Prévia do material em texto
Atividade 2 – Álgebra linear computacional Questão 1 Suponha que você esteja analisando duas aplicações financeiras. Sua aplicação inicial foi de R$ 20000,00 por um ano em duas aplicações: A e B. A aplicação A rendeu 10% ao ano e a B rendeu 25% ao ano. Sabe-se que o ganho proporcionado pela aplicação B foi superior ao de A em R$ 100,00. Com base nessas informações, assinale a alternativa que apresenta em R$ a diferença dos valores aplicados em cada investimento. • 9000. • 8000. Resposta correta. • 7000. • 6000. • 5000. Questão 2 As matrizes obedecem a certas propriedades de álgebra. Por exemplo, o produto entre as duas matrizes, geralmente, não é comutativo, . A única exceção seria quando isto é, quando a matriz B for a inversa de A. Usando o conceito de propriedade de matriz inversa, assinale a alternativa correta referente à matriz • Resposta correta. • • • • Questão 3 Uma empresa de contêineres tem três tipos de contêineres: I, II e III, que carregam cargas em três tipos de recipientes: A, B e C. O número de recipientes por contêiner é mostrado na seguinte tabela: Tipo de recipiente A B C I 4 3 4 II 4 2 3 III 2 2 2 Fonte: Elaborada pelo autor. Um determinado cliente necessita de contêineres do tipo x, y e z para transportar 38 recipientes do tipo A, 24 do tipo B e 32 do tipo C. A partir do exposto, analise as asserções a seguir e relação proposta entre elas. I. Esse tipo de problema apresenta solução. Porque: II. O determinante formado pela modelagem matemática desse problema é diferente de zero. A seguir, assinale a alternativa correta. • As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. Resta correta • A asserção I é uma proposição verdadeira e a asserção II é uma proposição falsa. • As asserções I e II são proposições falsas. • As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I. • A asserção I é uma proposição falsa, e a II é uma proposição verdadeira. Questão 4 As matrizes quadradas têm muita importância, pois, por meio delas, são calculados os determinantes que podem ser usados no estudo de sistemas lineares. Os determinantes também possuem certas propriedades que podem nos ajudar quando fazemos álgebras um pouco mais complicadas. Ao usar o conceito de propriedades de matrizes, analise as afirmativas a seguir: I. Quando uma linha ou coluna de uma matriz for nula, o determinante será zero. II. Caso ocorra a igualdade entre uma linha e coluna, o determinante será zero. III. Se duas linhas ou colunas têm valores proporcionais, o determinante será zero. IV. Se multiplicamos os elementos de uma linha ou coluna por uma constante C, o seu determinante será dividido por c. Está correto o que se afirma em: • II, III e IV, apenas. • I e III, apenas. Resposta correta • I, II e IV, apenas. • I, II e III, apenas. • II e IV, apenas. Questão 5 As matrizes obedecem às operações algébricas, por exemplo, soma, subtração, multiplicação por um escalar e multiplicação entre duas matrizes. Assim, no caso especial da multiplicação, temos que essa operação entre duas matrizes ocorre somente se o número de colunas de A for igual ao número de linhas de B. Sobre a multiplicação de matrizes, analise as asserções a seguir e relação proposta entre elas. I. Considere que a matriz seja e . Observa-se que essas duas matrizes comutam. Porque: II. A matriz B é inversa de A. A seguir, assinale a alternativa correta. • A asserção I é uma proposição falsa, e a II é uma proposição verdadeira. • As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I. • As asserções I e II são proposições falsas. • A asserção I é uma proposição verdadeira e a asserção II é uma proposição falsa. • As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. Resposta correta Questão 6 As matrizes são tipos de arranjos de números com n linha e m colunas. Podemos obter as matrizes a partir de leis de formação. Considere, por exemplo, uma matriz , de ordem , em que os elementos têm a seguinte lei de formação: Com base no exposto, analise as afirmativas a seguir: I. Na matriz A, o elemento é igual ao elemento II. Os elementos da diagonal principal da matriz A são todos nulos. III. Se a matriz B é , então o produto B. A é a matriz -B. IV. Sendo a matriz I a matriz identidade de ordem 4, a matriz A+I possui todos os elementos iguais a 1. Está coorreto o que afirma em : • II, III e IV, apenas. • I, II e III, apenas. • II e III, apenas. • II e IV, apenas. • I, II e IV, apenas. Resposta correta Questão 7 Para calcular determinantes , apenas multiplicamos, de forma cruzada, os elementos. Para matrizes , usamos a regra de Sarrus, em que repetimos as duas primeiras colunas e multiplicamos os elementos também de forma cruzada. Para matrizes de ordem maior, usamos o teorema de Laplace. Com base no uso do conceito do teorema de Laplace, assinale a alternativa que apresenta o valor de x não nulo da seguinte equação: =3 • . • . • . • . • . Resposta correta Questão 9 Os três axiomas de Eliminação de Gauss são: 1) o sistema de equações não se altera quando permutamos as posições das equações; 2) o sistema de equações não se altera quando multiplicamos os membros de uma das equações por qualquer número real não nulo; 3) por inferência, podemos, então, substituir uma equação por outra obtida a partir da inclusão “membro a membro” dessa equação, na qual foi aplicada a transformação do Teorema II. Usando o conceito de Eliminação Gaussiana, assinale a alternativa correta referente à matriz triangular da seguinte matriz: • • • • Resposta correta • Questão 10 Na modelagem de muitos sistemas físicos, encontramos sistemas lineares, tendo a quantidade de incógnitas similar à quantidade de equações. Nessa situação, sempre podemos montar uma matriz e calcular o determinante para verificarmos a solução de sistema lineares. Assim, nessa circunstância, considere que A seja uma matriz quadrada de ordem 2 e B uma matriz quadrada de ordem 3, tal que det(A).det(B)=1. Assinale a alternativa que apresenta o valor de det(3A).det(2B). • 36. • 6. • 18. • 72. Resposta correta. • 5