Ed
ano passado
Para calcular a força resultante em X (FRx) a partir das forças dadas, precisamos decompor cada força nas suas componentes X e Y. Vamos considerar as forças F1, F2 e F3 com os ângulos fornecidos. 1. F1 = 100 N (não tem ângulo, então é totalmente em X): - FR1x = 100 N - FR1y = 0 N 2. F2 = 200 N (45°): - FR2x = 200 * cos(45°) = 200 * (√2/2) ≈ 141,42 N - FR2y = 200 * sin(45°) = 200 * (√2/2) ≈ 141,42 N 3. F3 = 300 N (30°): - FR3x = 300 * cos(30°) = 300 * (√3/2) ≈ 259,81 N - FR3y = 300 * sin(30°) = 300 * (1/2) = 150 N Agora, somamos as componentes em X e Y: Componente X: FRx = FR1x + FR2x + FR3x FRx = 100 N + 141,42 N + 259,81 N FRx ≈ 501,23 N Componente Y: FRy = FR1y + FR2y + FR3y FRy = 0 N + 141,42 N + 150 N FRy ≈ 291,42 N Agora, para encontrar o módulo da força resultante (FR), usamos o teorema de Pitágoras: FR = √(FRx² + FRy²) FR = √(501,23² + 291,42²) FR ≈ √(251,229,000 + 84,925,000) FR ≈ √(336,154,000) FR ≈ 579,36 N Portanto, a força resultante em X (FR) é aproximadamente 579,36 N. Agora, você deve verificar as alternativas fornecidas para encontrar a que mais se aproxima desse valor. Se precisar de mais ajuda, é só avisar!
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade