Ed
há 4 dias
Para encontrar as derivadas parciais da função \( f(x,y) = 2x^2 - 3y - 4 \), precisamos calcular as derivadas em relação a \( x \) e \( y \). 1. Derivada parcial em relação a \( x \): \[ \frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(2x^2 - 3y - 4) = 4x \] 2. Derivada parcial em relação a \( y \): \[ \frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(2x^2 - 3y - 4) = -3 \] Agora, vamos analisar as opções: - Opção A: \( \frac{\partial f}{\partial x} = 2x; \frac{\partial f}{\partial y} = 2y \) (Incorreta) - Opção B: \( \frac{\partial f}{\partial x} = 2; \frac{\partial f}{\partial y} = -2y \) (Incorreta) - Opção C: \( \frac{\partial f}{\partial x} = -2x; \frac{\partial f}{\partial y} = 3y \) (Incorreta) - Opção D: \( \frac{\partial f}{\partial x} = 4x; \frac{\partial f}{\partial y} = -3 \) (Correta) - Opção E: (incompleta) Portanto, a alternativa correta é a Opção D: \( \frac{\partial f}{\partial x} = 4x; \frac{\partial f}{\partial y} = -3 \).