na compressão virgem. 
Por exemplo, inicial σ’vo = A e final σ’vf = B (entre A e B) ou inicial σ’vo = A e final 
σ’vf = C (entre A e C) 
Recalque para solos PA (função do Cr, apenas ou do Cr e CC) 
 
 
Considerando a variação linear do acréscimo de tensões ao longo da camada 
compressível, costuma-se calcular o acréscimo na cota média e admiti-lo como 
representativo de toda a camada. Conhecido o acréscimo Δσ′ (final σ’vf - inicial σ’vo), pode-se 
calcular o recalque total da camada, como visto. 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 76 
Para o caso da compressibilidade ser definida apenas em termos do coeficiente de 
compressibilidade volumétrica (mV), sem levar em consideração a variação de tensões 
aplicadas, como apresentado anteriormente, pode-se definir o recalque (∆HV) como sendo: 
 
 
Em termos do módulo edométrico (Eoed), parâmetro inverso do mV define-se o 
recalque (∆HV): 
 
 
No caso de se definir compressibilidade em termos do coeficiente de 
compressibilidade (av), define-se o recalque (ρ = ∆HV) como: 
 
 
Observa-se que de maneira geral os recalques podem ser divididos em três 
categorias como mostra a Figura 3.20. Além do recalque primário ou de adensamento, 
estudado neste capítulo, tem-se o recalque inicial e o recalque secundário. O Recalque 
total (∆HT) é, então, determinado somando-se todas as parcelas. 
 
 
Figura 3.20 - Evolução dos recalques com o tempo 
 
Recalque Inicial: O recalque inicial ocorre em solos não saturados e, no caso de 
solos saturados, quando as condições possibilitam a existência de deformações verticais e 
horizontais. Nesses casos parte das tensões, geradas pelo carregamento são transmitidas 
imediatamente ao arcabouço sólido e são calculados pela Teoria da Elasticidade. 
Recalque primário ou de adensamento: O recalque primário, estudado aqui, ocorre 
durante o processo de transferência de esforços entre a água e o arcabouço sólido, 
associado à expulsão da água dos vazios (a ser melhor detalhado no item seguinte, 3.9). 
Recalque secundário: Também chamado de fluência (“creep”) está associado a 
deformações observadas após o final do processo de adensamento primário, quando as 
tensões efetivas já se estabilizaram. Ocorre para tensões efetivas constantes. 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 77 
No estudo da compressibilidade dos solos, o comportamento de alguns solos 
típicos deve ser ressaltado, como destaca Pinto (2006): 
 
Solos Colapsíveis 
Solos colapsíveis são solos não saturados que apresentam uma considerável e 
rápida compressão quando submetidos a um aumento de umidade sem que varie a tensão 
normal a que estejam submetidos. 
O fenômeno de colapsividade é geralmente estudado por meio de ensaios de 
compressão edométrica. A Figura 3.21 apresenta, esquematicamente, resultados de ensaios 
feitos com um solo colapsível. A curva A indica o resultado de um ensaio em que o corpo 
de prova permanece com seu teor de umidade inicial; a curva B representa o resultado de 
um ensaio em que o corpo de prova foi previamente saturado; a curva C o de um corpo de 
prova, inicialmente com sua umidade natural e que, quando na tensão de 150 kPa, foi 
inundado, apresentando uma brusca redução do índice de vazios. 
 
 
Figura 3.21 – Ensaio de compressão edométrica de um solo colapsível 
O valor de recalque resultante do umedecimento depende do estado de saturação em 
que o solo se encontra e do estadode tensões a que está submetido, como se depreende da 
análise da Figura 3.21. 
O colapso é devido à destruição dos meniscos capilares, responsáveis pela tensão de 
sucção, ou a um amolecimento do cimento natural que mantinha as partículas e as 
agregações de partículas unidas. Fisicamente, o fenômeno do colapso está intimamente 
associado ao da perda de resistência dos solos não saturados, conforme visto no item 
anterior. 
 
Solos Expansivos 
Ao contrário dos solos colapsíveis, certos solos não saturados, quando submetidos à 
saturação, apresentam expansão. Esta expansão é devida à entrada de água nas interfaces 
das estruturas mineralógicas das partículas argilosas, ou à liberação de pressões de 
sucção a que o solo estava submetido, seja por efeito de ressecamento, seja pela ação de 
compactação a que foi submetido. A expansibilidade é muito ligada ao tipo de mineral 
argila presente no solo, sendo uma das características mais marcantes das argilas do tipo 
esmectita. Mas solos essencialmente siltosos e micáceos, geralmente decorrentes de 
desagregação de gnaisse, apresentam-se expansivos quando compactados com umidade 
abaixo da umidade ótima. 
A exemplo dos solos colapsíveis, o estudo da expansividade dos solos é geralmente 
feito por meio de ensaios de compressão edométrica. Inunda-se o corpo de prova quando as 
deformações decorrentes de certa pressão já se estabilizam e mede-se a expansão ocorrida. 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 78 
3.9 – Adensamento dos solos 
 
Adensamento: Processo gradual dependente do tempo, de variação de volume do 
solo devido à drenagem da água dos poros, compressão com diminuição de pressão neutra 
e consequente aumento de tensões efetivas. 
 
Quando: u = 0 → o adensamento primário cessa e toda a tensão é suportada 
pelo esqueleto sólido; 
 (u → excesso de pressão neutra) 
 
 
3.9.1 – Analogia mecânica do processo de adensamento de Terzaghi 
 
Conforme já descrito anteriormente, sendo o solo saturado e as partículas de água e 
sólidos incompressíveis, toda variação de volume deverá ocorrer em função da variação do 
índice de vazios. Esta variação somente ocorrerá por expulsão de água dos vazios 
(processo de compressão) ou absorção de água para dentro dos vazios (processo de 
expansão). Logo, para que o solo se deforme é necessário que haja um processo de fluxo 
de água em seu interior. 
 
Processo de Adensamento e Teoria de Terzaghi: 
hipótese simplificadora → relação entre “e” e ’v é assumida como linear. 
 
Terzaghi apresenta a seguinte analogia, para explicar o processo do adensamento: 
Uma mola de altura inicial H é imersa em água em um cilindro de pistão de área 
transversal A, através do qual uma carga axial pode ser transmitida ao sistema, que 
representa o solo saturado, como apresentado na Figura 3.22 A mola tem função análoga à 
estrutura de solo e a água do cilindro, à pressão neutra. O pistão possui uma válvula que 
controla a facilidade com que a água sai do sistema cuja função é a representação do 
coeficiente de permeabilidade do solo. Aplica-se uma carga P ao pistão. 
 
 
Figura 3.22 – Analogia de Terzaghi 
Considerações da analogia apresentada por Terzaghi: 
Válvula: Permeabilidade do solo 
Mola: Rigidez do esqueleto sólido 
 
a
0
0
u
h

= e 
a
u
h


= 
 = deslocamento do pistão devido à aplicação da carga 
Pressões:  = ’ + u, mas u= uo + u 
 uo = pressão hidrostática (inicial) 
 u = excesso de poro pressão (carregamento) 
 
Têm-se as seguintes situações: 
1. Válvula fechada: a pressão (σ = P/A) decorrente da aplicação da carga P será 
suportada pela água, sendo a força suportada pela mola ainda nula. 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 79 
2. Válvula aberta: expulsão da água a uma velocidade que é função da diferença entre 
a pressão da água e a pressão atmosférica. Com isso, o pistão se movimenta e a 
mola passa a ser solicitada em função do deslocamento. À medida que a água é 
expulsa, a poropressão diminui e aumenta a tensão na mola. Em qualquer instante, 
as forças exercidas pela mola e pela água no pistão devem ser iguais a P. O 
processo continua até P ser suportado pela mola, sendo a pressão da água devida 
somente ao peso próprio. Neste ponto não há mais fluxo para fora. O aumento da 
pressão sobre o esqueleto sólido corresponde ao aumento de pressão efetiva. 
 
A Figura 3.23 ilustra o Modelo Hidromecânico de Terzaghi. 
 
 
Figura 3.23– Modelo Hidromecânico de Terzaghi para explicar o processo de adensamento 
 
 Cada fase do processo descrito anteriormente pode também ser observada nos 
gráficos apresentados na Figura 3.24. 
 
Após constatar que uma amostra de argila saturada sujeita a um aumento de 
carga P apresentava deformações “retardadas” devido à sua baixa permeabilidade, 
Terzaghi (1925) desenvolveu uma formulação matemática para esse fenômeno. No 
desenvolvimento dessa formulação, foi necessário que Terzaghi elaborasse uma série de 
hipóteses simplificadoras, dentre as quais, algumas são de conseqüências muito 
importantes sobre a possibilidade de se aplicar esta teoria ao estudo de um caso real. 
A seguir, o princípio básico do fenômeno de adensamento é apresentado e então, as 
diferentes hipóteses de Terzaghi serão examinadas e suas consequências estabelecidas. 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 80 
 
Figura 3.24 – Fases de carregamento e variações nas tensões no processo de adensamento 
 
 
3.9.2 – Teoria do adensamento 1-D de Terzaghi 
 
 O desenvolvimento da Teoria do Adensamento de baseia nas seguintes hipóteses: 
 
1. O solo é totalmente saturado (Sr = 100%); 
2. A compressão é unidimensional; 
3. O fluxo de água é unidimensional e governado pela Lei de Darcy; 
4. O solo é homogêneo; 
5. As partículas sólidas e a água são praticamente incompressíveis perante a 
incompressibilidade do solo; 
6. O solo pode ser estudado como elementos infinitesimais; 
7. As propriedades do solo não variam no processo de adensamento e não há diferença 
de comportamento entre massas de solos de pequenas e grandes dimensões; 
8. O índice de vazios varia linearmente com o aumento da tensão efetiva durante o 
processo de adensamento. 
 
Dedução da teoria: 
Objetivo: Determinar para qualquer instante (tempo – “t”) e em qualquer posição 
(profundidade - “z”) o grau de adensamento de uma camada, ou seja, as deformações, os 
índices de vazios, as tensões efetivas e as pressões neutras correspondentes. 
Considere um elemento de solo submetido ao processo de adensamento conforme a 
Figura 3. 25. 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 81 
 
Figura 3.25 – Elemento de solo submetido ao processo de adensamento 
 
Sendo a equação de fluxo permanente (não há variação de volume) num solo 
saturado, a variação de volume pelo tempo se escreve: 
0dz.dy.dx.
z
h
.k
y
h
.k
x
h
.k
t
V
2
2
z2
2
y2
2
x =







+


+


=


 
 
Equação de Laplace para fluxo 
tridimensional. 
 
No estudo do adensamento, o fluxo ocorre somente na direção vertical e a 
variação de volume não é nula. A quantidade de água que sai do elemento é menor do 
que a que entra. A equação de fluxo, neste caso, se reduz a: 
dz.dy.dx.
z
h
.k
t
V
2
2


=


 → Equação 1 
 
Mas a variação de volume do solo é a variação do volume de vazios, já que 
consideramos a água e osgrãos sólidos praticamente incompressíveis em relação à 
estrutura sólida do solo. Logo, a variação de volume com o tempo é dada pela expressão: 






+

=


dz.dy.dx.
e1
e
tt
V
 ou 
e1
dz.dy.dx
.
t
e
t
V
+

=


 → Equação 2 
 
Uma vez que 
e1
dz.dy.dx
+
é o volume dos sólidos, e, portanto, invariável com o tempo, 
temos igualando as equações 1 e 2, que: 
e1
dz.dy.dx
.
t
e
dz.dy.dx.
z
h
.k
2
2
+

=


  
e1
1
.
t
e
z
h
.k
2
2
+

=


 → Equação 3 
 
Só a carga que excede a hidrostática provoca fluxo. Portanto, a carga h pode ser 
substituída pela pressão na água, ou seja, u/a. Mas, sabemos que, du.ade V= . Substituindo 
estes valores na equação 3, obtemos: 
 
( )
t
u
z
u
.
.a
e1.k
2
2
av 

=



+
 → Equação de adensamento 1-D 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 82 
Esta equação expressa a variação da pressão neutra em relação ao tempo, função da 
variação de u com a profundidade, multiplicada por conjunto de parâmetros. Na equação: 
 k é o coeficiente de permeabilidade 
 e é o índice de vazios 
 av é o coeficiente de compressibilidade 
 a é o peso específico da água 
 u é o excesso de pressão neutra (u) 
 z é a variável espacial (profundidade) 
 t é o tempo 
 
Para a solução da equação acima, foram consideradas as condições de contorno 
desta equação, conforme apresentadas na Tabela 3.2, e interpretadas na figura 3.26. 
 
Tabela 3.2 - Condições de contorno consideradas na solução da equação 
 Tempo Profundidade Pressão (excesso) 
para 
 
t = 0 
e 
 
0  z  H u (z,0) = u0 
para 
 
0  t   
e 
 
z = 0 u (0,t) = 0 
para 0  t   
e 
 
z = H 0
z
u
=


 
 
 
Figura 3.26 – Exemplo de adensamento com a interpretação das condições de contorno 
 
O coeficiente do primeiro membro da equação de adensamento reflete as 
características do solo (permeabilidade, porosidade e compressibilidade) e é denominado 
Coeficiente de Adensamento – Cv. Seu valor é admitido como constante para cada 
acréscimo de tensões. Tem-se, portanto: 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 83 
( )
av
v
.a
e1.k
c

+
= 
Logo, a equação diferencial do adensamento assume a expressão: 
t
u
z
u
.c
2
2
v


=


. 
 
O Coeficiente de Compressibilidade Volumétrica, dado por 
e1
a
m vv
+
= , é obtido 
pela inclinação da curva de compressão do diagrama ’v x v. Logo, podemos escrever o 
coeficiente de adensamento como: 
avav
v
.m
k
.a
)e1.(k
c

=

+
= , então o coeficiente de permeabilidade é obtido: k = cv . mv . γa 
 
Na integração da equação de adensamento, a variável fator tempo T (adimensional) 
aparece sempre associada ao coeficiente de adensamento e a maior distância de percolação, 
dada pela expressão: 
2
d
v
H
t.c
T = 
 
O fator tempo T correlaciona os tempos de recalque às características do solo, 
através do Cv, e às condições de drenagem do solo, através do Hd. 
O termo Hd refere-se, portanto, à distância de drenagem da camada de solo (Figura 
3.27) e é igual a maior distância que a água tem que percorrer para alcançar uma camada 
drenante. O seu valor dependerá das condições de drenagem, como se vê. 
 
 
Figura 3.27 - Condições de drenagem: Duas diferentes formas de ilustrar 
 
O coeficiente de adensamento (Cv) pode ser obtido a partir da realização de ensaio 
de adensamento, em laboratório, aplicando-se os métodos usuais de Taylor ou Casagrande. 
Consiste em aplicar a expressão para a variável tempo T, associada a uma determinada 
percentagem de adensamento decorrida. O método de Taylor relaciona o tempo (“t”) 
necessário para completar 90% do adensamento primário e o método de Casagrande 
relaciona o tempo (“t”) necessário para completar 50% do adensamento primário. 
Observa-se ser um cálculo simples, com a maior dificuldade recaindo sobre a 
determinação destes tempo “t”. Para tanto são utilizados métodos próprios (segundo seus 
autores), que consistem basicamente em traçar gráficos com resultados de ensaio e assim 
obter o valor de “t” pretendido. As Figuras 3.28 e 3.29 ilustram os métodos, que serão 
melhor apresentados na parte prática deste curso. 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 84 
 
Método de Taylor 
(raiz de t) 
 
Cv = 0,848 . H
2 
 t90 
 
 
 
 
 
 
 
 
 
Figura 3.28 - Método de Taylor para obtenção do coeficiente de adensamento 
 
Método de Casagrande 
(log de t) 
 
Cv = 0,197 . H
2 
 t50 
 
 
 
 
 
 
 
 
 
 
 
Figura 3.29 - Método de Casagrande para obtenção do coeficiente de adensamento 
 
A equação de adensamento 1–D, consideradas as suas condições de contorno 
fornece a seguinte solução para o excesso de pressão neutra u, à uma profundidade z 
decorrido o tempo t: 
 
( )
( ) ( )
4
T..1m2m
0m d
0
22
e.
H
z
.
2
.1m2
sen.
1m2
1
.u.
4
t,zu
+−=
=
 




 +
+
= → Equação 1 
 
onde: “u0” é o excesso de pressão neutra inicial (após o carregamento) 
“e” é a base do logaritmo natural 
“T” é o fator adimensional de tempo 
“Hd” é a distância de drenagem da camada de solo 
 
 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 85 
3.9.3 – Grau ou porcentagem de adensamento 
 
 Define-se como grau ou porcentagem de adensamento a relação entre a 
deformação () ocorrida num elemento numa certa posição, caracterizada pela sua 
profundidade “z”, num determinado tempo “t” e a deformação total (f) deste elemento 
no final de todo o processo de adensamento: 
f
zU


= 
 
Podemos expressar o grau ou porcentagem de adensamento em função dos índices 
de vazios, ou em termos de tensão efetiva, como ilustrado na Figura 3.30. 
 
 
 
 
 
''
''
12
1
12
1


−
−
=
−
−
=
ee
ee
U z 
Figura 3.30 - Variação linear do índice de vazios com a pressão efetiva 
 
A porcentagem de adensamento pode ser expressa por relação direta (relação entre 
“pressão dissipada” e “total de pressão a dissipar”) ou expressa pelo seu complemento: 1 – 
relação entre o “excesso de pressão a dissipar” e “total de pressão a dissipar”, vejamos: 
0
),(
11
u
u
u
u
U
tz
wi
w
z −=−= 
 
Onde: u(z,t) é o excesso de pressão neutra u, à uma profundidade z, decorrido o 
tempo t - excesso de pressão que falta dissipar 
u0 é o excesso de pressão neutra inicial (após o carregamento) - excesso 
total gerado pelo carregamento 
 
Em termos de porcentagem de adensamento na profundidade z, o valor de Uz 
pode ser expresso a partir da relação de u(z, t) (equação 1) e u0 , então, obtém-se: 
 
( ) ( )
4
T..1m2m
0m d
z
22
e.
H
z
.
2
.1m2
sen.
1m2
1
.
4
1U
+−=
=
 




 +
+
−= → Equação 2 
 
Ou, de forma simplificada, sendo o valor de 
( )
2
.1m2
M
+
= : 

=
=
−








−=
m
0m
T.M
d
Z
2
e.
H
z
.senM.
M
2
1U → Equação 3 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 86 
Os valores da porcentagem de adensamento (de pressão neutra dissipada) Uz 
podem ser obtidos atribuindo-se valores a z/Hd e T, com os quais se constroem as curvas 
da Figura 3.31. 
 
Para um determinado solo (cv e Hd) e para um tempo “t”, tem-se um fator “T”. 
Então, a uma profundidade z, observadas as curvasde “T”, obtém-se a percentagem de 
dissipação da pressão neutra “Uz” e consequentemente obtém-se o valor de “ganho” de 
tensão efetiva no solo (no gráfico, da esquerda para a direita, de “0” a “1.0”- 100%, 
indicado como ∆σ’(t)/∆u0). Observe que o complemento corresponde a porcentagem do 
excesso de pressão ainda a dissipar - ∆u(t)/∆u0. 
 
 
Figura 3.31 – Grau de adensamento Uz em função da profundidade z e do fator tempo T 
 
Nota-se que, para z=Hd=1: 
t = 0+ → Uz = 0 % 
t =  → Uz = 100 % 
 
Nota-se que, para z=0: 
t = 0+ → Uz = 100 % 
t =  → Uz = 100 % 
 
Observe-se ainda que as curvas indicam, para a profundidade de menor condição 
de drenagem (maior distância à face drenante), uma maior percentagem de adensamento 
Uz. Na profundidade zero (superfície da camada drenante) ou próxima a ela, Uz é próximo 
de zero, ou seja, a pressão neutra já dissipou totalmente, sendo transferida para a parcela 
de tensão efetiva. 
 
 
O adensamento ocorre mais rapidamente nas 
proximidades das faces drenantes (Uz maior) e mais 
lentamente (Uz menor) no centro da camada ou na 
extremidade não drenante. 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 87 
3.9.4 – Grau de adensamento médio 
 
 Observa-se que o adensamento ocorre mais rapidamente nas proximidades das faces 
drenantes (Uz maior) e mais lentamente (Uz menor) no centro da camada ou na extremidade 
não drenante, para um tempo t. Logo, a porcentagem média U (sem índice) de 
adensamento ao longo de toda a camada de espessura “z” será a média dos valores de Uz, 
obtidos para as várias profundidades “z”, considerada a espessura total da camada “H”, 
podendo ser expresso de diferentes formas, como abaixo: 
 
H
U
U
z
  
−
−
=
H
O f
dz
ee
ee
H
U
0
01 
 
ou, de acordo com a equação 
0
),(
1
u
u
U
tz
z −=  −=
H
O
tz
dz
u
u
H
U )1(
1
0
),(
 
 
 Então se obtém para a porcentagem média de adensamento a expressão abaixo 
(Equação 4), que pode ser representada como na Figura 3.32, plotada em escala 
logarítmica. 
 
→ Equação 4 
 
 
Figura 3.32 – Valores de grau de adensamento médio U em função do fator tempo T, em log 
 
 A equação teórica U = f(T) – equação 4 pode ser expressa pelas seguintes relações 
empíricas, para fins práticos, para facilidade de cálculo: 
 
2
100
U
.
4
T 





= → para U < 60% 
 
( )U100log.933,0781,1T −−= → para U > 60% 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 88 
 Na prática, há interesse na determinação da porcentagem média de recalque (ou de 
adensamento), que se refere a toda a camada compressível. Logo, a partir deste conceito, o 
valor de U pode ser calculado ainda da seguinte forma: 
ph
th
U


=
)(
 
 Sendo: 
 ∆h(t) = recalque parcial, depois de ocorrido um tempo t 
hp = recalque total final da camada, por adensamento ou compressão primária, 
considerado decorrido um tempo “infinito” 
 
O recalque que se observa na superfície do terreno é resultante da somatória das 
deformações dos diversos elementos ao longo da profundidade. A média dos graus de 
adensamento, ao longo da profundidade, dá origem ao grau de adensamento médio, 
também denominado Porcentagem de Recalque, pois indica a relação entre o recalque 
sofrido até o instante considerado e o recalque total correspondente ao carregamento. 
 
A porcentagem de recalque (ou de adensamento) pode ser também representada 
graficamente de acordo com a Figura 3.33, sendo que o fator T não está expresso em log, e 
sim, em escala aritmética. 
 
 
Figura 3.33 – Valores de porcentagem de recalque U em função do fator tempo T 
 
 
3.9.5 – Cálculo de recalque por adensamento 
 
 O recalque em qualquer ponto “t” poderá ser calculado multiplicando o grau de 
adensamento médio (o quanto já adensou toda a camada) pelo recalque total previsto. 
Assim, pode-se escrever para o recalque parcial: 
 
phUth = .)( 
 
 Uma sequência prática para o cálculo do recalque parcial assim se descreve, o que 
permite conhecer a evolução desta deformação ao longo do tempo (obtenção da curva 
recalque x tempo): 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 89 
• Calcular hp 
• Com o tempo “t”, calcular o fator tempo pela equação 
2
d
V
H
t.c
T = 
• Com o valor de “T”, calcula-se U 
• Calcular phUth = .)( 
• Repetir para vários tempos “t” e 
traçar a curva recalque versus 
tempo. 
 
 
 
 
3.10 – Compressão secundária 
 
Depois de cessado o processo de adensamento (compressão primária), o solo 
continua a se deformar com o tempo, de modo que a curva recalque da amostra versus log 
(t) passa a representar um trecho aproximadamente constante. Este trecho é denominado 
compressão secundária do solo ou recalque de fluência, como mostra a Figura 3.34, sendo 
que no processo de compressão secundária o solo apresenta um comportamento mais 
viscoso. 
Em resumo: compressão secundária é o decréscimo de volume do solo 
(deformação) sob ’v = constante, como abordado e ilustrado também na Figura 3.20. Em 
aplicações práticas admite-se que a compressão secundária manifesta-se apenas após a 
dissipação total de poropressões (t100). 
Este tipo de compressão não detalhado neste curso de graduação. 
 
 
Figura 3.34 – Deformação (recalque) por compressão secundária, com o tempo “t” 
 
 
3.11 – Exercícios de Aplicação 
 
1 – Sobre um perfil de 7,0m de argila mole saturada, de índice de vazios inicial igual a 0,9, 
serão lançados 2 aterros de grandes dimensões em um intervalo de 6 meses. O primeiro 
aterro terá 1m de altura e o segundo 2m de altura. Ambos serão construídos com solo local 
e atingirão um peso específico após a compactação de 18,1 KN/m3. 
 
Estime o recalque de adensamento primário final considerando o coeficiente de 
compressibilidade médio na camada de argila de av = 1x10
-4 m2/KN. 
 
 
 
Faculdade de Engenharia – NuGeo/Núcleo de Geotecnia Prof. M. Marangon 
Mecânica dos Solos II – Edição 2018 
 
COMPRESSIBILIDADE E ADENSAMENTO DOS SOLOS 
 
 90 
Solução: 
i) cálculo do acréscimo de tensão vertical, considerado aterro infinito 
Aterro 1 = ΔσV = 18,7 X 1 = 18,7 kN/m² 
Aterro 2 = ΔσV = 18,7 X 2 = 37,4 kN/m² 
ii) A expressão para cálculo do recalque em função do coeficiente de compressibilidade é: 
 
 
nesta expressão, o termo H0/(1+e0) representa a altura de sólidos, sendo portanto constante 
para ambos os carregamentos. Assim sendo, refere-se ao aterro final: 
 
 
 
2 – As sondagens procedidas num certo local indicaram o perfil de subsolo mostrado na 
Figura 3.35. Duas torres, iguais e distantes 80 metros, foram construídas. Os recalques de 
cada torre foram registrados e constam da tabela 3.3, em cm. 
 
 
Figura 3.35 – Esquema do perfil de subsolo 
 
Tabela 3.3 – Valores dos recalques das torres A e B 
Tempo Torre A Torre B 
0 0 0 
3 meses 6,02 0,93 
6 meses 10,12 1,54 
1 ano 14,50 2,20 
2 anos 20,60 3,15 
3 anos 25,40 7,65 
5 anos 32,00 9,35

Outros materiais